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Abstract: Variable or feature selection is one of the most important steps in model specification. Especially 
in the case of medical-decision making, the direct use of a medical database, without a previous analysis and 
preprocessing step, is often counterproductive. In this way, the variable selection represents the method 
of choosing the most relevant attributes from the database in order to build a robust learning models and, 
thus, to improve the performance of the models used in the decision process. In biomedical research, the 
purpose of variable selection is to select clinically important and statistically significant variables, while 
excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them 
is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in 
each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it 
commonly trapped in local optima. The best subset approach can systematically search the entire covariate 
pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the 
case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be 
used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-
step approach to the use of GA in variable selection. The R code provided in the text can be extended and 
adapted to other data analysis needs.
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Introduction 

Variable or feature selection is of vital importance in 
building a multivariable regression model. The primary 
purpose of variable selection is to incorporate clinically 
relevant and statistically significant variables into the 
model, while excluding noise/redundant variables (1,2). 
There are many procedures for this purpose such as 
purposeful selection, best subset and stepwise regression, 

association rules techniques, particle swarm optimization, 
etc. These procedures have been proven to be powerful 
in model building, and are widely used. However, none of 
these procedures are panacea, especially in the era of big 
data when a huge number of variables are available. The 
purposeful selection of variables usually involves univariate 
testing to screen variables that are significantly associated 
with the outcome of interest. Then a regression model is 
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built on these variables. However, such a procedure may 
overlook some important variables which work together 
to take effect, but they do not reach statistical significance 
level when tested independently. The best subset procedure 
can solve this problem because it tests all the possible 
combinations of the candidate variables (3). However, this 
procedure can be useful in a dataset with small number of 
variables, but may not be the best choice for a large number 
of variables. For example, when there are 50 candidate 
variables, the total number of models is 250–1, which is 
obviously unmanageable with modern computers (2). 
Stepwise approach is another widely used method, but it is 
a local search process that it ultimately converges to local 
optima (4). 

Genetic algorithm (GA) is a heuristic search algorithm 
mimicking the process of biological evolution and natural 
selection (5,6). In Darwin’s theory, the population can 
evolve by selection, crossover and mutation. In the process, 
the fittest individuals will survive and reproduce whereas 
the weaker ones will be eliminated from the population. 
GAs create random populations of artificial individuals 
(chromosomes in GAs terminology) that are evaluated 
by a mathematical fitness function. When the fittest 
chromosomes are selected, reproduced, crossed, and 
mutated along many generations, the artificially evolved 
chromosomes are quite well adapted to the mathematical 
fitness function. GAs have been successfully applied to 
solve optimization problems, both for continuous (whether 
differentiable or not) and discrete functions. Variable 
selection for logistic regression model can be regarded as 
an optimization problem, and thus can be solved by GAs 
(7-10). This article aims to provide a tutorial on how to 
implement GAs for variable selection. Since the logistic 

regression model is the most widely used method in clinical 
researches, because in most cases, the dependent variable 
is categorical (e.g., diagnosis), it will be considered as a 
working example. The code can be easily extended to other 
types of generalized linear models, owing to the availability 
of a large amount of R packages for these functionalities. 

Basic ideas underlying GA

The principles of evolution and natural selection are the 
stepping stones of GA (5,11). In biology, gene is a unit of 
heredity that can be transferred from parents to offspring 
and is held to determine some characteristic of the  
offspring (12). A chromosome is comprised of genes. In 
an analogy, a clinical variable can be considered as a gene 
(Table 1), and a set of clinical variables constructing a 
regression model can be considered as a chromosome. The 
chromosome size specifies the number of variables for a 
model. For example, if the chromosome size is 5, there will 
be five different variables in each model. The GA begins with 
a population of a random set of models. A fitness function 
is applied to evaluate each model in the population. For 
logistic regression models, the fitness function can be the 
discrimination as represented by the area under the receiver 
operating characteristic curve (AUC). It is noteworthy that 
AUC combines in a unique value both the sensitivity and 
specificity of a model. The traditional evaluation system for 
AUC (i.e., 0.9–1.0—excellent; 0.8–0.9—good; 0.7–0.8—
fair; 0.6–0.7—poor; 0.5–0.6—failure) is usually used to 
assess the performance of each classifier. To finish the 
evolving process, the AUC is compared to a goal (A main 
open question that cannot be simply answered without a 
complex combinatorial optimization approach concerns the 
choice of the values to be set for the algorithms parameters 
of GA. For the sake of simplicity, in this paper we 
heuristically chose them, although in future work this issue 
needs to be considered). If the goal is reached, the model is 
selected and the evolution process stops. If the goal is not 
reached in the current generation, the population of models 
will continue to evolve. Here, the current population act 
as the parent population and the next generation is the 
offspring. Similar to the biological evolution, models with 
greater fitness in parent population have more chance 
to reproduce. The replicated chromosome will undergo 
crossover and mutation to produce diversity, allowing the 
offspring to have more chance to reach the fitness goal. The 
cycle continues until either the fitness goal or the maximum 
number of generations is reached (Figure 1). 

Table 1 Common terms in GA versus biology

Terms in biological evolution 
and natural selection

Genetic algorithm (GA) in logistic 
regression

Gene Variables such as vital signs, 
laboratory tests, demographics

Chromosome A set of variables contributing to a 
model

Crossover Exchange of variables between two 
parent models

Mutation Replace one variable 

Selection Models with higher fitness value 
are more likely to reproduce
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Working example

Here we simulate a dataset to illustrate of how to perform 
variable selection with GA. The R code for generating the 
dataset is shown below (R version 3.3.2):

> n <- 500

> set.seed(123)

> xcat <- sample(x=c("A","B", "C"),

size=n, replace=TRUE, prob=rep(1/3, 3))

> xcont1<-rnorm(n)

> xcont2<-rnorm(n)

> dat<-data.frame(xcat,xcont1,xcont2)

The first line specifies the number of observations as 500. 

The set.seed() function allows the results to be reproducible 
across computers. The xcat variable is a categorical variable 
with three levels A, B and C, and the three levels have the 
same probability of occurrence. Two continuous variables 
xcont1 and xcont2 are created assuming normal distribution. 
However, if the number of observations is fairly large 
(≥100), as in this case, then deviations from normality do 
not matter too much because of the central limit theorem 
(CLT). Then, the three variables are coerced into a data 
frame. Assuming that the three variables are associated with 
the outcome variable, we also created 100 noise variables  
(50 categorical and 50 numeric) that are not associated with 
the outcome variable, and add them to the data frame. 

> for(i in 1:100){

col_new <- paste0("x", i)

dat[, col_new] <- rnorm(n, i, i*1.5)

}

> for(i in 101:200){

	 col_new <- paste0("x", i)

	 dat[, col_new] <-sample(x=c("A","B", "C"),

size=n, replace=TRUE,

prob=sample(c(1/3,1/2,1/6),3,replace=F))

}

A total number of 100 noise variables are generated 
using for loop, comprising 50 categorical and 50 numeric 
variables. The next code is to produce the outcome variable 
y which is a binary categorical variable. 

> library(dummies) 

> linpred<-within(dat,linpred <- cbind(1,

dummy(xcat)[, -1]) %*% c(-2, 5, 3)-

3*xcont1-2*xcont2)['linpred']

> pi <- 1/(1+exp(-linpred))

> pi<-as.matrix(pi,ncol=1)

> y <- rbinom(n=n, size=1, prob=pi)

> dat <- data.frame(dat, y=y)

The linpred object is a linear combination of predictors. 
Note that only three variables xcat, xcont1 and xcont2 
contribute to the linear predictor. Then the linear predictor 
is converted to the probability by using the inverse logit 
function. The outcome y is produced by assuming a 
binomial distribution, although, in specific cases, other 

Figure 1 Flow chart of genetic algorithms. At the outset, a 
population of models is created randomly, and they are evaluated 
for their fitness. In this example, the discrimination of the area 
under the receiver operating characteristics curve (AUC) is used 
as the fitness value. If there is a model reaching the fitness goal, 
the model is selected and the evolutionary process discontinues. 
Otherwise, the parent generation proceeds to reproduce offspring, 
with models of higher AUC more likely to reproduce. There are 
crossover and mutation mechanisms to expand the reservoir of 
models. 

Initial population of 
models with random 

variables

All models are 
evaluated for its 
discrimination

AUC > goal

Generate new population: 
models with higher AUC 

are more likely to reproduce

Random crossover: 
exchange variables between 

parent models 

Random mutation

Selecting the 
model

YES

NO
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discrete distributions may be taken into account. The last 
line combines dat and y into the final data frame. Such a 
data frame is usually the start of data analysis in real clinical 
research practice. 

The galgo package 

Several R packages exist such as GA (13), genalg and 
GenAlgo that can be used for implementing GA. However, 
in this tutorial we will use the galgo package (v1.2-01), a 
popular tool in bioinformatics (14). The galgo package 
contains plenty of useful tools for the visualization of GA 
process. Furthermore, the objects can be extended and 
all functions can be overwritten, allowing users to adapt 
functions in the galgo package to their own needs.  There is 
a good tutorial available on the web for the comprehensive 
description of the package (http://bioinformatica.mty.itesm.
mx/Galgo). Also one may consult R documents which can 
be invoked by calling the help() function. As we already 
mentioned, since logistic regression is the most widely used 
statistical method in clinical researches, the present tutorial 
focuses on the use of the galgo package to build a logistic 
regression model.

Define the fitness function 

The core to variable selection is the fitness function because 
it judges how good one model fits to the data. There 
is a variety of methods to judge the fitness of a model 
such as the Homser-Lemeshow goodness of fit test (for 
logistic regression models), the discrimination, the Akaike 
information criterion (AIC) and Bayesian information 
criterion (BIC) (4). In this article, the discrimination method 
is used to evaluate the goodness of a logistic regression 
model. Discrimination is quantitatively assessed by the 
AUC (15,16). The pROC package is employed to compute 
the statistic (17). The fitness function is constructed by the 
following code.

> library(pROC) 

> reg.fitness <- function(chr, parent,tr,te,res) {

try <- parent$data$classes[tr]

trd <-

data.frame(parent$data$data[tr,as.numeric(chr)])

trd <- lapply(trd,function(x){

	 if(length(unique(x))>=10){

		  as.numeric(as.character(x))

	 }else{x}

})

trd <- data.frame(trd)

chsize<-length(chr)

colnames(trd) <- paste0("g",1:chsize)

trm <- glm(try ~ .,

family='binomial', data=trd)

tey <- parent$data$classes[te]

ted <-

data.frame(parent$data$data[te,as.numeric(chr)])

ted <- lapply(ted,function(x){

	 if(length(unique(x))>=10){

		  as.numeric(as.character(x))

	 }else{x}

})

ted <- data.frame(ted)

colnames(ted) <- paste0("g",1:chsize)

if(res){

	 roc(as.numeric(tey) ~

predict.glm(trm,newdata=ted,type="response"))$auc

}

else{

ifelse(predict.glm(trm,newdata=ted,
type="response")>=0.5,2,1)

}

}

The fitness function requires the prototype of the form 
function (chr, parent,tr,te,res), where chr represents the 
chromosome to be evaluated. parent is the BigBang object 
that will be created by the wrapper function configBB. 
VarSel() in the next section. tr is the vector of samples (rows) 
that is used as training, and te the samples that must be used 
as test. The res argument controls the format of the re-
turned object. For res=0, a vector of the same length as the 
testing sample containing predicted class will be returned; 
otherwise, the returned value is an AUC of the model cal-
culated in the testing dataset. 

The outcome variable in the training dataset can be 
extracted by “parent$data$classes[tr]”. The predictors of 
the training dataset are stored in the object trd. Since in 
the BigBang object, the original data frame is transposed 
so that all variables are converted to character vectors, 
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it is necessary to convert the numerical variables back 
to class of numeric (variable type). The variables are 
renamed to g1, g2, g3, g4 and g5 in the fitness function. 
In this tutorial, as an example, we restrict five variables 
being selected to construct a logistic regression model, 
and the task of the fitness function is to evaluate the 
fitness of the model. In this respect, the fitness function 
has nothing to do with the variable selection procedure. 
Next, the logistic regression model is built with the 
glm() function in a conventional way. The test dataset is 
extracted in the same way as that for the training dataset. 
Finally, the if-else function is employed to return different 
results. As mentioned above, if the res argument is 0, the 
returned object is a vector containing class membership 
for each individual in the test dataset. Otherwise, the 
fitness function will return an AUC value reflecting the 
discrimination of the model. 

The BigBang object

The evolution will stop by either the preset maximum 
number of generation or the fitness goal is reached. As a 
result, there could be a solution to the problem (the fitness 
goal is reached) or no solution at all. In our example, 
one evolution may result in a model with the preset 
discrimination or not. More importantly, the solution may 
be a local maximum. Thus, it is necessary to implement 
a large amount of evolutions. The BigBang object is an 
attempt to use more information of a large collection of 
solutions instead of a unique solution. The BigBang object 
can be created using the wrapper function configBB.
VarSel() as follows:

> library(galgo) 

> reg.bb <- configBB.VarSel(data=t(dat[,-ncol(dat)]),

classes=dat$y,

classification.method="user",

classification.userFitnessFunc=reg.fitness,

chromosomeSize=5, niches=1, maxSolutions=1000,

goalFitness = 0.9, saveVariable="reg.bb",

saveFrequency=50, saveFile="reg.bb.Rdata",

main="Logistic")

The data argument is a data frame with samples (patients) 
in columns and variables in rows, which is a transposed 
format of the conventional data frame. Note that the 
outcome variable is not provided in the data argument, 
but it is provided separately in the classes argument. There 
are many classification methods shipped with the galgo 
package such as support vector machines (SVMs), neural 
networks (NNs) and nearest neighbors. Here the user-
defined function which we were previously created is used. 
The user-defined function is given in the classification.
userFitnessFunc argument. The chromosome size is set to 
5, indicating that the models will consist of 5 variables. 
The maximum number of solutions is 1,000, which is 
considered as the default value. The fitness goal is set to 
be 0.9 as an example, indicating that if a model with AUC 
equal or greater than 0.9 is evolved the evolution process 
will stop, and the program will go to another cycle of 
search for solutions. After the BigBang object is properly 
configured, the “blast” procedure has to be started to collect 
chromosomes (models) associated with high AUC. 

The real time evolutionary process can be monitored 

> blast(reg.bb)

[e] Starting: Fitness Goal=0.9, Generations=(10 : 200)

[e] Elapsed Time Generation Fitness %Fit [NextGenerations]

[e] 0h 0m 0s (m) 0 0.5907 65.63% +.+++.+..+.+....++++

[e] 0h 0m 20s 20 0.79898 88.78% -++.......-+........

[e] 0h 0m 42s 40 0.82601 91.78% ...+................

[e] 0h 1m 2s 60 0.82614 91.79% ......+.++-++..++...

[e] 0h 1m 22s 80 0.89452 99.39% ..+

[e] 0h 1m 25s ***  83 0.94737 105.26% FINISH: 1 2 3 147 79

[Bb] 49 49 Sol Ok 0.94737 105.26%	 83 84.986s	 3109s	 3127s	 59410s (16h 30m 10s)
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after running the blast() function. An example of the 
output is shown above lines starting with [e] represent the 
evolutionary process. The first line shows the fitness goal, 
the minimum and maximum number of generations. In the 
example, the minimum number of generation is 10, and the 
maximum number is 200. The second column shows the 
elapsed time. In the example, the first 20 generations take 
20 s to evolve. The third column shows the current number 
of generation (refreshed every 20 generations by default). 
The “Fitness” column shows the current best fitness, 
along with the percentage relative to the fitness goal in the 
“%Fit” column. The “[NextGenerations]” column shows 
the behavior of the next generation. A “.” symbol indicates 
that the maximum fitness of the current population has 
not changed, “+” means it has increased and “-” means it 
has decreased. The “G” symbol may sometimes appear, 
indicating that the fitness goal has been reached but the 
minimum number of generation has not been reached. The 
numbers following “FINISH” is the indices of variables 
constituting the best-fit chromosome. 

The last line starting with [Bb] shows the current 
collection of solutions in the whole BigBang object. In the 
example, the number of evolutions is 49 and the number 
of evolutions that have reached goal fitness is 49. The 
“Sol Ok” indicates that the current evolution reaches goal 
fitness. The best fitness is 0.94737, along with its percentage 
105.26% relative to the fitness goal. The number of 
generations required to reach the goal fitness is 83, and it 
takes 84.986 s. The accumulated process time spent in all 
evolutions is 3,109 s. The time 3,127 s is the accumulated 
real time, including the time spent on saving objects and 
other system delays. The remaining time required to 
complete the total [1,000] evolutions is 59,410 s (16 h  
30 min 10 s). The evolutionary process can be visualized 
with plots.

> plot(reg.bb)

The result  is  shown in Figure 2 .  A total  of  50 
chromosomes (models in logistic regression term) are 
collected, including those with and without solutions. The 
frequency of variables that are present in the models is 
shown in the top plot. The top 7 variables are in black color 
and named. The top 50 variables are shown in other colors. 
In the example, the three variables remarkably dominate 
the other variables in the frequency of appearance, because 
we have deliberately modeled the first three variables to be 
related to the outcome variable y. The middle plot shows 
the stability of the rank of the 50 top variables. In other 

words, it is to show whether the frequency of a variable 
remain stable with accumulating chromosomes. When 
rank colors change frequently for a variable, the rank of 
the variable is unstable. From the plot, it can be seen that 
the first three variables show stable rank (always in black 
color), but the remaining variables change their rank colors 
frequently. The vertical axis comprises of two parts: variable 
frequency and the number of evolutions. The horizontal 
axis represents the variable indices. The bottom plot shows 
the distribution of the number of generations required for 
an evolutionary episode to reach the fitness goal. It appears 
that in average a number of 50 generations is required for a 
GA process to reach the fitness goal. 

The fitness of all chromosomes can be visualized with 
fitness plot, which can be plotted using the following code.

> plot(reg.bb, type="fitness")

The plot is shown in Figure 3. The fitness values (AUC 
in the example) of all GA evolutionary processes are 
traced across generations (grey thin lines). The blue curve 
shows the average fitness value across generations for all 
chromosomes, and the light blue curve is for chromosomes 
that have not reached the fitness goal in current generation. 
If all chromosomes reach a goal before 200 generations, the 
two curves will converge at the end. However, it is not the 
case in the present example. The plot shows that a solution 
can be reached in 65 generations in average. This can be 
used to limit the searches in future runs to save time.

Variable composition of collected model can be visualized 
in terms of top-ranked variables (Figure 4).

> plot(reg.bb,type="geneoverlap",cex=0.6)

The vertical axis shows all models (chromosomes) being 
collected and the horizontal axis represents the variables 
ranked by their frequency. The models are first ordered 
by the presence of the most frequently occurred variables 
(e.g., here it is xcont1), then by the presence of the second 
mostly frequently occurred variables (xcat), and so on. 
Thus, models with similar top-ranked variables are stacked 
together. Of the 203 variables being screened, the top 50 are 
displayed in the plot. The xcont1 is present in all 50 models, 
xcat is present in 49 models, and xcont2 in 20. Recall that 
the outcome variable y is composed of these three variables 
and therefore it is expected to find these variables in the top 
ranked ones. In general, from the plot, it can be seen which 
variable is usually combined with the top variables. 

The dependency of each variable can be visualized using 
network plot (Figure 5). 
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> plot(reg.bb, type=”genenetwork”)

The number is the order number of variables. For 
example, the 1, 2 and 3 represents the xcont1, xcat and xcont2 
variables. The thickness of lines represents the strength of 
dependency between two variables. By default, only two 
dependency relationships are displayed. 

> plot(reg.bb, type="genecoverage",

   coverage=c(0.5, 0.75,1))

Figure 6 shows the percentage of top-ranked genes used 
by models. The top 4 genes account for 50% of all genes 
used in the 50 models, and the top 26 genes account for 
75%. The 50 models have used 81 out of the 203 genes 
(variables) in the pool.  

The overall accuracy of the selected models

After obtaining the 106 models from the GA process, 
the overall accuracy of these models need to be assessed. 
By default, the original dataset is split into training and 
test datasets at 2:1 ratio. The training set is used for 
model development and the test set is used to assess the 
model accuracy. A confusion plot can be produced by the  
following code.

> plot(reg.bb, type="confusion")

Computing confusion from class prediction...

22% 33% 44% 56% 67% 78% 89% 100% 

The output of the function is shown in Figure 7. Here 
only 50 chromosomes are used for saving the computation 

Figure 2 The evolutionary process is tracked with plots. The top plot shows the frequency of variables occurred in the selected models. 
The top 7 variables are in black and the remaining top 50 variables are colored. The middle plot shows the rank stability of a variable. If a 
variable shows many changes in color, it is not stable and more evolutions are required. In this example, the first three variables xcat, xcont1 
and xcont2 are considered to be stable. The plot at the bottom shows the distribution of the number of generations required for each GA 
evolution. Note that there are 200 generations at maximum because we set the maximum generation to be 200.
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Figure 3 The fitness value changes over evolution. Each thin grey 
line represents an episode of evolution and there are 50 evolutions 
in this example. The blue thick line shows the mean fitness value 
for all evolutions and the light blue line represents the mean value 
for the unfinished evolutions at current generation number. In 
average, 65 generations are needed to reach the fitness goal. 

Gene Overlap  (All 50 Chromosomes) 

[Logistic]:user-reg.fitness-0,1-3kfolds

Figure 4 Gene overlap plot shows how genes appear together in a 
chromosome (model). Chromosomes are ordered by the presence 
of top-rank genes. Note that the top 3 genes are present in all 
chromosomes. 
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represent the order number of variables. For example, the 1, 2 and 
3 represent the variables xcont1, xcat and xcont2. The thickness of 
lines represents the strength of dependency between two variables.

Figure 6 Top-ranked genes used by the model. The top 4 genes 
account for 50% of all genes used in the 50 models, and the top 
26 genes account for 75%. The 50 models have used 81 of the 203 
genes in the pool.
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time. Users may not reproduce the plot exactly due to 
random process. The horizontal line represents the samples 
sorted by original class. Note that there are 219 samples in 
class 1 and 281 in class 2. All samples have been predicted. 
The bars represent the percentage of models that classify 
each sample in a given class. Samples in the first column 
(black) belong to class 1, and they are correctly identified 
by models for 81.7% of the times and wrongly classified as 
“class 2” for 18.3% of the times. The plot also displays the 
sensitivity and the specificity of the prediction. The numeric 
format of the confusion matrix can be obtained using the 
following code.

> cpm <- classPredictionMatrix(reg.bb)

> cpm[3:7,]

 Class.Prediction

Samples 1 2 (NA)

5 2450 0 0

7 2920 30 0

8 2700 0 0

11 2291 109 0

13 2450 0 0

For sample 7, the chromosomes predicted it as class 1 
for 2,920 times and as class 2 for 30 times. It makes 2,950 
predictions for the sample. The number of predictions can 
be calculated as the number of splits into training and test 
datasets divided by 3, and then multiplied the number of 
chromosomes. In the present example, the total number 
of predictions made in the test set is 50*150/3=2,500 in 
average. 

Similar information can be represented in a confusion 
box plot. 

> plot(reg.bb, type="confusionbox")

Figure 8 plots the relative frequency of predicted class on 
the vertical axis versus the observed class on the horizontal 
axis. It shows that most models can correctly predict the 
class membership. 

Splits of the sample 

The original sample (n=500) is split into the training and 
test sets in 2:1 ratio (first-level split). By default, the data is 
randomly split for 150 times with the same ratio of training 
to test sets. The training set is then undergone k-fold cross 

Class Confusion (50 Models)
[Logistic]:user-reg.fitness-0,1-3kfolds

Figure 7 Class confusion plot shows the predicted and observed 
class membership for each individual. The bars represent the 
percentage of models that classify each sample in a given class. 
Samples in the first column (black) belong to class 1, and they are 
correctly identified by models for 81.7% of the times and wrongly 
classified as “class 2” for 18.3% of the times.
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Figure 8 Box plot of class confusion. The vertical axis shows the 
relative frequency of predicted class, and the horizontal axis shows 
the observed class membership. 
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validation during the GA process (second level split). The 
evolutionary process only employs the second-level split. 
The first level split is used for error estimation outside the 
evolutionary (blast) process. However, this can be controlled 
in galgo object (see R document). The split can be visualized 
with the following code.

> plot(reg.bb, type="splits")

The vertical axis shows the 150 random splits and the 
horizontal axis shows the 500 samples (Figure 9). The 
plot may not be useful because the splits are randomly 
performed and it is only needed to know the number of 
splits, and the ratio of training to test samples. However, 
the split plot may help to understand how the galgo works 
to split data. The following code produce a plot showing 
fitness values across different split patterns.

> plot(reg.bb, type="splitsfitness")

There are 150 random splits in total and the fitness of 
each chromosome is evaluated in the test set of each of the 
150 splits (Figure 10). The fitness values of all chromosomes 
evaluated with a given split pattern are aggregated in a box. 
The plot can help to check whether the fitness values of 
chromosomes are split-dependent. 

Select variables which are important to the 
model

In real clinical research practice, the number of variables 
that are of great importance to the model is usually 
unknown. Investigators may set out to define a fixed 
number of variables for a given model and then select 
the important ones from the model pool. In the present 
example, 5 variables are defined for each model in the 
GA process. Since the BigBang object has run a total 
of 50 cycles of evolutionary process, there are 50 best-
fit models being selected. Although there are only 5 
variables in a given model, the number of variables can be 
much larger in the 50 models. Variable selection can be 
performed by the backward selection, in which a variable 
is removed from the model and the classification accuracy 
of the shorter resulting model is assessed. If the accuracy 
of the shorter model is not significantly reduced, another 
cycle is performed. Otherwise, the variable is left in 
the model and the program proceeds to another cycle 
of elimination. The backward elimination procedure 
influences the model sizes which can be evidenced by the 
following code.

Figure 9 The plot shows how the whole population is split into 
training and test datasets. The vertical axis shows the 150 random 
splits and the horizontal axis shows the 500 samples. 
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Figure 10 Fitness values of chromosomes evaluated in each split 
pattern. There are 150 random splits in this example and the fitness 
of each chromosome is evaluated in the test set of each of the 150 
splits. The fitness values of all chromosomes evaluated with a given 
split pattern are aggregated in a box.
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> rchr <- lapply(reg.bb$bestChromosomes[1:50],

   robustGeneBackwardElimination, reg.bb, 
result="shortest")

> barplot(table(unlist(lapply(rchr,length))),

   main="Length of Shortened Chromosomes")

The result shown in Figure 11 indicates that most of the 
models (>35) require 3 variables to keep a high accuracy, 
and only 13 models retain 2 variables. 

The GA procedure provides a large collection of 
models and sometimes investigators are interested in 
a representative model that has the highest prediction 
accuracy. The frequency of variables in the collection 
of models can be employed as criteria for inclusion in a 
forward selection procedure. 

> fsm <- forwardSelectionModels(reg.bb)

The function automatically produces a plot showing 
the variable selection process (Figure 12). The vertical line 
is the fitness value (AUC in the present example), and the 
horizontal line represents the variables sorted in descending 
order of gene frequency. For the overall prediction 
accuracy, the second model comprising 4 variables xcat, 

xcont1, xcont2 and x37 appears to have the highest accuracy  
(AUC =0.9419). 14 more models whose fitness values are 
99% as close to the best model are displayed in the plot. 

Conclusions

GA approach is appropriate for finding solutions that 
require efficient searching of a subset of features to find 
combinations that are near optimal for solving high-
dimensional classification problems, especially when 
the search space is large, complex or poorly understood. 
Clinical diagnosis and prognosis can be treated as a 
classification problem, and selection of an optimized set of 
features can be the key of the accuracy. Logistic regression 
as a classifier has gained its popularity in clinical research. 
This tutorial demonstrated a way of applying GA for 
feature selection in combination with logistic regression 
for classification. It uses a simulated data set as an example 
and the result has shown the capacity of GA for selecting 
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Figure 11 Length of shortened chromosome. It is noteworthy that 
most of the models (>35) require 3 variables to maintain a high 
predictive accuracy, and only 13 models require 2 variables.

Figure 12 Models using forward selection. The vertical line 
represents the fitness value (AUC in this example), and the 
horizontal line represents the variables sorted in descending order 
of gene frequency. For the overall prediction accuracy, the second 
model comprising 4 variables xcat, xcont1, xcont2 and x37 appears 
to have the highest accuracy (AUC =0.9419). Fourteen more 
models whose fitness values are 99% as close to the best model are 
displayed in the plot.
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the best or near best classification model with a small set of 
variables. When applying to real clinical data, it can help 
discover the knowledge from a complex situation and help 
researchers understand the mechanism of diseases, so that 
benefit the medical research outcome. The tutorial gives 
a guide of how to use the galgo package in a way that was 
considered as the most relevant to medical researches. The 
parameters in the scripts can be chosen with preference, 
and many other functions are also included. Also other R 
packages that implement GA can be tried instead of galgo 
for further interest.
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