
Page 1 of 12

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

Big-data Clinical Trial Column

Variable selection in Logistic regression model with genetic
algorithm

Zhongheng Zhang1, Victor Trevino2, Sayed Shahabuddin Hoseini3, Smaranda Belciug4, Arumugam
Manivanna Boopathi5, Ping Zhang6, Florin Gorunescu7,8, Velappan Subha9, Songshi Dai10,11

1Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; 2Catedra

de Bioinformatica, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico; 3Department of Pediatrics, Memorial Sloan

Kettering Cancer Center, New York, NY, USA; 4Department of Computer Science, Faculty of Sciences, University of Craiova, Craiova, Romania;
5Department of Electrical and Electronics Engineering, Ariyalur Engineering College, Ariyalur, Tamilnadu, India; 6Menzies Health Institute

Queensland, Griffith University, Brisbane, Australia; 7Department of Mathematics and Computer Science, University of Piteşti, Piteşti, Romania;
8Department of Mathematics, Biostatistics and Informatics, University of Medicine and Pharmacy of Craiova, Craiova, Romania; 9Department of

Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India; 10College of Electrical Engineering,

Zhejiang University, Hangzhou 310027, China; 11Hangzhou mAIcim Co. Ltd., Hangzhou 310058, China

Correspondence to: Zhongheng Zhang. No. 3, East Qingchun Road, Hangzhou 310016, China. Email: zh_zhang1984@zju.edu.cn.

Abstract: Variable or feature selection is one of the most important steps in model specification. Especially
in the case of medical-decision making, the direct use of a medical database, without a previous analysis and
preprocessing step, is often counterproductive. In this way, the variable selection represents the method
of choosing the most relevant attributes from the database in order to build a robust learning models and,
thus, to improve the performance of the models used in the decision process. In biomedical research, the
purpose of variable selection is to select clinically important and statistically significant variables, while
excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them
is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in
each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it
commonly trapped in local optima. The best subset approach can systematically search the entire covariate
pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the
case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be
used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-
step approach to the use of GA in variable selection. The R code provided in the text can be extended and
adapted to other data analysis needs.

Keywords: Logistic regression; genetic algorithm (GA); variable selection; galgo

Submitted Oct 29, 2017. Accepted for publication Jan 03, 2018.

doi: 10.21037/atm.2018.01.15

View this article at: http://dx.doi.org/10.21037/atm.2018.01.15

Introduction

Variable or feature selection is of vital importance in
building a multivariable regression model. The primary
purpose of variable selection is to incorporate clinically
relevant and statistically significant variables into the
model, while excluding noise/redundant variables (1,2).
There are many procedures for this purpose such as
purposeful selection, best subset and stepwise regression,

association rules techniques, particle swarm optimization,
etc. These procedures have been proven to be powerful
in model building, and are widely used. However, none of
these procedures are panacea, especially in the era of big
data when a huge number of variables are available. The
purposeful selection of variables usually involves univariate
testing to screen variables that are significantly associated
with the outcome of interest. Then a regression model is

45

Zhang et al. Logistic variable selection with GA

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

Page 2 of 12

built on these variables. However, such a procedure may
overlook some important variables which work together
to take effect, but they do not reach statistical significance
level when tested independently. The best subset procedure
can solve this problem because it tests all the possible
combinations of the candidate variables (3). However, this
procedure can be useful in a dataset with small number of
variables, but may not be the best choice for a large number
of variables. For example, when there are 50 candidate
variables, the total number of models is 250–1, which is
obviously unmanageable with modern computers (2).
Stepwise approach is another widely used method, but it is
a local search process that it ultimately converges to local
optima (4).

Genetic algorithm (GA) is a heuristic search algorithm
mimicking the process of biological evolution and natural
selection (5,6). In Darwin’s theory, the population can
evolve by selection, crossover and mutation. In the process,
the fittest individuals will survive and reproduce whereas
the weaker ones will be eliminated from the population.
GAs create random populations of artificial individuals
(chromosomes in GAs terminology) that are evaluated
by a mathematical fitness function. When the fittest
chromosomes are selected, reproduced, crossed, and
mutated along many generations, the artificially evolved
chromosomes are quite well adapted to the mathematical
fitness function. GAs have been successfully applied to
solve optimization problems, both for continuous (whether
differentiable or not) and discrete functions. Variable
selection for logistic regression model can be regarded as
an optimization problem, and thus can be solved by GAs
(7-10). This article aims to provide a tutorial on how to
implement GAs for variable selection. Since the logistic

regression model is the most widely used method in clinical
researches, because in most cases, the dependent variable
is categorical (e.g., diagnosis), it will be considered as a
working example. The code can be easily extended to other
types of generalized linear models, owing to the availability
of a large amount of R packages for these functionalities.

Basic ideas underlying GA

The principles of evolution and natural selection are the
stepping stones of GA (5,11). In biology, gene is a unit of
heredity that can be transferred from parents to offspring
and is held to determine some characteristic of the
offspring (12). A chromosome is comprised of genes. In
an analogy, a clinical variable can be considered as a gene
(Table 1), and a set of clinical variables constructing a
regression model can be considered as a chromosome. The
chromosome size specifies the number of variables for a
model. For example, if the chromosome size is 5, there will
be five different variables in each model. The GA begins with
a population of a random set of models. A fitness function
is applied to evaluate each model in the population. For
logistic regression models, the fitness function can be the
discrimination as represented by the area under the receiver
operating characteristic curve (AUC). It is noteworthy that
AUC combines in a unique value both the sensitivity and
specificity of a model. The traditional evaluation system for
AUC (i.e., 0.9–1.0—excellent; 0.8–0.9—good; 0.7–0.8—
fair; 0.6–0.7—poor; 0.5–0.6—failure) is usually used to
assess the performance of each classifier. To finish the
evolving process, the AUC is compared to a goal (A main
open question that cannot be simply answered without a
complex combinatorial optimization approach concerns the
choice of the values to be set for the algorithms parameters
of GA. For the sake of simplicity, in this paper we
heuristically chose them, although in future work this issue
needs to be considered). If the goal is reached, the model is
selected and the evolution process stops. If the goal is not
reached in the current generation, the population of models
will continue to evolve. Here, the current population act
as the parent population and the next generation is the
offspring. Similar to the biological evolution, models with
greater fitness in parent population have more chance
to reproduce. The replicated chromosome will undergo
crossover and mutation to produce diversity, allowing the
offspring to have more chance to reach the fitness goal. The
cycle continues until either the fitness goal or the maximum
number of generations is reached (Figure 1).

Table 1 Common terms in GA versus biology

Terms in biological evolution
and natural selection

Genetic algorithm (GA) in logistic
regression

Gene Variables such as vital signs,
laboratory tests, demographics

Chromosome A set of variables contributing to a
model

Crossover Exchange of variables between two
parent models

Mutation Replace one variable

Selection Models with higher fitness value
are more likely to reproduce

Annals of Translational Medicine, Vol 6, No 3 February 2018 Page 3 of 12

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

Working example

Here we simulate a dataset to illustrate of how to perform
variable selection with GA. The R code for generating the
dataset is shown below (R version 3.3.2):

> n <- 500

> set.seed(123)

> xcat <- sample(x=c("A","B", "C"),

size=n, replace=TRUE, prob=rep(1/3, 3))

> xcont1<-rnorm(n)

> xcont2<-rnorm(n)

> dat<-data.frame(xcat,xcont1,xcont2)

The first line specifies the number of observations as 500.

The set.seed() function allows the results to be reproducible
across computers. The xcat variable is a categorical variable
with three levels A, B and C, and the three levels have the
same probability of occurrence. Two continuous variables
xcont1 and xcont2 are created assuming normal distribution.
However, if the number of observations is fairly large
(≥100), as in this case, then deviations from normality do
not matter too much because of the central limit theorem
(CLT). Then, the three variables are coerced into a data
frame. Assuming that the three variables are associated with
the outcome variable, we also created 100 noise variables
(50 categorical and 50 numeric) that are not associated with
the outcome variable, and add them to the data frame.

> for(i in 1:100){

col_new <- paste0("x", i)

dat[, col_new] <- rnorm(n, i, i*1.5)

}

> for(i in 101:200){

	 col_new <- paste0("x", i)

	 dat[, col_new] <-sample(x=c("A","B", "C"),

size=n, replace=TRUE,

prob=sample(c(1/3,1/2,1/6),3,replace=F))

}

A total number of 100 noise variables are generated
using for loop, comprising 50 categorical and 50 numeric
variables. The next code is to produce the outcome variable
y which is a binary categorical variable.

> library(dummies)

> linpred<-within(dat,linpred <- cbind(1,

dummy(xcat)[, -1]) %*% c(-2, 5, 3)-

3*xcont1-2*xcont2)['linpred']

> pi <- 1/(1+exp(-linpred))

> pi<-as.matrix(pi,ncol=1)

> y <- rbinom(n=n, size=1, prob=pi)

> dat <- data.frame(dat, y=y)

The linpred object is a linear combination of predictors.
Note that only three variables xcat, xcont1 and xcont2
contribute to the linear predictor. Then the linear predictor
is converted to the probability by using the inverse logit
function. The outcome y is produced by assuming a
binomial distribution, although, in specific cases, other

Figure 1 Flow chart of genetic algorithms. At the outset, a
population of models is created randomly, and they are evaluated
for their fitness. In this example, the discrimination of the area
under the receiver operating characteristics curve (AUC) is used
as the fitness value. If there is a model reaching the fitness goal,
the model is selected and the evolutionary process discontinues.
Otherwise, the parent generation proceeds to reproduce offspring,
with models of higher AUC more likely to reproduce. There are
crossover and mutation mechanisms to expand the reservoir of
models.

Initial population of
models with random

variables

All models are
evaluated for its
discrimination

AUC > goal

Generate new population:
models with higher AUC

are more likely to reproduce

Random crossover:
exchange variables between

parent models

Random mutation

Selecting the
model

YES

NO

Zhang et al. Logistic variable selection with GA

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

Page 4 of 12

discrete distributions may be taken into account. The last
line combines dat and y into the final data frame. Such a
data frame is usually the start of data analysis in real clinical
research practice.

The galgo package

Several R packages exist such as GA (13), genalg and
GenAlgo that can be used for implementing GA. However,
in this tutorial we will use the galgo package (v1.2-01), a
popular tool in bioinformatics (14). The galgo package
contains plenty of useful tools for the visualization of GA
process. Furthermore, the objects can be extended and
all functions can be overwritten, allowing users to adapt
functions in the galgo package to their own needs. There is
a good tutorial available on the web for the comprehensive
description of the package (http://bioinformatica.mty.itesm.
mx/Galgo). Also one may consult R documents which can
be invoked by calling the help() function. As we already
mentioned, since logistic regression is the most widely used
statistical method in clinical researches, the present tutorial
focuses on the use of the galgo package to build a logistic
regression model.

Define the fitness function

The core to variable selection is the fitness function because
it judges how good one model fits to the data. There
is a variety of methods to judge the fitness of a model
such as the Homser-Lemeshow goodness of fit test (for
logistic regression models), the discrimination, the Akaike
information criterion (AIC) and Bayesian information
criterion (BIC) (4). In this article, the discrimination method
is used to evaluate the goodness of a logistic regression
model. Discrimination is quantitatively assessed by the
AUC (15,16). The pROC package is employed to compute
the statistic (17). The fitness function is constructed by the
following code.

> library(pROC)

> reg.fitness <- function(chr, parent,tr,te,res) {

try <- parent$data$classes[tr]

trd <-

data.frame(parent$data$data[tr,as.numeric(chr)])

trd <- lapply(trd,function(x){

	 if(length(unique(x))>=10){

		 as.numeric(as.character(x))

	 }else{x}

})

trd <- data.frame(trd)

chsize<-length(chr)

colnames(trd) <- paste0("g",1:chsize)

trm <- glm(try ~ .,

family='binomial', data=trd)

tey <- parent$data$classes[te]

ted <-

data.frame(parent$data$data[te,as.numeric(chr)])

ted <- lapply(ted,function(x){

	 if(length(unique(x))>=10){

		 as.numeric(as.character(x))

	 }else{x}

})

ted <- data.frame(ted)

colnames(ted) <- paste0("g",1:chsize)

if(res){

	 roc(as.numeric(tey) ~

predict.glm(trm,newdata=ted,type="response"))$auc

}

else{

ifelse(predict.glm(trm,newdata=ted,
type="response")>=0.5,2,1)

}

}

The fitness function requires the prototype of the form
function (chr, parent,tr,te,res), where chr represents the
chromosome to be evaluated. parent is the BigBang object
that will be created by the wrapper function configBB.
VarSel() in the next section. tr is the vector of samples (rows)
that is used as training, and te the samples that must be used
as test. The res argument controls the format of the re-
turned object. For res=0, a vector of the same length as the
testing sample containing predicted class will be returned;
otherwise, the returned value is an AUC of the model cal-
culated in the testing dataset.

The outcome variable in the training dataset can be
extracted by “parent$data$classes[tr]”. The predictors of
the training dataset are stored in the object trd. Since in
the BigBang object, the original data frame is transposed
so that all variables are converted to character vectors,

Annals of Translational Medicine, Vol 6, No 3 February 2018 Page 5 of 12

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

it is necessary to convert the numerical variables back
to class of numeric (variable type). The variables are
renamed to g1, g2, g3, g4 and g5 in the fitness function.
In this tutorial, as an example, we restrict five variables
being selected to construct a logistic regression model,
and the task of the fitness function is to evaluate the
fitness of the model. In this respect, the fitness function
has nothing to do with the variable selection procedure.
Next, the logistic regression model is built with the
glm() function in a conventional way. The test dataset is
extracted in the same way as that for the training dataset.
Finally, the if-else function is employed to return different
results. As mentioned above, if the res argument is 0, the
returned object is a vector containing class membership
for each individual in the test dataset. Otherwise, the
fitness function will return an AUC value reflecting the
discrimination of the model.

The BigBang object

The evolution will stop by either the preset maximum
number of generation or the fitness goal is reached. As a
result, there could be a solution to the problem (the fitness
goal is reached) or no solution at all. In our example,
one evolution may result in a model with the preset
discrimination or not. More importantly, the solution may
be a local maximum. Thus, it is necessary to implement
a large amount of evolutions. The BigBang object is an
attempt to use more information of a large collection of
solutions instead of a unique solution. The BigBang object
can be created using the wrapper function configBB.
VarSel() as follows:

> library(galgo)

> reg.bb <- configBB.VarSel(data=t(dat[,-ncol(dat)]),

classes=dat$y,

classification.method="user",

classification.userFitnessFunc=reg.fitness,

chromosomeSize=5, niches=1, maxSolutions=1000,

goalFitness = 0.9, saveVariable="reg.bb",

saveFrequency=50, saveFile="reg.bb.Rdata",

main="Logistic")

The data argument is a data frame with samples (patients)
in columns and variables in rows, which is a transposed
format of the conventional data frame. Note that the
outcome variable is not provided in the data argument,
but it is provided separately in the classes argument. There
are many classification methods shipped with the galgo
package such as support vector machines (SVMs), neural
networks (NNs) and nearest neighbors. Here the user-
defined function which we were previously created is used.
The user-defined function is given in the classification.
userFitnessFunc argument. The chromosome size is set to
5, indicating that the models will consist of 5 variables.
The maximum number of solutions is 1,000, which is
considered as the default value. The fitness goal is set to
be 0.9 as an example, indicating that if a model with AUC
equal or greater than 0.9 is evolved the evolution process
will stop, and the program will go to another cycle of
search for solutions. After the BigBang object is properly
configured, the “blast” procedure has to be started to collect
chromosomes (models) associated with high AUC.

The real time evolutionary process can be monitored

> blast(reg.bb)

[e] Starting: Fitness Goal=0.9, Generations=(10 : 200)

[e] Elapsed Time Generation Fitness %Fit [NextGenerations]

[e] 0h 0m 0s (m) 0 0.5907 65.63% +.+++.+..+.+....++++

[e] 0h 0m 20s 20 0.79898 88.78% -++.......-+........

[e] 0h 0m 42s 40 0.82601 91.78% ...+................

[e] 0h 1m 2s 60 0.82614 91.79%+.++-++..++...

[e] 0h 1m 22s 80 0.89452 99.39% ..+

[e] 0h 1m 25s *** 83 0.94737 105.26% FINISH: 1 2 3 147 79

[Bb] 49 49 Sol Ok 0.94737 105.26%	 83 84.986s	 3109s	 3127s	 59410s (16h 30m 10s)

Zhang et al. Logistic variable selection with GA

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

Page 6 of 12

after running the blast() function. An example of the
output is shown above lines starting with [e] represent the
evolutionary process. The first line shows the fitness goal,
the minimum and maximum number of generations. In the
example, the minimum number of generation is 10, and the
maximum number is 200. The second column shows the
elapsed time. In the example, the first 20 generations take
20 s to evolve. The third column shows the current number
of generation (refreshed every 20 generations by default).
The “Fitness” column shows the current best fitness,
along with the percentage relative to the fitness goal in the
“%Fit” column. The “[NextGenerations]” column shows
the behavior of the next generation. A “.” symbol indicates
that the maximum fitness of the current population has
not changed, “+” means it has increased and “-” means it
has decreased. The “G” symbol may sometimes appear,
indicating that the fitness goal has been reached but the
minimum number of generation has not been reached. The
numbers following “FINISH” is the indices of variables
constituting the best-fit chromosome.

The last line starting with [Bb] shows the current
collection of solutions in the whole BigBang object. In the
example, the number of evolutions is 49 and the number
of evolutions that have reached goal fitness is 49. The
“Sol Ok” indicates that the current evolution reaches goal
fitness. The best fitness is 0.94737, along with its percentage
105.26% relative to the fitness goal. The number of
generations required to reach the goal fitness is 83, and it
takes 84.986 s. The accumulated process time spent in all
evolutions is 3,109 s. The time 3,127 s is the accumulated
real time, including the time spent on saving objects and
other system delays. The remaining time required to
complete the total [1,000] evolutions is 59,410 s (16 h
30 min 10 s). The evolutionary process can be visualized
with plots.

> plot(reg.bb)

The result is shown in Figure 2 . A total of 50
chromosomes (models in logistic regression term) are
collected, including those with and without solutions. The
frequency of variables that are present in the models is
shown in the top plot. The top 7 variables are in black color
and named. The top 50 variables are shown in other colors.
In the example, the three variables remarkably dominate
the other variables in the frequency of appearance, because
we have deliberately modeled the first three variables to be
related to the outcome variable y. The middle plot shows
the stability of the rank of the 50 top variables. In other

words, it is to show whether the frequency of a variable
remain stable with accumulating chromosomes. When
rank colors change frequently for a variable, the rank of
the variable is unstable. From the plot, it can be seen that
the first three variables show stable rank (always in black
color), but the remaining variables change their rank colors
frequently. The vertical axis comprises of two parts: variable
frequency and the number of evolutions. The horizontal
axis represents the variable indices. The bottom plot shows
the distribution of the number of generations required for
an evolutionary episode to reach the fitness goal. It appears
that in average a number of 50 generations is required for a
GA process to reach the fitness goal.

The fitness of all chromosomes can be visualized with
fitness plot, which can be plotted using the following code.

> plot(reg.bb, type="fitness")

The plot is shown in Figure 3. The fitness values (AUC
in the example) of all GA evolutionary processes are
traced across generations (grey thin lines). The blue curve
shows the average fitness value across generations for all
chromosomes, and the light blue curve is for chromosomes
that have not reached the fitness goal in current generation.
If all chromosomes reach a goal before 200 generations, the
two curves will converge at the end. However, it is not the
case in the present example. The plot shows that a solution
can be reached in 65 generations in average. This can be
used to limit the searches in future runs to save time.

Variable composition of collected model can be visualized
in terms of top-ranked variables (Figure 4).

> plot(reg.bb,type="geneoverlap",cex=0.6)

The vertical axis shows all models (chromosomes) being
collected and the horizontal axis represents the variables
ranked by their frequency. The models are first ordered
by the presence of the most frequently occurred variables
(e.g., here it is xcont1), then by the presence of the second
mostly frequently occurred variables (xcat), and so on.
Thus, models with similar top-ranked variables are stacked
together. Of the 203 variables being screened, the top 50 are
displayed in the plot. The xcont1 is present in all 50 models,
xcat is present in 49 models, and xcont2 in 20. Recall that
the outcome variable y is composed of these three variables
and therefore it is expected to find these variables in the top
ranked ones. In general, from the plot, it can be seen which
variable is usually combined with the top variables.

The dependency of each variable can be visualized using
network plot (Figure 5).

Annals of Translational Medicine, Vol 6, No 3 February 2018 Page 7 of 12

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

> plot(reg.bb, type=”genenetwork”)

The number is the order number of variables. For
example, the 1, 2 and 3 represents the xcont1, xcat and xcont2
variables. The thickness of lines represents the strength of
dependency between two variables. By default, only two
dependency relationships are displayed.

> plot(reg.bb, type="genecoverage",

 coverage=c(0.5, 0.75,1))

Figure 6 shows the percentage of top-ranked genes used
by models. The top 4 genes account for 50% of all genes
used in the 50 models, and the top 26 genes account for
75%. The 50 models have used 81 out of the 203 genes
(variables) in the pool.

The overall accuracy of the selected models

After obtaining the 106 models from the GA process,
the overall accuracy of these models need to be assessed.
By default, the original dataset is split into training and
test datasets at 2:1 ratio. The training set is used for
model development and the test set is used to assess the
model accuracy. A confusion plot can be produced by the
following code.

> plot(reg.bb, type="confusion")

Computing confusion from class prediction...

22% 33% 44% 56% 67% 78% 89% 100%

The output of the function is shown in Figure 7. Here
only 50 chromosomes are used for saving the computation

Figure 2 The evolutionary process is tracked with plots. The top plot shows the frequency of variables occurred in the selected models.
The top 7 variables are in black and the remaining top 50 variables are colored. The middle plot shows the rank stability of a variable. If a
variable shows many changes in color, it is not stable and more evolutions are required. In this example, the first three variables xcat, xcont1
and xcont2 are considered to be stable. The plot at the bottom shows the distribution of the number of generations required for each GA
evolution. Note that there are 200 generations at maximum because we set the maximum generation to be 200.

Gene Rank Stability (All 50 Chromosomes)
[Logistic]:user-reg. fitness-0,1-3kfolds

Last Generation (All 50 Chromosomes)
[Logistic]:user-reg.fitness-0,1-3kfolds

100

50

0

–50

70
60
50
40
30
20
10
0

0 50 100 150 200

0 50 100 150 200

0 10 20 30 40 50

15

10

5

0

0%

 4
0%

 8
0%

 1
20

%
0%

10

0%
 2

00
%

Fr
eq

ue
nc

y
R

an
k

+
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

xcat
xcont1

x49 x105 x144
x161

---Expected Random Frequency=2(1.2)

---Expected Random Frequency=2(1.2)

Gene Frequency (All 50 Chromosomes)
[Logistic]:user-reg.fitness-0,1-3kfolds

xcont2

Zhang et al. Logistic variable selection with GA

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

Page 8 of 12

Figure 3 The fitness value changes over evolution. Each thin grey
line represents an episode of evolution and there are 50 evolutions
in this example. The blue thick line shows the mean fitness value
for all evolutions and the light blue line represents the mean value
for the unfinished evolutions at current generation number. In
average, 65 generations are needed to reach the fitness goal.

Gene Overlap (All 50 Chromosomes)

[Logistic]:user-reg.fitness-0,1-3kfolds

Figure 4 Gene overlap plot shows how genes appear together in a
chromosome (model). Chromosomes are ordered by the presence
of top-rank genes. Note that the top 3 genes are present in all
chromosomes.

-6 -4 -2 0 2 4 6

-6
-4

-2
0

2
4

6

Gene 'Interactions' in Models (All 50 Chromosomes)

 [Logistic]:user-reg.fitness-0,1-3kfolds

scalling 1
sc

al
lin

g
2

2 1
3

4

56

7

8

9

10

11

12

 13

14

15

16

17

18
19

20

21
22

23
24

25

26

27

28
30

31

32

33

34

35

36

29
37

38

39

40

41
42

43

44

45

46

47

48

49

50

Figure 5 Gene interaction in models. The numbers in the figure
represent the order number of variables. For example, the 1, 2 and
3 represent the variables xcont1, xcat and xcont2. The thickness of
lines represents the strength of dependency between two variables.

Figure 6 Top-ranked genes used by the model. The top 4 genes
account for 50% of all genes used in the 50 models, and the top
26 genes account for 75%. The 50 models have used 81 of the 203
genes in the pool.

1 2 5 50 100 200

0.
2

0.
8

1.
0

#Top Ranked Genes Used By Models (All 50 Chromosomes)
 [Logistic]:user-reg.fitness-0,1-3kfolds

10 20

 0
.4

0.

6

+4 , 50%

+26 , 75%

+81 , 100%

Top Ranked Genes

%
 G

en
es

 c
ov

er
ed

 b
y

m
od

el
s

Annals of Translational Medicine, Vol 6, No 3 February 2018 Page 9 of 12

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

time. Users may not reproduce the plot exactly due to
random process. The horizontal line represents the samples
sorted by original class. Note that there are 219 samples in
class 1 and 281 in class 2. All samples have been predicted.
The bars represent the percentage of models that classify
each sample in a given class. Samples in the first column
(black) belong to class 1, and they are correctly identified
by models for 81.7% of the times and wrongly classified as
“class 2” for 18.3% of the times. The plot also displays the
sensitivity and the specificity of the prediction. The numeric
format of the confusion matrix can be obtained using the
following code.

> cpm <- classPredictionMatrix(reg.bb)

> cpm[3:7,]

 Class.Prediction

Samples 1 2 (NA)

5 2450 0 0

7 2920 30 0

8 2700 0 0

11 2291 109 0

13 2450 0 0

For sample 7, the chromosomes predicted it as class 1
for 2,920 times and as class 2 for 30 times. It makes 2,950
predictions for the sample. The number of predictions can
be calculated as the number of splits into training and test
datasets divided by 3, and then multiplied the number of
chromosomes. In the present example, the total number
of predictions made in the test set is 50*150/3=2,500 in
average.

Similar information can be represented in a confusion
box plot.

> plot(reg.bb, type="confusionbox")

Figure 8 plots the relative frequency of predicted class on
the vertical axis versus the observed class on the horizontal
axis. It shows that most models can correctly predict the
class membership.

Splits of the sample

The original sample (n=500) is split into the training and
test sets in 2:1 ratio (first-level split). By default, the data is
randomly split for 150 times with the same ratio of training
to test sets. The training set is then undergone k-fold cross

Class Confusion (50 Models)
[Logistic]:user-reg.fitness-0,1-3kfolds

Figure 7 Class confusion plot shows the predicted and observed
class membership for each individual. The bars represent the
percentage of models that classify each sample in a given class.
Samples in the first column (black) belong to class 1, and they are
correctly identified by models for 81.7% of the times and wrongly
classified as “class 2” for 18.3% of the times.

1 2

(N
A

) 1 2

(N
A

)

Class Confusion (50 Models)
 [Logistic]:user-reg.fitness-0,1-3kfolds

P
re

di
ct

iv
e

C
la

ss
: R

el
at

iv
e

Fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

1
219/219
Samples

0.785
0.849

2
281/281
Samples

0.849
0.785

Sensit
Specif

Figure 8 Box plot of class confusion. The vertical axis shows the
relative frequency of predicted class, and the horizontal axis shows
the observed class membership.

Zhang et al. Logistic variable selection with GA

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

Page 10 of 12

validation during the GA process (second level split). The
evolutionary process only employs the second-level split.
The first level split is used for error estimation outside the
evolutionary (blast) process. However, this can be controlled
in galgo object (see R document). The split can be visualized
with the following code.

> plot(reg.bb, type="splits")

The vertical axis shows the 150 random splits and the
horizontal axis shows the 500 samples (Figure 9). The
plot may not be useful because the splits are randomly
performed and it is only needed to know the number of
splits, and the ratio of training to test samples. However,
the split plot may help to understand how the galgo works
to split data. The following code produce a plot showing
fitness values across different split patterns.

> plot(reg.bb, type="splitsfitness")

There are 150 random splits in total and the fitness of
each chromosome is evaluated in the test set of each of the
150 splits (Figure 10). The fitness values of all chromosomes
evaluated with a given split pattern are aggregated in a box.
The plot can help to check whether the fitness values of
chromosomes are split-dependent.

Select variables which are important to the
model

In real clinical research practice, the number of variables
that are of great importance to the model is usually
unknown. Investigators may set out to define a fixed
number of variables for a given model and then select
the important ones from the model pool. In the present
example, 5 variables are defined for each model in the
GA process. Since the BigBang object has run a total
of 50 cycles of evolutionary process, there are 50 best-
fit models being selected. Although there are only 5
variables in a given model, the number of variables can be
much larger in the 50 models. Variable selection can be
performed by the backward selection, in which a variable
is removed from the model and the classification accuracy
of the shorter resulting model is assessed. If the accuracy
of the shorter model is not significantly reduced, another
cycle is performed. Otherwise, the variable is left in
the model and the program proceeds to another cycle
of elimination. The backward elimination procedure
influences the model sizes which can be evidenced by the
following code.

Figure 9 The plot shows how the whole population is split into
training and test datasets. The vertical axis shows the 150 random
splits and the horizontal axis shows the 500 samples.

1 8 16 26 36 46 56 66 76 86 96 107 119 131 143

0.
75

0.
80

0.
85

0.
90

0.
95

Fitness (All 50 Chromosomes)
 [Logistic]:user-reg.fitness-0,1-3kfolds

Splits

C
hr

om
os

om
es

 F
itn

es
s

Figure 10 Fitness values of chromosomes evaluated in each split
pattern. There are 150 random splits in this example and the fitness
of each chromosome is evaluated in the test set of each of the 150
splits. The fitness values of all chromosomes evaluated with a given
split pattern are aggregated in a box.

Annals of Translational Medicine, Vol 6, No 3 February 2018 Page 11 of 12

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

> rchr <- lapply(reg.bb$bestChromosomes[1:50],

 robustGeneBackwardElimination, reg.bb,
result="shortest")

> barplot(table(unlist(lapply(rchr,length))),

 main="Length of Shortened Chromosomes")

The result shown in Figure 11 indicates that most of the
models (>35) require 3 variables to keep a high accuracy,
and only 13 models retain 2 variables.

The GA procedure provides a large collection of
models and sometimes investigators are interested in
a representative model that has the highest prediction
accuracy. The frequency of variables in the collection
of models can be employed as criteria for inclusion in a
forward selection procedure.

> fsm <- forwardSelectionModels(reg.bb)

The function automatically produces a plot showing
the variable selection process (Figure 12). The vertical line
is the fitness value (AUC in the present example), and the
horizontal line represents the variables sorted in descending
order of gene frequency. For the overall prediction
accuracy, the second model comprising 4 variables xcat,

xcont1, xcont2 and x37 appears to have the highest accuracy
(AUC =0.9419). 14 more models whose fitness values are
99% as close to the best model are displayed in the plot.

Conclusions

GA approach is appropriate for finding solutions that
require efficient searching of a subset of features to find
combinations that are near optimal for solving high-
dimensional classification problems, especially when
the search space is large, complex or poorly understood.
Clinical diagnosis and prognosis can be treated as a
classification problem, and selection of an optimized set of
features can be the key of the accuracy. Logistic regression
as a classifier has gained its popularity in clinical research.
This tutorial demonstrated a way of applying GA for
feature selection in combination with logistic regression
for classification. It uses a simulated data set as an example
and the result has shown the capacity of GA for selecting

2 3

Length of Shortened Chromosomes

0
5

10
15

20
25

30
35

Figure 11 Length of shortened chromosome. It is noteworthy that
most of the models (>35) require 3 variables to maintain a high
predictive accuracy, and only 13 models require 2 variables.

Figure 12 Models using forward selection. The vertical line
represents the fitness value (AUC in this example), and the
horizontal line represents the variables sorted in descending order
of gene frequency. For the overall prediction accuracy, the second
model comprising 4 variables xcat, xcont1, xcont2 and x37 appears
to have the highest accuracy (AUC =0.9419). Fourteen more
models whose fitness values are 99% as close to the best model are
displayed in the plot.

Zhang et al. Logistic variable selection with GA

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):45atm.amegroups.com

Page 12 of 12

the best or near best classification model with a small set of
variables. When applying to real clinical data, it can help
discover the knowledge from a complex situation and help
researchers understand the mechanism of diseases, so that
benefit the medical research outcome. The tutorial gives
a guide of how to use the galgo package in a way that was
considered as the most relevant to medical researches. The
parameters in the scripts can be chosen with preference,
and many other functions are also included. Also other R
packages that implement GA can be tried instead of galgo
for further interest.

Acknowledgements

Funding: Z Zhang was supported by Zhejiang provincial
natural science foundation of China (LGF18H150005) and
V Trevino by CONACyT.

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

References

1.	 Tolles J, Meurer WJ. Logistic Regression: Relating Patient
Characteristics to Outcomes. JAMA 2016;316:533-4.

2.	 Kiezun A, Lee IT, Shomron N. Evaluation of
optimization techniques for variable selection in logistic
regression applied to diagnosis of myocardial infarction.
Bioinformation 2009;3:311-3.

3.	 Zhang Z. Variable selection with stepwise and best subset
approaches. Ann Transl Med 2016;4:136-6.

4.	 Paterlini S, Minerva T. Regression model selection using
genetic algorithms. In: Munteanu V, Raducanu R, Dutica
G, et al. editors. Recent Advances in Neural Networks,
Fuzzy Systems & Evolutionary Computing. Iasi, Romania:
WSEAS Press; 2010:19-27.

5.	 Lucasius CB, Kateman G. Understanding and using
genetic algorithms Part 1. Concepts, properties and

context. Chemometrics and Intelligent Laboratory
Systems 1993;19:1-33.

6.	 Escalona-Vargas D, Murphy P, Lowery CL, et
al. Genetic algorithms for dipole location of fetal
magnetocardiography. Conf Proc IEEE Eng Med Biol Soc
2016;2016:904-7.

7.	 Vandewater L, Brusic V, Wilson W, et al. An adaptive
genetic algorithm for selection of blood-based biomarkers
for prediction of Alzheimer's disease progression. BMC
Bioinformatics 2015;16 Suppl 18:S1.

8.	 Vinterbo S, Ohno-Machado L. A genetic algorithm to
select variables in logistic regression: example in the
domain of myocardial infarction. Proc AMIA Symp
1999:984-8.

9.	 Gayou O, Das SK, Zhou SM, Marks LB, et al. A genetic
algorithm for variable selection in logistic regression
analysis of radiotherapy treatment outcomes. Med Phys
2008;35:5426-33.

10.	 Tolvi J. Genetic algorithms for outlier detection and
variable selection in linear regression models. Soft
Computing 2004;8:527-33.

11.	 Holland JH. Genetic Algorithms and Adaptation. In:
Selfridge OG, Rissland EL, Arbib MA. editors. Adaptive
Control of Ill-Defined Systems. Boston, MA: Springer US;
1984:317-33.

12.	 Holland J. Biology's gift to a complex world. Scientist
2008;22:36-43.

13.	 Scrucca L. GA: A package for genetic algorithms in R.
Journal of Statistical Software 2013;53:1-37.

14.	 Trevino V, Falciani F. GALGO: an R package for
multivariate variable selection using genetic algorithms.
Bioinformatics 2006;22:1154-6.

15.	 Sun L, Wang J, Wei J. AVC: Selecting discriminative
features on basis of AUC by maximizing variable
complementarity. BMC Bioinformatics 2017;18:50.

16.	 Wang B. Variable selection in ROC regression. Comput
Math Methods Med 2013;2013:436493.

17.	 Robin X, Turck N, Hainard A, et al. pROC: an open-
source package for R and S+ to analyze and compare ROC
curves. BMC Bioinformatics 2011;12:77.

Cite this article as: Zhang Z, Trevino V, Hoseini SS, Belciug S,
Boopathi AM, Zhang P, Gorunescu F, Subha V, Dai S. Variable
selection in Logistic regression model with genetic algorithm. Ann
Transl Med 2018;6(3):45. doi: 10.21037/atm.2018.01.15

