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Anticoagulant therapy in acute respiratory distress syndrome
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Abstract: Acute respiratory distress syndrome (ARDS) presents a complex pathophysiology characterized 
by pulmonary activated coagulation and reduced fibrinolysis. Despite advances in supportive care of 
this syndrome, morbidity and mortality remains high, leading to the need of novel therapies to combat 
this disease. Focus these therapies in the inhibition of ARDS development pathophysiology is essential. 
Beneficial effects of anticoagulants in ARDS have been proved in preclinical and clinical trials, thanks to 
its anticoagulant and anti-inflammatory properties. Moreover, local administration by nebulization in the 
alveolar compartment increases local efficacy and does not produce systemic bleeding. In this review the 
coagulation and fibrinolytic pathway and its pharmacological targets to treat ARDS are summarized.
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Introduction

Acute respiratory distress syndrome (ARDS) is an acute 
respiratory failure that develops in patients of all ages (1,2) 
and originates from multiple insults that damage directly or 
indirectly the lungs, such as pneumonia or sepsis (3). 

Supportive care to avoid worsening lung injury and 
improve ARDS outcomes are currently applied, such 
as mechanical ventilation (4), prone positioning (5) and 
neuromuscular blockers (6). Nevertheless, morbidity and 
mortality remain high (35–40%) (2), and new therapies 
focused in the pathophysiology of ARDS development are 
required (7). 

The lungs of ARDS patients are characterized by 
inflammation and increased procoagulant factors, no 
hydrostatic pulmonary edema and the breakage of the 
alveolar-capillary barrier, increasing proteins permeability 
(8,9).  This produces the activation of pulmonary 

macrophages towards a proinflammatory phenotype and 
an increase of intravascular and extravascular neutrophils, 
platelets and fibrin, as well as endothelial and epithelial 
injury.

Given the essential role that coagulation plays in ARDS 
pathophysiology, this review will focus on the coagulation 
and fibrinolytic pathways and its pharmacological targets to 
treat ARDS.

Coagulation and fibrinolysis in the alveolar 
compartment of ARDS 

Pulmonary coagulopathy in ARDS pathophysiology is 
characterized by an activated coagulation and reduced 
fibrinolysis (10,11), similar to the altered coagulation found 
systemically in septic patients. Different pathways of the 
coagulation cascade are involved in the pathophysiology of 
ARDS: tissue factor (TF) pathway, protein C pathway and 
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the regulation of fibrinolysis by the plasminogen activator 
(PA) and inhibitor pathway (Figure 1).

TF pathway

Activation of TF is a major initiator of extrinsic coagulation 
cascade. TF is a transmembrane protein that is activated by 
the binding of factor VIIa on the cell surface. This complex 
cleaves factor X producing its activated form, Xa, which 
brings with it thrombin generation, that is one of the most 
important procoagulant proteins, and fibrin formation. In 
normal conditions, there is equilibrium between TF and 
TF pathway inhibitor (TFPI) which regulates the initiation 
of extrinsic coagulation cascade via TF pathway. TFPI is 
a natural anticoagulant inhibitor produced in the vascular 
endothelium and on the surface of platelets (12). This 
inhibitor interferes with the complex TF:VIIa:X inhibiting 
thrombin production and fibrin deposition. TFPI must 
bind to Xa to become active, so this inhibition process 
just takes place after the initiation of the coagulation  
pathway (12). Furthermore, the complex VIIa:Xa has a role 
on inflammation activating protease-activated receptors 
(PAR-2) on the cell surface of immune cells, platelets and 

endothelial cells, producing the expression of molecules of 
adhesion and promoting an inflammatory process (13).

Independently of ARDS etiology, the inflammatory 
process is one of the major inducers of the coagulation 
pathway. It has been proved that alveolar macrophages, 
alveolar epithelial cells and endothelial cells produce TF 
after being exposed to a proinflammatory stimulus that 
causes the activation of the transcription factor nuclear 
factor-κB (NF-κB) (12,13). 

TF in the alveolar space is found in alveolar epithelial 
cells and alveolar macrophages in human lung tissue 
from ARDS patients (14) and in mice that received 
lipopolysaccharide (LPS) directly into the lungs (15). 
In this line, increased TF procoagulant activity is found 
in the bronchoalveolar lavage (BAL) of ARDS patients 
and patients with pneumonia without ARDS (10,16,17) 
and in plasma of septic patients (18). Increased plasma 
concentrations of TF in ARDS patients are related with 
poor clinical outcomes (12). The observed changes in TF 
indicate a common coagulation mechanism in different 
ARDS etiologies. In pulmonary edema fluid of ARDS 
patients the levels of TF protein is more than 100-fold 
higher than in plasma (14). Shaver et al. found out that 

Figure 1 Coagulation and inflammation in the alveolar compartment.
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the alveolar epithelium is the major source of TF in acute 
lung injury (ALI), being protective during this disease, 
as coagulation and the deposition of fibrin are activated 
producing a barrier and reducing the alveolar-capillary 
membrane leakage (19). Bastarache et al. proved that 
intratracheal TF administration in a model lacking murine 
TF reestablished local coagulant activity and reduced 
haemorrhage and permeability in an ALI model of LPS (20). 

Regarding the natural anticoagulant of TF, TFPI 
levels are increased in the alveolar compartment of ARDS 
patients, although it does not compensate TF increment, 
as procoagulant activity predominates. Levels of TFPI are 
7-fold greater in patients at risk and 20-fold more elevated 
in established ARDS patients (21), and no differences are 
found in plasma.

Protein C pathway

Protein C pathway is also involved in the regulation 
of coagulation and fibrinolysis. Protein C is a vitamin 
K-dependent glycoprotein synthesized by the liver that 
circulates as a zymogen. Activated protein C (APC) is 
produced by the thrombin-thrombomodulin (TM) complex 
on the cell surface. TM is a thrombin receptor that 
together with thrombin creates a complex that activates 
protein C, converting thrombin from a procoagulant 
to an anticoagulant and activating fibrinolysis (22). TM 
was originally described to be produced by endothelial  
cells (23) although consequently was either detected in 
other cell types, including alveolar epithelial cells (24). 
The endothelial protein C receptor (EPCR) is another 
cell surface protein that potentiates activation of protein C 
while binding to TM-thrombin complex. 

APC presents anticoagulant properties through 
proteolytically inactivating factors Va and VIIIa, which 
suppress thrombin formation, and promotes fibrinolysis 
by neutralizing PA inhibitor-1 (PAI-1). A link between 
inflammation and coagulation is produced because of 
the ability of thrombin to activate PAR-1, 3 and 4, and 
of factor Xa to activate PAR-2, raising the production 
of inflammatory genes and increasing the activation 
and recruitment of neutrophils and platelets into the  
lung (13). Thus, by suppressing thrombin through APC an 
anticoagulant and anti-inflammatory effects are produced. 
On the other hand, APC presents anti-inflammatory 
functions through the suppression of proinflammatory 
cytokines released by neutrophils (25,26) and has 

antiapoptotic functions through p53 inhibition. 
In normal conditions, human alveolar epithelial cells 

are able to activate protein C and express TM and EPCR, 
which enhances APC. In response to an injurious stimulus, 
alveolar epithelial cells release TM and EPCR from the 
cell surface, due to a metalloproteolytic process, reducing 
the ability of these cells to activate protein C (27) and 
promoting a procoagulant state and the inhibition of 
fibrinolysis. 

Plasma levels of protein C are reduced in ARDS patients, 
presenting lower levels in the alveolar compartment (24), 
especially those patients presenting phenotype 2 (28). 
In pulmonary edema from ARDS patients, TM is 2-fold 
higher than in ARDS plasma, and more than 10-fold higher 
than in normal plasma (24,29). Further, higher plasma 
levels of soluble TM are related with increased mortality in 
ARDS (30) and genetic variants in TM and EPCR genes are 
associated with mortality in ARDS (31). The low protein 
C levels and high TM levels in the alveolar compartment 
provide further support to the growing of evidence that 
the alveolus is a procoagulant, antifibrinolytic environment 
in ARDS (32). The protein C system may be a potential 
therapeutic target in patients with ARDS (12).

Plasminogen activator and inhibitor pathway 

The activation of coagulation and fibrinolysis drives 
the deposition of fibrin into the lung. PA, which can be 
urokinase-type PA (uPA) or tissue-type PA (tPA), drive 
the conversion of plasminogen to plasmin, a fibrinolytic 
enzyme. This conversion is neutralized by PAI-1.

Alveolar macrophages, endothelial cells and alveolar 
epithelial cells are sources of PA and PAI-1. When 
stimulated with a proinflammatory stimulus, alveolar 
macrophages express higher levels of PAI-1, and endothelial 
cells express less tPA, resulting in increased fibrinolysis 
inhibition (25). In patients with ARDS fibrinolysis is 
reduced, as the levels of PAI-1 are increased in both 
plasma and edema fluid, presenting a correlation with  
mortality (17,33). 

Coagulation and fibrinolysis as pharmacological 
targets for ARDS 

Increased procoagulant activity in the alveolar compartment 
is evident as higher levels of thrombin generation, soluble 
TF, and factor VIIa are found in BAL fluid from ARDS 
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patients, together with elevated levels of PAI-1, indicating 
reduced fibrinolysis activity (17). Pharmacological targets 
for the coagulation cascade and fibrinolytic pathway 
might be promising candidates for ARDS treatment and 
prevention.

TFPI 

A treatment for ARDS could be TFPI due to its functions 
on the coagulant pathway. Neutralize TF activation with 
TFPI administration diminishes coagulation and cell injury 
in a septic model in baboons (34) and reduces pulmonary 
injury and coagulation in a model of LPS through inhibiting 
leukocytes activation (35). Furthermore, inactivated 
factor VIIa (VIIai) was developed as an anticoagulant, 
proving protective effects in a model of sepsis in  
baboons (36). In a direct and indirect rat model of ALI, 
nebulized recombinant human TFPI seem feasible and 
safe (37). It decreased pulmonary and systemic coagulation 
in both models, although just in the model receiving 
intratracheal P. aeruginosa the pulmonary inflammation was 
decreased (37). 

A phase III clinical trial of intravenous recombinant 
TFPI failed in reducing mortality in sepsis (38) and severe 
community-acquired pneumonia (39). Given the positive 
results obtained with nebulized recombinant human TFPI 
in preclinical models, further investigation should focus on 
this form of delivery.

APC

Nebulized APC administration in animal models of 
ALI diminishes lung injury (40-42), reduces pulmonary 
coagulopathy (43,44), stimulates fibrinolysis (45), reduces 
inflammation (40,45,46) and ameliorates oxygenation 
(40,43). Systemic coagulation was only decreased in one of 
the studies with pulmonary infection (43).

In a patient with ARDS that received inhaled APC 
(Drotrecogin alpha activated), the alveolar compartment 
resulted with anticoagulant, profibrinolytic and anti-
inflammatory effects (26,47). Also, inhaled APC reduced 
neutrophils recruitment in the alveolar space, and did 
not produce nor local nor systemic adverse effects. 
Unfortunately, the negative results obtained in the 
PROWESS-Shock trial, a phase III trial of 1,967 patients 
with severe sepsis receiving intravenous recombinant human 
APC (rhAPC) (48), together with the removal of APC from 
the market ended with the use of APC (7). 

TM

ART-123 is a recombinant human soluble TM that through 
its anticoagulant and anti-inflammatory effect has been 
proved to improve disseminated intravascular coagulation 
in animal models and clinical studies (49-52). Furthermore, 
in a model of cecal ligation and puncture induced 
sepsis, ART-123 inhibited proinflammatory cytokines 
and ameliorated survival. In a model of endotoxemia 
induced by LPS, intravenous ART-123 reduced HMGB1 
plasma levels and mortality (53). Indeed, in a phase II 
study, intravenously administered ART-123 proved to 
be safe and effective in patients with sepsis-associated  
disseminated intravascular coagulation,  reducing 
prothrombin fragment and thrombin-antithrombin (AT) 
complex concentrations (54). Moreover, in a retrospective 
study of intravenously combined therapy with sivelestat 
and recombinant human soluble TM, beneficial effects 
on survival of patients with ARDS and disseminated 
intravascular coagulation were suggested (55). At the 
moment there is an ongoing phase III study of intravenous 
ART-123 in septic shock patients with disseminated 
intravascular coagulation and multiorgan failure.

AT

AT, also termed heparin cofactor II or AT III (ATIII) is a 
broad-spectrum serine protease inhibitor. ATIII neutralizes 
several enzymes in the coagulation cascade, including 
thrombin and factor Xa, iXa, Xia and XIIa (56,57).

ATIII contains a heparin-binding domain at its active 
site. Heparin enhances the inhibitory activity of ATIII 
of the procoagulant proteins of the coagulation pathway. 
ATIII also has several indirect anti-inflammatory properties 
mediated through prostacyclin release (57,58). 

Thrombin is increased in the injured lungs of patients 
with clinical disorders resulting in ALI/ARDS (58-60). 
Different therapeutic strategies with ATIII have been 
tested in experimental models and in patients with severe 
sepsis for restoring the natural anticoagulant cascades. 
In LPS-induced lung injury, intravenous ATIII has been 
shown to reduce vascular injury, leukocyte accumulation, 
and vascular permeability (56-58). Furthermore, in 
lung injury pneumonia induced by intratracheally S. 
pneumoniae, the pretreatment of nebulized ATIII attenuated 
pulmonary coagulopathy and fibrinolysis, reduced bacterial 
outgrowth, decreased inflammation and did not produce 
systemic bleeding (46). In models of P. aeruginosa (43) and 
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endotoxemia (44) nebulized ATIII reduced pulmonary 
coagulation and did not affect systemic coagulation.  

Currently, nebulized ATIII has not been administered in 
any clinical trial. As explained above, preclinical studies with 
combined ATIII and heparin have also been performed with 
positive results. 

Heparin

Heparin is a potent natural anticoagulant produced by mast 
cells in the intestine or lungs, basophils in the blood and 
endothelial cells (61). This glycosaminoglycan is extensively 
applied in the clinics for its anticoagulant properties. It 
potentiates ATIII inhibitory activity in the coagulation 
pathway and acts through other serine protease inhibitors 
such as protein C inhibitor and TFPI (56). 

In direct and indirect ARDS, previous studies pointed 
out that heparin diminishes lung injury, although it 
produces systemic bleedings. Local administration of 
heparin for example by nebulization might prevent systemic 
effects and increase its effectiveness (11). Nebulized heparin 
ameliorated oxygenation in a model of smoke inhalation 
and sepsis (62). In preclinical and clinical studies inhaled 
anticoagulants (heparin, heparinoids, ATs, or fibrinolytics 
such as tissue PA) favored survival (63). 

Furthermore, heparin presents anti-inflammatory 
activities (64). Heparin was found to inhibit the NF-κB 
pathway and decrease the expression of proinflammatory 
mediators in human alveolar macrophages treated with 
LPS (65-67) and reduce NF-kB pathway in alveolar  
cells (67) in vitro. However, studies in in vivo models of ALI 
present controversial results about the anti-inflammatory 
effect of heparin. On the one hand, in an animal model of 
endotoxemia (43,44) and pneumonia (46) the positive effect 
of nebulized heparin in coagulopathies was confirmed, 
although no changes on inflammation were found. On the 
other hand, the administration of nebulized heparin in an 
ALI rat model induced by intratracheal LPS diminished 
procoagulant and proinflammatory markers in lung tissue 
and the expression of NF-κB and TGF-β effectors in 
alveolar macrophages (68). Also, heparin reduced the 
recruitment of neutrophils into the alveolar space and 
edema, without producing systemic bleedings (68). The 
difference on these results could be attributed to the 
different timing and dosage of heparin.

Clinical studies with nebulized heparin administered to 
ARDS patients, did not present adverse effects, attenuated 

pulmonary coagulopathy and reduced the days of mechanical 
ventilation (69-71). A recent multicenter trial, HEPBURN, 
focused in the safety and efficacy of burn patients receiving 
nebulized heparin, was stopped due to an elevated systemic 
clotting time (72,73). No convincing benefit of heparin 
nebulization was found under mechanical ventilation (74) or 
for prophylaxis for pneumonia patients receiving mechanical 
ventilation (75,76). In 16 patients with ventilator-induced 
lung injury, heparin was nebulized proving safety and 
increasing the number of ventilator-free days (77).

The safety and efficacy of heparin as a treatment for the 
different etiologies of ARDS needs further investigation, as 
data is very limited.

PA

Preclinical models support the use of PA for ARDS (78,79), 
although clinical studies with trauma or septic patients that 
received intravenous uPA, tPA or streptokinase presented 
higher risk of bleeding (80,81). Nebulization of tPA could 
maintain its properties while avoid systemic adverse  
effects (81-84). 

Combined therapies

Until now we have focused on single anticoagulant 
therapies, but studies were nebulized heparin has been 
combined with other drugs also proved benefit in ARDS. 
A preclinical model of combined aerosolized recombinant 
human AT and heparin in a sheep with burn and smoke 
inhalation reduced pulmonary pathophysiology (85). 
Moreover, intravenous recombinant human AT together 
with aerosolized heparin diminished the lung injury in 
a model of sheep with burn and smoke inhalation (86). 
Intravenous AT together with nebulized heparin and tPA 
in a model of burn smoke inhalation, sheep restored gas 
exchange but did not produce changes in inflammation (87). 

Aerosolized heparin and N-acetylcysteine diminished 
lung injury in ventilated smoke inhalation ARDS  
patients (88) and reduced duration of mechanical ventilation 
in burn inhalation injury (89). No drug incompatibilities 
were found in a case of a patient with smoke inhalation 
injury receiving nebulized heparin with N-acetylcysteine 
and epoprostenol (90). Nebulized heparin in burn patients 
together with a beta-agonist and a mucolytic diminished 
duration of mechanical ventilation, was safe and no bleeding 
events were recorded (91). 
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Future directions

New therapies based on the pathophysiological processes 
of ARDS development are need due to the high morbidity 
and mortality underlying this disease. Activated coagulation 
and reduced fibrinolytic activity are intrinsic to ARDS. 
Preclinical and clinical trials show beneficial effects of 
anticoagulants in ARDS, although results are controversial. 
Local treatment in the alveolar compartment, through 
anticoagulants nebulization, raises its effects and avoids 
systemic bleedings. Nebulization of tPA or TFPI could 
maintain its properties while avoid systemic adverse effects, 
further investigation should focus on this form of delivery. 
However, we should not forget that animal models mimic 
human ARDS only in part, and that this could affect the 
relevance of the data. Furthermore, we should have in mind 
that the time to initiate a treatment is decisive.

The etiology of ARDS pathophysiology is diverse. 
Identify subtypes in ARDS heterogeneity might help to 
predict responsiveness to a specific treatment. The use 
of intravenous ART-123 in a subtype of ARDS patients 
should be further investigated. ARDS is a complex disease 
regarding its pathophysiology, so the unique or combined 
therapy should face different pathways and processes to 
ameliorate patient’s outcomes. The nebulization of ATIII 
and heparin combined or alone in a subtype of patients 
most likely to respond to the appropriate anticoagulant 
should be either studied.
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