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Big-data Clinical Trial Column
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Introduction 

RCTs, as the gold standard trials, applicable into the 
assessment of effectiveness of treatments in clinic routines, 
aim to reduce the bias affected by confounding factors by 
means of double blind and randomization assignments 
design, so that the accuracy of assessment could be 
improved and the effectiveness of drugs could be interpreted 
more objectively. However, the quality of a clinical trial 
is often compromised by case mix or heterogeneity of the 
study population. Typically, the patient inclusionary and 
exclusionary criteria include clinically observed indicators 
such as the diagnosis, stage of disease, age (categorized into 
age groups), gender, medical history, and comorbidities. 
Although every effort has been made to purify the 
study population that the biological efficacy can be fully  
exploited (1), the heterogeneity induced by unmeasurable 
factors such as genomics and socioeconomic status (e.g., 
occupation, income, and education) cannot be fully 
addressed. As a result, even the most carefully selected 
patient population can exhibit remarkable heterogeneity 
in clinical trials. Thus, meaningful subgroups of patients 

based on endorsed response patterns need to be identified 
to maximize the beneficial effects of a given intervention. 
For example, the study population in a clinical trial may 
comprise of two sub-phenotypes wherein the studied 
effective intervention may benefit one sub-phenotype 
however not benefit or harm the other sub-phenotype. 
Additionally, the subgroups of patients may differ in 
the course, prognosis, and even comorbidity patterns of 
the disease/disorder of interest for a clinical trial; such 
information may also create differential effects for the 
assessed intervention. 

Acute respiratory distress syndrome (ARDS) is a 
common disease in the intensive care unit and it can be 
diagnosed in the presence of hypoxia induced by bilateral 
lung inflammation. Although patients with ARDS have long 
been considered as a study population in clinical trials, this 
group of patients actually encompasses a heterogeneous 
population. Investigators have successfully identified sub-
phenotypes of ARDS by using inflammatory biomarkers, 
and the results showed that these sub-phenotypes responded 
differently to fluid therapy (2,3). 
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Typically, subgroup analysis performed in clinical 
trials divides study population by one or two factors. 
For example, patients can be categorized into subgroups 
with or without diabetes. The complex relationship (e.g., 
interactions, higher-order intersections and etc.) between 
manifest (observed) variables cannot be adequately explored 
with conventional subgroup analysis. In situations when 
there are, for example, 6 manifest variables and each has 
2 response levels, there will be a total of 26=64 possible 
response patterns. However, some of the response patterns 
may only be present in a handful of patients, or even not 
exist in the real-world setting (4). 

A popular method to address patient heterogeneity is 
finite mixture models, which is a statistically sophisticated 
framework for identifying meaningful subgroups of patients 
that are not directly observable. Latent class analysis (LCA) 
and latent profile analysis (LPA) are special forms of the 
finite mixture models; which allows us to identify a finite 
number of latent subgroups and to explore how treatment 
effect varies across these subgroups (5). The former assesses 
categorical symptom indicators while the latter assesses 
continuous indicators for latent group classification (6). 
Such person-centered approaches transcend limitations 
imposed by diagnostic categories and classify patients 
into latent homogenous classes based on similar response 
patterns (6). Latent subgroups of patients are compared 
with reference to shape (qualitative differences) symptom 
levels (quantitative differences) (7). LCA/LPA is more 
robust and reliable compared to analytically similar cluster 
analyses because they account for measurement error 
and use objective criteria to determine the optimal class 
solution. Identification of such meaningful latent subgroups 
allows investigators to explore differential treatment effects 
across these subgroups (8). This article aims to provide 
a step-by-step tutorial on how to perform LCA in R. In 
clinical trials, we prefer LCA because continuous variables 
can be easily converted to categorical variables, but the 
reverse is not true. 

Brief description of LCA

The LCA is based on probabilistic models to create classes 
or subgroups in a heterogeneous population. This model 
assumes the existence of unobservable classes which we can 
measure or observe the consequences or effects.

To describe the latent class model, we adopt the 
following notations: Let c be the latent class c =1,…,C 

and v the manifest variable, v=1,…,V. We denote s the 
response patterns or the outcome vector, s = 1,…,S, where S 
represents a list of responses. Let s(v) be the response levels 
of the variable v , s(v)=1,…,Is.

We denote Ps the probability of the outcome vector s 
which can be written as (9)

,
1

c
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c

p p
=

=∑
where ps,c denotes the unobserved probabilities of falling 
simultaneously in the categories defined by vector s and 
the latent class c. The probability of outcome vector c 
conditional on latent class c is denoted by ps/c. Assuming 
conditional independence, ps,c can be written as
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The parameters pc (the size of class) and pv,s(v)/c [probability 

of category s(v) for variable v conditional on class c] are 
estimated by using the EM algorithm (10). This algorithm 
is made up of two important steps: expectation step denoted 
by E and the likelihood maximization step denoted by M. 
The first step consists on calculating the expectation of the 
log-likelihood assuming that we have the information about 
classes. The second step consists of the maximization of 
log-likelihood function.

The posterior probabilities that permit to affect 
individuals to the latent classes is given by:
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Dataset simulation 

In this tutorial, an artificial dataset is generated by using 
the poLCA.simdata() function shipped with the poLCA  
package (11). We first install and load the package.

> install.packages("poLCA")

> library(poLCA)

Then, we proceed to generate a simulated dataset.

> set.seed(8)

> probs <- list(matrix(c(0.6,0.2,0.2, 0.6,0.3,0.1, 
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 0.3,0.1,0.6 ),ncol=3,byrow=TRUE), # Y1 

 matrix(c(0.2,0.8, 0.7,0.3, 0.3,0.7 ),

 ncol=2,byrow=TRUE), # Y2 

 matrix(c(0.3,0.6,0.1, 0.1,0.3,0.6, 0.3,0.6,0.1 ),

 ncol=3,byrow=TRUE), # Y3 

 matrix(c(0.1,0.1,0.5,0.3, 0.5,0.3,0.1,0.1, 0.3,0.1,0.1,0.5),

 ncol=4,byrow=TRUE), # Y4 

 matrix(c(0.1,0.2,0.7, 0.1,0.8,0.1, 0.8,0.1,0.1 ),

 ncol=3,byrow=TRUE)) # Y5

>  s i m d a t  < -  p o L CA . s i m d a t a ( N = 1 0 0 0 , p ro b s , P
=c(0.2,0.3,0.5))

The probs object is a list of matrices with dimensions 
equal to the number of classes (the number of rows) by 
the number of responses (the number of column). Each 
matrix corresponds to one manifest variable (from Y1 to 
Y5), and each row contains the class-conditional outcome 
probabilities. Note that each row sums to one. For example, 
the manifest variable Y2 contains two responses and Y4 
contains 4 responses. The ability to incorporate polytomous 
manifest variables is a feature of the poLCA package. Also 
note that all matrices have the same number of rows because 
it represents the number of classes. The poLCA.simdata() 
function generates an artificial dataset. The number of 
observations is 1000, and the prior class probabilities are 0.2, 
0.3 and 0.5 for the three classes. 

In many situations, it is of interest to investigate whether 
the treatment effect varies across latent classes. Thus, we 
also simulate a variable trt representing the treatment 
group and an outcome variable representing a binary clinical 
outcome. 

#run together with the above simulation for reproduc-
ibility
> trt<-as.factor(sample(c("trt","ctrl"),replace=T, 
size=1000))
> z <- 1 - as.numeric(trt)-simdat$trueclass+

 0.5*as.numeric(trt)*simdat$trueclass

> pr <- 1/(1+exp(-z))

> outcome <- rbinom(1000,1,pr)

> dat<-data.frame(simdat$dat,trt=trt,
outcome=outcome)

In the second line, a two-level factor variable trt was 
created with equal size in both levels. The object z is 
a linear predictor of a logistic regression model. The 

coefficient of each variable is arbitrarily assigned. The 
factor variable is converted to a numeric variable by 
the as.numeric() function. The linear predictor is then 
converted to probability by logit link function. Then, the 
outcome variable is generated by assuming a binomial 
distribution. 

To choose the best number of classes

The correct selection of the number of latent classes 
represents a critical problem because it can significantly 
affect substantive interpretations (12). Indeed, an 
incorrect selection of latent classes can lead to an incorrect 
interpretation of the studied phenomenon. The definition 
of the number of classes from a population is commonly 
achieved by using a likelihood ratio test (LMR). This 
is often used to compare two models (nested models 
deriving from each other by adding or deleting terms) 
under the assumption that these two models correctly 
fit the data. When many models need to be compared, 
the risk of rejecting the null hypothesis when it is true 
increases substantially. A number of methods, including 
information criteria (13), parametric resampling, etc., 
have been proposed to choose the number of classes. 
Information criteria including Akaike Information Criterion  
(AIC) (14), Bayesian Information Criterion (BIC) (15), 
consistent Akaike Information Criterion (cAIC), adjusted 
Bayesian Information Criterion (aBIC) (16) are among 
the most practical methods and require much less 
computational effort than other methods such as parametric 
resampling. The AIC is generally valid for the small 
sample models, though it is not useful for determining 
the number of classes in general. Other proposed method 
to judge model fit include Lo-Mendell-Rubin adjusted 
likelihood ratio test (LMR) (17), Likelihood ratio/deviance 
statistic, Bootstrap likelihood ratio test (BLRT) (18), and 
entropy. Typically, several latent class models with various 
numbers of classes are fit, and their statistics of model 
fit are compared to choose the best one. Sometimes, the 
subject-matter knowledge should also be considered when 
considering the number of classes. Thus, a combination 
of fit indices (rather than sole reliance on one index), 
coupled with a consideration of theory and interpretability 
is recommended to determine the optimal latent class 
model (8,19). According to the recommended fit indices, 
the optimal class solution would have the lowest BIC 
values, lowest aBIC values, a significant LMR value, a 
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significant BLRT p value, relatively higher entropy values, 
and conceptual and interpretive meaning (8,20,21). When 
comparing a K-class model with a K-1 class model, a 
significant LMR test indicates that the model with K classes 
is optimal (8). 

The following loop generates a series of latent class 
models with one to five classes. 

> f<-with(dat, cbind(Y1,Y2,Y3,Y4,Y5)~1)

> k=5

> for(i in 1:k){

 assign(paste("lc",i,sep=""), 

 poLCA(f, dat, nclass=i, maxiter=3000, 

 tol=1e-5, na.rm=FALSE, 

 nrep=10, verbose=TRUE, calc.se=TRUE))

}

The first  l ine creates a formula in the form of 
response~predictors. The manifest variables Y1 to Y5 
are response variables that characterize the latent class. 
Note that only non-zero integer variables are allowed, 
negative or decimal values will return an error message. 
For continuous variables, users need to convert them into 
categorical variables. In the formula, no predictor of latent 
class is added, thus a numeral 1 is added to the right of the 
“~” symbol. The second line assigned a numeral 5 to k, 
indicating a maximum of 5 classes will be allowed in the 
following latent class models. In the for loop, the assign() 
function is employed to assign a value to a name. The 
values are a series of objects of the class poLCA, and the 
object names are different in each loop cycle. The poLCA() 
is the main function that it estimates latent class models 
for polytomous outcome variables. The first argument is 
a formula defined previously. The data argument is a data 
frame containing variables in the formula. After the loop, 
five latent class models are created in the environment with 
the names lc1, lc2, lc3, lc4 and lc5. 

> tab.modfit<-data.frame(matrix(rep(999,7),nrow=1))

> names(tab.modfit)<-c("log-likelihood",
"resid. df","BIC",

 "aBIC","cAIC","likelihood-ratio","Entropy")

The above codes prepare to create a table containing 
statistics reflecting model fit. The first line creates a data 
frame with arbitrary values, but there should be 7 columns. 

Then the column names are assigned to represent the  
7 most commonly used model fit statistics. 

The entropy-based measures can be a poor tool for 
model selection, as stated by Collins LM that “Latent 
class assignment error can increase simply as a function of the 
number of latent classes, so indices like entropy often decrease 
as the number of latent classes increases. In other words, class 
assignment can look better purely by chance in a two-latent-class 
model than in a comparable model with three or more latent  
classes.” (22). However, since entropy is widely used in 
research practice, we illustrate how to compute entropy 
here. The poLCA.entropy() shipped with the poLCA 
package is able to calculate entropy when the number of 
response is the same for all manifest variables. However, 
when the numbers of response are not equal for all 
variables, the poLCA.entropy() function will report an 
error. Thus, we modified the function to incorporate 
circumstances when the number of response is unequal. In 
poLCA package, the entropy is defined as (11):

log( )c cc
H p p= − ×∑ ,

where pc is the share of the probability in the cth cell 
of the cross-classification table. The function can be  
rewritten as: 

> entropy.poLCA<-function (lc) 

{

 K.j <- sapply(lc$probs, ncol)

 if(length(unique(K.j))==1){

 	 fullcell <- expand.grid(data.frame(sapply(K.j, 
seq, from = 1)))

 } else{

 fullcell <- expand.grid(sapply(K.j, seq, from = 1))

 }

 P.c <- poLCA.predcell(lc, fullcell)

 return(-sum(P.c * log(P.c), na.rm = TRUE))

}

More commonly, the mathematical equation for entropy 
is given by (23) (https://www.statmodel.com/download/
relatinglca.pdf): 

1 1
( ) log

N C

ic ic
i c

EN p p p
= =

= −∑∑

Where pic denotes the estimated posterior probability 
for individual i in class c. C is the number of classes and 
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N is the number of observations. The entropy equation is 
bounded from [0, )∞ , with higher values indicated a larger 
amount of uncertainty in classification. Thus, the function 
for entropy can be written as follows: 

> entropy<-function(lc){

	 return(-sum(lc$posterior*log(lc$posterior),

 na.rm=T))

}

The “lc$posterior” extracts the posterior probabilities for 
all observations belonging to a class. 

> lc3$posterior[1,]

[1] 0.09989867 0.08565670 0.81444463

The above code examines the posterior distributions of 
the first observation in the lc3 model. It appears that this 
observation is most likely to belong to class 3 (e.g., with a 
posterior probability of 0.81). Other observations can be 
examined in the same way.

Relative entropy is a rescaled version of entropy by the 
following equation (23):

( )1
log( )

EN pE
N J

= −
×

where J is the number of classes. The R function for 
computation of relative entropy is as follows:

> relative.entropy<-function(lc){

	 en<--sum(lc$posterior*
log(lc$posterior),na.rm=T)

e<-1-en/(nrow(lc$posterior)*log(ncol(lc$posterior)))

	 return(e)

}

Then we proceed to calculate the model fit statistics for 
all fitted latent class models.

> for(i in 2:k){

tab.modfit<-rbind(tab.modfit,

 c(get(paste("lc",i,sep=""))$llik,

 get(paste("lc",i,sep=""))$resid.df,

 get(paste("lc",i,sep=""))$bic,

 (-2*get(paste("lc",i,sep=""))$llik) + 

 ((log((get(paste("lc",i,sep=""))$N + 2)/24)) * 

 get(paste("lc",i,sep=""))$npar),

 (-2*get(paste("lc",i,sep=""))$llik) +

 get(paste("lc",i,sep=""))$npar *

 (1 + log(get(paste("lc",i,sep=""))$N)),

get(paste("lc",i,sep=""))$Gsq,

relative.entropy(get(paste("lc",i,sep="")))

))

}

> tab.modfit<-round(tab.modfit[-1,],2)

> tab.modfit$Nclass<-2:k

The poLCA() function automatically calculates all 
statistics assessing model fit, and we just need to extract 
them from the returned poLCA objects and put them in 
a data frame. The last two lines round the returned values 
to 2 decimal places and remove the first row. Then, a new 
variable Nclass is added to denote the number of classes. 
The results can be viewed as follows: 

> tab.modfit

log-likelihood resid.df BIC aBIC cAIC likelihood-ratio Entropy Nclass

2 -4952.31 194 10049.69 9982.99 10070.69 329.13 0.62 2

3 -4898.03 183 10017.10 9915.47 10049.10 220.57 0.64 3

4 -4889.70 172 10076.43 9939.86 10119.43 203.91 0.62 4

5 -4882.70 161 10138.41 9966.91 10192.41 189.90 0.68 5
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The model fit can also be visualized to facilitate 
interpretation. First of all, we need to reformat the data 
frame tab.modfit. 

> install.packages("forcats")

> library("forcats")

> tab.modfit$Nclass <-as.factor(tab.modfit$Nclass) 

> results2<-tidyr::gather(tab.modfit,label,value,4:7)

> results2

log-

likelihood
resid.df BIC Nclass label value

1 -4952.31 194 10049.69 2 aBIC 9982.99

2 -4898.03 183 10017.10 3 aBIC 9915.47

3 -4889.70 172 10076.43 4 aBIC 9939.86

4 -4882.70 161 10138.41 5 aBIC 9966.91

5 -4952.31 194 10049.69 2 cAIC 10070.69

6 -4898.03 183 10017.10 3 cAIC 10049.10

7 -4889.70 172 10076.43 4 cAIC 10119.43

8 -4882.70 161 10138.41 5 cAIC 10192.41

9 -4952.31 194 10049.69 2 likelihood-

ratio

329.13

10 -4898.03 183 10017.10 3 likelihood-

ratio

220.57

11 -4889.70 172 10076.43 4 likelihood-

ratio

203.91

12 -4882.70 161 10138.41 5 likelihood-

ratio

189.90

13 -4952.31 194 10049.69 2 Entropy 0.62

14 -4898.03 183 10017.10 3 Entropy 0.64

15 -4889.70 172 10076.43 4 Entropy 0.62

16 -4882.70 161 10138.41 5 Entropy 0.68

The results2 data frame is a long format that the labels 
for model fit statistics are formatted in long style. The value 
column is the values for respective statistics. Then, this data 
frame can be passed to the ggplot() function (24). 

> fit.plot<-ggplot(results2) + 

 geom_point(aes(x=Nclass,y=value),size=3) +

 geom_line(aes(Nclass, value, group = 1)) +

 theme_bw()+

 labs(x = "Number of classes", y="", title = "") + 

 facet_grid(label ~. ,scales = "free") +

 theme_bw(base_size = 16, base_family = "") + 

 theme(panel.grid.major.x = element_blank() ,

 panel.grid.major.y = element_line(colour="grey", 
size=0.5),

 legend.title = element_text(size = 16, face = 'bold'),

 axis.text = element_text(size = 16),

 axis.title = element_text(size = 16),

 legend.text= element_text(size=16),

 axis.line = element_line(colour = "black"))

> fit.plot

The result is a plot showing the changing values 
of model fit statistics by varying number of classes  
(Figure 1). It appears that latent class model with 3 classes 
has the smallest values in aBIC and cAIC. However, the 
relative entropy is not optimal with 3 classes (as mentioned 
above, entropy can be a poor tool for model selection). 
Although the 5-class model has a greater entropy value 
than the 3-class model, three of the 5 classes have very low 
population shares. Collectively, the 3-class model is the 
optimal model, taking into account of the combination of 
statistical fit indices, parsimony and interpretative value. 

> lc5$P

[1] 0.06606815 0.09553452 0.26579377 0.49230406 
0.08029950

> lc3$P

Figure 1 Elbow-Plot showing the parsimony and goodness-of-fit 
for models with varying number of classes. 
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[1] 0.3888389 0.1610742 0.4500869

The lca_select() function

The lca_select() function makes it easier to choose the 
right model based on the information criteria (created by 
A.A.). In this function, we added more information criteria 
such as Hurvich and Tsai Criterion (HT) (25), Modified 
AIC (mAIC) (26), Hannan and Quinn Criteria (HQ) (27), 
Corrected Akaike Information Criterion (AICc) (28). The 
function is defined as follows:

> lca_select <- function(f,dat,nb_var,k,nbr_repet)

# f is the selected variables

# dat is the data

# nb_var is the number of selected variables

# k is the number of latent class generated

# nbr_repet is the number of repetition to 

# reach the convergence of EM algorithm

{ 

N=length(t(dat[,1]))

tab.modfit<-data.frame(matrix(rep(999,12),nrow=1))

names(tab.modfit)<-c("Df","Gsq","Llik","AIC",
"mAIC","AICc","HT",

 "cAIC","AICc","BIC","aBIC","HQ")

for(i in 2:k){

assign(paste("lc",i,sep=""),

poLCA(f, dat, nclass=i, maxiter=3000,

tol=1e-5, na.rm=FALSE,

nrep=nbr_repet, verbose=TRUE, calc.se=TRUE))

tab.modfit<-rbind(tab.modfit, c(

get(paste("lc",i,sep=""))$resid.df, #df

get(paste("lc",i,sep=""))$Gsq, #gsq

get(paste("lc",i,sep=""))$llik, #llik

-2*get(paste("lc",i,sep=""))$llik+

 2*get(paste("lc",i,sep=""))$npar, #AIC

-2*get(paste("lc",i,sep=""))$llik+

 3*get(paste("lc",i,sep=""))$npar, #AIC3

-2*get(paste("lc",i,sep=""))$llik+

 2*get(paste("lc",i,sep=""))$npar+

 (2*get(paste("lc",i,sep=""))$npar*get(paste("lc",

 i,sep=""))$npar+1)/(N-get(

 paste("lc",i,sep=""))$npar-1), #AICC

-2*get(paste("lc",i,sep=""))$llik+

2*get(paste("lc",i,sep=""))$npar+

(2*(get(paste("lc",i,sep=""))$npar+1)*(get(paste("lc",

 i,sep=""))$npar+2))/(N-get(

 paste("lc",i,sep=""))$npar-2), #HT

-2*get(paste("lc",i,sep=""))$llik+get(

paste("lc",i,sep=""))$npar*(log(N)+1), #CAIC

-2*get(paste("lc",i,sep=""))$llik+

2*get(paste("lc",i,sep=""))$npar+

(2*get(paste("lc",i,sep=""))$npar*get(paste("lc",

 i,sep=""))$npar+1)/(N-get(paste("lc",i,sep=""))$
npar-1)+

N*log(N/(N-get(paste("lc",i,sep=""))$npar-1)), #CAIU

-2*get(paste("lc",i,sep=""))$llik+

get(paste("lc",i,sep=""))$npar*log(N), #BIC

-2*get(paste("lc",i,sep=""))$llik+

get(paste("lc",i,sep=""))$npar*log((N+2)/24), #ABIC

-2*get(paste("lc",i,sep=""))$llik+

2*get(paste("lc",i,sep=""))$npar*log(log(N)) #HQ

))

}

tab.modfit<-round(tab.modfit[-1,],2)

tab.modfit$Nclass<-2:k

print(tab.modfit)

plot(tab.modfit$AIC,type="l",lty=2,lwd=1,

xaxt="n",

y l im=c(min( tab.modf i t$AIC, tab.modf i t$aBIC)-
100,round(max(tab.modfit$BIC,tab.modfit$aBIC))+100),

col="black", 

xlab="Number of classes",ylab="Information criteria",

main="Comparison of information criteria to choose the 
number of classes")

axis(1,at=1:length(tab.modfit$Nclass),
labels=tab.modfit$Nclass)

lines(tab.modfit$AIC,col="black",type="l",lty=2,lwd=1)

lines(tab.modfit$BIC,col="red",type="l",lty=2,lwd=1)

lines(tab.modfit$aBIC,col="green",type="l",lty=2,
lwd=1)

lines(tab.modfit$cAIC,col="orange",type="l",lty=2,
lwd=1)

lines(tab.modfit$HQ,col="blue",type="l",lty=2,lwd=1)

#lines(dd$caiu,col="purple",type="l",lty=7,lwd=2)

#lines(dd$bica,col="grey",type="l",lty=8,lwd=2)
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#lines(dd$hq,col="pink",type="l",lty=9,lwd=2)

legend("topright",legend=c("AIC","BIC","aBIC","cAIC",
"HT"),

pch=21,col=c("black","red","green","orange","blue"),

ncol=5,bty="n",cex=0.8,lty=1:9,

text.col=c("black","red","green","orange","blue"), 
inset=0.01)

}

Then we proceed to compute and display model fit 
statistics with the following code. 

> lca_select(with(dat, cbind(Y1,Y2,Y3,Y4,Y5)~1),

 dat, k=8, nbr_repet=10)

In the example, the number of classes to be chosen is 
8 and the information criteria as well as other statistics is 
shown in Table 1. Furthermore, the information criteria 
to choose the number of classes are displayed in Figure 2. 
It appears that the 3-class model has the lowest values on 
all information criteria, and it is reasonable to choose the 
3-class model. 

Model visualization

The generic function plot() can be applied directly to the 
poLCA object to visualize the latent class model. 

> plot(lc3)

The resu l t  i s  shown in  Figure  3 .  The  overa l l 
population is divided into 3 classes by the five manifest 
variables. The graphic presents probabilities of categories 
s(v) (response value) for variable v conditional on class 
c. For example, the class 2 is characterized by a large 
probability of response value 2 in Y2 and 3 in Y5. These 
characteristics can be interpreted with subject-matter 
knowledge. 

The latent class model can also be visualized in 2D plot. 

Table 1 Information criteria for the choice of the number of classes

Df Gsq Llik AIC mAIC AICc HT cAIC AICc BIC aBIC HQ N class

194 329.13 −4,952.31 9,946.63 9,967.63 9,947.53 9,947.66 1,0070.69 9,969.77 10,049.69 9,982.99 9,985.80 2

183 220.57 −4,898.03 9,860.06 9,892.06 9,862.18 9,862.38 10,049.10 9,895.73 10,017.10 9,915.47 9,919.75 3

172 203.91 −4,889.70 9,865.40 9,908.40 9,869.27 9,869.54 10,119.43 9,914.26 10,076.43 9,939.86 9,945.61 4

161 189.90 −4,882.70 9,873.39 9,927.39 9,879.57 9,879.92 10,192.41 9,936.14 10,138.41 9,966.91 9,974.12 5

150 173.22 −4,874.36 9,878.71 9,943.71 9,887.76 9,888.19 10,262.71 9,956.04 10,197.71 9,991.27 9,999.95 6

139 159.98 −4,867.73 9,887.47 9,963.47 9,899.98 9,900.50 10,336.46 9,980.11 10,260.46 10,019.08 10,029.23 7

128 143.28 −4,859.38 9,892.77 9,979.77 9,909.37 9,909.96 10,406.74 10,001.48 10,319.74 10,043.43 10,055.05 8

Df, degree of freedom; Gsq, Likelihood ratio/deviance statistic; Llik, maximum log-likelihood; AIC, Akaike Information Criterion; BIC, 
Bayesian Information Criterion; cAIC, consistent Akaike Information Criterion; HT, Hurvich and Tsai Criterion; AIC3, Modified AIC; aBIC, 
adjusted Bayesian Information Criterion; HQ, Hannan and Quinn Criteria; AICc, Corrected Akaike Information Criterion; Nclass, number of 
classes.
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> lcmodel <- reshape2::melt(lc3$probs, level=2)

> zp1 <- ggplot(lcmodel,aes(x = L2, y = value, fill = 
Var2))+

geom_bar(stat = "identity", position = "stack")+

facet_grid(Var1 ~ .)+

scale_fill_brewer(type="seq", palette="Greys") +

theme_bw()+

labs(x = "Manifest variables",

 y="Share of item response categories",

 fill ="Response

 category")+

theme(axis.text.y=element_blank(),

 axis.ticks.y=element_blank(), 

 panel.grid.major.y=element_blank())+ 

guides(fill = guide_legend(reverse=TRUE))

> print(zp1)

The Figure 4 gives the same information as that of the 
Figure 3, but the responses are displayed in 2-D format. 

Differential treatment effects across latent 
classes

The 3-class model is considered as the best fitted model and 
the 3 classes can be considered as subgroups of the overall 
study population. The next task is to investigate whether the 
treatment effects vary across latent classes. As mentioned 
earlier, we have generated the variable trt and outcome, 
corresponding to the treatment group and the binary 
outcome. Lanza ST and colleagues described two methods 
to examine differential treatment effects (4): (I) a classify-
analyze approach involving logistic regression model, and 
(II) a model-based approach. The classify-analyze approach 
involves two steps, “classify” step and the “analyze” step. 
The first step is to obtain the posterior probability of 
each patient and assign them to the latent class with the 
maximum probability, which is based on the maximum-
probability assignment rule (29,30). Next, the “analyze” 
step involves building a logistic regression model with the 
outcome variable as the dependent variable. The treatment 
and latent class membership are included in an interaction 
term (31). This is the conventional regression/analysis 
of variance approach to test differential treatment effects 
across subgroups. The model-based approach involves 
multiple group LCA which is not currently implemented in 
the poLCA package. 

> mod<-glm(outcome~trt*as.factor(lc3$predclass),

 family="binomial")
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Figure 3 Posterior probability of manifest variable responses 
across classes. 
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manifest variable responses across classes.



Zhang et al. Exploring heterogeneity with latent class analysis

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2018;6(7):119atm.amegroups.com

Page 10 of 11

> round(summary(mod)$coefficients,3)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.229 0.173 -7.090 0.000

trttrt 0.231 0.241 0.958 0.338

as.factor(lc3$predclass)2 0.556 0.297 1.871 0.061

as.factor(lc3$predclass)3 0.200 0.230 0.870 0.384

trttrt:as.

factor(lc3$predclass)2

-0.847 0.428 -1.978 0.048

trttrt:as.

factor(lc3$predclass)3

-0.038 0.317 -0.121 0.904 

The logistic regression model is fitted with generalized 
l inear model (32).  The trt  and latent class group 
membership variables are included as an interaction term. 
The “lc3$predclass” extracts the latent class membership 
for each individual patient, and it is converted to a factor 
variable because the class membership values 1, 2 and 3 have 
no numeric relationship. In the model, class 1 is regarded 
as the reference class, against which other classes are 
compared. The result shows that the treatment effect is not 
significantly different for the class 1 vs. class 2 comparison  
(β=2.031, SE=0.241, P=0.338), but the effect is significantly 
different for the class 1 vs. class 2 comparison (β=0.847, 
SE=0.428, P=0.048). The treatment seems to be more 
effective in reducing adverse outcome for patients in 
class 2. For subject-matter audience, it is convenient to 

transform the regression coefficients to odds ratios. Patients 
in the class 2 group assigned to treatment group are  
e0.231−0.847=0.54 times as likely to report outcome 1 compared 
to the control group. In other words, the treatment results 
in a 50% risk reduction for patients in class 2. 

> dat$predclass<-lc3$predclass

> prop<-rbind(ctrl=prop.table(table(dat[dat$trt=="ctrl",
]$predclass,

dat[dat$trt=="ctrl",]$outcome),1)[4:6],

trt=prop.table(table(dat[dat$trt=="trt",]$predclass,

dat[dat$trt=="trt",]$outcome),1)[4:6])

> colnames(prop)<-c('class 1',"class 2","class 3")

> barplot(prop,beside =T,

 legend.text=c('ctrl',"trt"),

 ylim = c(0,0.4))

The first line attaches the class membership variable 
predclass to the original data frame. Then a data frame 
containing proportions is generated, which can be passed to 
the barplot() function. The result shows that the treatment 
is able to reduce the risk of outcome 1 by nearly 50% 
(Figure 5), whereas such a beneficial treatment effect is not 
observed in the other two classes. 
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