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Abstract: Randomized controlled trials (RCTs) usually enroll heterogeneous study population, and thus 
it is interesting to identify subgroups of patients for whom the treatment may be beneficial or harmful. A 
variety of methods have been developed to do such kind of post hoc analyses. Conventional generalized linear 
model is able to include prognostic variables as a main effect and predictive variables in an interaction with 
treatment variable. A statistically significant and large interaction effect usually indicates potential subgroups 
that may have different responses to the treatment. However, the conventional regression method requires 
to specify the interaction term, which requires knowledge of predictive variables or becomes infeasible when 
there is a large number of feature variables. The Least Absolute Shrinkage and Selection Operator (LASSO) 
method does variable selection by shrinking less clear effects (including interaction effects) to zero and in 
this way selects only certain variables and interactions for the model. There are many tree-based methods for 
subgroup identification. For example, model-based recursive partitioning incorporates parametric models 
such as generalized linear models into trees. The model incorporated is usually a simple model with only the 
treatment as covariate. Predictive and prognostic variables are found and incorporated automatically via the 
tree. The present article gives an overview of these methods and explains how to perform them using the 
free software environment for statistical computing R (version 3.3.2). A simulated dataset is employed for 
illustrating the performance of these methods.  
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Introduction

Randomized controlled trials (RCT) are the cornerstone 
of the evidence based medicine, providing strong 
evidence for decision-making in medicine and healthcare. 
Methodologically, RCT is a robust study design employed 
to test the biological efficacy of a novel intervention as 
compared with the control one using clinical and laboratory 
outcome measures (1). Well-designed RCTs should be 
conducted in a homogeneous study population, which is a 
crucial aspect to evaluate the efficacy of an intervention in 
RCTs. Applying a strict inclusion/exclusion criteria is the 

commonest approach to enroll participants with similar 
characteristics. 

Although such experimental design is appropriate to 
assess the treatment efficacy with good internal validity, 
its external validity has been criticized mainly because 
the characteristics of study patients from distinct RCTs 
may differ importantly jeopardizing the generalization 
of the results. Thus, the concept of real world study 
(RWS) aligning pragmatic trials with clinical practice 
comes into scientific community (2). No matter how 
strict is the inclusion/exclusion criteria of a RCT, the 
baseline characteristics of the study population can 
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differ considerably. As a result, the effect size of a certain 
intervention can be significantly influenced by the 
heterogeneity of the study population. For instance, given 
a RCT with neutral effect, there can be a beneficial effect 
for a specific subgroup of patients but not for others 
participants. The findings of the original design of the 
RCT report only the average effect across heterogeneous 
subgroups. In some cases, clinical investigators may want 
to overcome the negative results of the RCT by reporting 
analysis of patient subgroups. Although such a post hoc 
analysis is at high risk of spurious findings, this can still be 
an option to generate some interesting findings that warrant 
further experimental trials to confirm the subgroup analysis.

A variety of methods have been developed for the 
identification of subgroups of participants in RCTs, 
including penalized regression model with interaction 
terms and tree based partitioning. These methods will be 
discussed in the following sections. In a recent tutorial 
paper, Lipkovich and colleagues have made a comprehensive 
review of these methods (3). Herein, we aim to review some 
of these methods and provide specific R code (R version 
3.4.3), as well as detailed explanations, for the performance 
of these methods. 

Working example 

Here we generate an artificial dataset for the illustration 
of the methods for identifying subgroups of participants in 
RCTs. The study population is simulated with subgroups 
which have opposite treatment effects. The data structure 
can be outlined with the equation:

1 2 1 2 1 22 ( 0) 2 ( 0i i i i i i i i i iz x x I x x t I x x t ε= − + ⋅ ≥ ⋅ ⋅ − ⋅ < ⋅ ⋅ +）

where z is a continuous outcome, which can be transformed 
to binary outcome y. A binary outcome variable is subject 
to logit transformation to establish a linear link with 
covariates. I() denotes the indicator function, which returns 
1 if the logistic function is true and 0 otherwise. The R code 
for generating the dataset is as follows: 

> set.seed(123) 

> sim_data <- function(n = 2000) {

  x1 <- rnorm(n) 

  x2 <- rbinom(n, 1, 0.3) 

  x3 <- runif(n) 

  x4 <- rnorm(n) 

  t <- rbinom(n, 1, 0.5) 

  z <- 1 - x2 + x1 + 2 * (x1 >= 0) * x2 * t - 

    2 * (x1 < 0) * x2 * t 

  pr <- 1 / (1 + exp(-z)) 

  y <- as.factor(rbinom(n, 1, pr)) 

  data.frame(x1, x3, x2 = as.factor(x2), x4, 

             t = factor(t, labels = c("C", "A")), y, z) 

}

dt <- sim_data()

The above code generates a dataset with a sample size 
of 2000. Suppose there are four baseline variables being 
collected, which are denoted as x1, x2, x3 and x4. Only 
x1 and x2 are correlated with the outcome variable y. 
x3 and x4 are noise variables. The variable t represents 
the treatment variable, which is typically a binary factor 
variable comprising two categories (e.g., A=active treatment 
vs. C=control). Considering a hypothetical RCT fails 
to identify the expected beneficial health effect of the 
treatment intervention as compared to the control. 

> m1 <- glm(y ~ t, data = dt, 

          family = binomial())

> round(summary(m1)$coefficient,3)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.537 0.064 8.379 0.000

tA 0.030 0.093 0.318 0.751

The above code performs univariable analysis to examine 
whether there is statistical difference between treatment 
and control arms in the binary outcome y. The result shows 
a P value of 0.751, which is far from being statistically 
significant. Nonetheless, researchers may want to salvage 
the RCT by performing post hoc analysis aiming to identify 
subgroups of patients who may benefit from the treatment 
under investigation. Since the data is artificially simulated, 
it is expected that subgroups of patients can have different 
responses to the treatment intervention. 

> m2 <- glm(y ~ t, data = subset(dt, x1 >= 0 & x2 == 1), 

          family = binomial())

> round(summary(m2)$coefficient,3)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.511 0.172 2.968 0.003

tA 2.004 0.358 5.604 0.000

The above analysis restricts to a subgroup of patients 
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with x1≥0 and x2=0.5. The result shows a statistically 
significant P value (P value <0.001). Although a statistically 
significant difference using Chi-square not necessarily 
means that the new treatment shows better results than the 
control group (e.g., it just informs the groups differ with 
regards the outcome), the statistical significance strongly 
suggests the treatment may be beneficial.

> m3 <- glm(y ~ t, data = subset(dt, x1 < 0 & x2 == 1), 

          family = binomial())

> round(summary(m3)$coefficient,3)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.938 0.176 -5.336 0

tA -1.952 0.426 -4.580 0

In another subgroup analysis with x1<0 and x2= 
0.5, the difference between the treatment effect is also 
statistically significant. However, the treatment effects for 
this subgroup are opposite to that defined in m2. In the 
present hypothetical example, we know how to define the 
subgroups of participants that have different responses 
to the treatment. However, in real research practice we 
usually have no idea on or little information about the 
characteristics of subgroups responsible for differences 
in the response to treatment. The identification of a 
subgroup involves the selection of specific variables, as 
well as the determination of cutoff points for continuous 
variables. The following sections will focus on several data-
driven approaches for the identification of subgroups of 
participants of RCTs. 

Logistic regression with interaction term

In mathematical terms, the assessment of the effect of 
a treatment in subgroups of patients can be viewed as 
to establish an interaction term between the treatment 
and specific variables (4). A subgroup of patients can be 
identified when the interaction between treatment and 
a certain combination of feature variables is statistically 
significant. However, this requires subject-matter 
knowledge to decide on which variables are relevant. 

> lrm1 <- glm(y ~ x1 + x2 + x3 : t + x4, dt, 

            family = "binomial") 

> round(summary(lrm1)$coefficient,3)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.973 0.113 8.581 0.000

x1 1.140 0.065 17.486 0.000

x21 -1.130 0.115 -9.817 0.000

x4 0.031 0.053 0.581 0.561

x3:tC 0.100 0.206 0.484 0.628

x3:tA 0.069 0.208 0.331 0.740

The above code fits a model with variables x1, x2 and 
x4 in the main effect and x3:t as the interaction term. In 
this model, it is assumed that the variable x3 is able to 
characterize subgroups of patients, which however is mis-
specified (e.g., x3 is not modeled to have interaction effect 
with t in the simulation, hence P>0.05 for the interaction 
effect). 

> lrm2 <- glm(y ~ x1 + I(x1 >= 0) * x2 * t, dt, 

            family = "binomial") 

> round(summary(lrm2)$coefficient,3)

Estimate Std.Error zvalue Pr(>|z|)

(Intercept) 0.901 0.136 6.638 0.000

x1 0.879 0.102 8.596 0.000

I(x1>=0)TRUE 0.249 0.232 1.075 0.282

x21 -1.235 0.211 -5.842 0.000

tA -0.052 0.158 -0.331 0.740

I(x1>=0)TRUE:x21 -0.077 0.312 -0.245 0.806

I(x1>=0)TRUE:tA -0.130 0.261 -0.496 0.620

x21:tA -1.891 0.458 -4.130 0.000

I(x1>=0)TRUE:x21:tA 4.184 0.620 6.749 0.000

The above code fits a model with x1 and x2 in main 
effect, and these two variables combined to define 
subgroups. The result shows that the treatment effects are 
−1.891 and 4.184 for subgroups of x2=1∪x1<0 (P<0.01) and 
x2=1∪x1≥0 (P<0.01), respectively. The results are consistent 
with the data-generation mechanism. 

Panelized regression method 

The limitation of the above-mentioned regression model 
is the requirement of subject-matter knowledge to 
determine the underlying structure of subgroups. Such 
prespecification of a regression model usually fails to 
identify the correct subgroups due to large number of 
covariates and complex interactions among them. Thus, 
some efficient high output methods to screen feature 
variables are needed. The panelized regression method 
seems a method to overcome this limitation since it has the 
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effect of shrinking the coefficient values (and the complexity 
of the model), allowing some with a minor effect to the 
response to become zero. The most commonly used 
penalized regression methods included the ridge regression 
and the Least Absolute Shrinkage and Selection Operator 
(LASSO). We will discuss the LASSO regression because 
it is able to shrink coefficient to exactly zero. Detailed 
descriptions of the method are out of the scope of the 
present article. Further information concerning LASSO 
method are available elsewhere (5,6). Briefly, LASSO is 
able to perform both variable selection and regularization 
so that the prediction accuracy and interpretability of the 
statistical model can be enhanced. As compared to the ridge 
regression, LASSO can shrink coefficient of a variable to 
become zero if it has minor effect on the response variable. 
The objective of LASSO regression is to solve the following 
equation (7): 
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where yi is the outcome and xij is the element of covariate 
vector. The subscript i  represents the index of an 
observation and j is the index of a covariate. β0 is the 
intercept term and βj are coefficients to be estimated. It is 
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where p and q are vectors with n elements. It is noted that 
the L1 Norm is the sum of absolute difference. In contrast, 
the ridge regression employs L2 Norm that can be written 
as:
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In our example, the coefficient of an interaction term 
can be shrunken to zero if there is no or minor interaction 
effect. Before running the LASSO variable selection 
procedure, we need to define model matrix to specify the 
model structure. 

> mmatrix <- model.matrix(y~(x1+x2+t+x3+x4)^3,dt)

> colnames(mmatrix)

[1] "(Intercept)" "x1" "x21" "t"

[5] "x3" "x4" "x1:x21" "x1:t"

[9] "x1:x3" "x1:x4" "x21:t" "x21:x3"

[13] "x21:x4" "t:x3" "t:x4" "x3:x4"

[17] "x1:x21:t" "x1:x21:x3" "x1:x21:x4" "x1:t:x3"

[21] "x1:t:x4" "x1:x3:x4" "x21:t:x3" "x21:t:x4"

[25] "x21:x3:x4" "t:x3:x4"

The model.matrix() function creates a model matrix by 
expanding factors into dummy variables and interactions. 
For example, the variable x2 is a factor and it is expanded 
to x21 to indicate level value 1 for x2 if x21=1, and 0 
otherwise. The formula (x1+x2+t+x3+x4)3 is equivalent to 
(x1+x2+t+x3+x4)×(x1+x2+t+x3+x4)×(x1+x2+t+x3+x4) which 
in turn expands to a formula containing the main effects for 
x1, x2, x3, x4 and t together with their second and third-
order interactions. The resulting matrix contains 26 terms 
including third-order interactions. The true significant 
interaction term (x1:x21:t) is also contained in the matrix. 
A downside of LASSO is that it assumes that all effects are 
linear and it does not search for split points.

> library(glmnet)

> cvfit <- cv.glmnet(x=mmatrix,

 y=dt$y, type.measure="auc",

 family='binomial',

 alpha=1,#lasso penalty

 )

The glmnet package (2.0-13) is employed for performing 
the LASSO regression. The above code firstly loads and 
attaches the glmnet package to the workspace, and then 
performs k-fold cross-validation for glmnet, produces a 
plot, and returns a value for lambda. The core to the feature 
variable selection is the cross-validation procedure, during 
which part of the data is used for fitting each competing 
model and the rest of the data is used to measure the 
predictive performances of the models by the validation 
errors, and the model with the best overall performance is 
selected. By default, the cv.glmnet() function uses 10-fold 
cross validation. The original sample is randomly split into 
10 equal sized subsamples. One sample is used as validation 
data, and the remaining 9 of the 10 subsamples are used as 
training data. The cross-validation process is repeated for 
10 times (the folds), with each of the 10 subsamples used 
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exactly once as the validation data (8). Validation error 
of the fitted model is obtained from the training data. 
Since there are 10 values for the validation error, they are 
averaged to obtain a summary value. Validation error can 
be represented by different measures for binomial response 
variable. The argument type.measure specifies statistics 
used as the criteria for 10-fold cross validation. Four string 
values “deviance”, “mae”, “class” and “auc” are allowed for 
the argument, representing actual deviance, mean absolute 
error, misclassification error and area under the ROC 
curve (for two-class logistic regression only), respectively. 
In the present example, we used “auc” to measure the 
discrimination of logistic regression models. 

The first argument x for cv.glmnet() function is a 
matrix with columns represent feature variables and their 
interaction terms, and rows represent observations. The 
argument y is the response variable. For family=“binomial”, 
as is the case in this example, y should be a factor with two 
levels. The LASSO method is specified by setting alpha=1. 
After fitting the model, the coefficients for each variables 
and interactions term can be viewed by the following code.

> coef(cvfit, s = "lambda.min")

27 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 0.92090850120

(Intercept) .

x1 0.90770641026

x21 -0.98941267477

tA .

x3 .

x4 .

x1:x21 .

x1:tA .

x1:x3 .

x1:x4 .

x21:tA .

x21:x3 .

x21:x4 0.03412145941

tA:x3 .

tA:x4 .

x3:x4 .

x1:x21:tA 1.50675686608

x1:x21:x3 .

x1:x21:x4 .

x1:tA:x3 0.03418416217

x1:tA:x4 .

x1:x3:x4 .

x21:tA:x3 .

x21:tA:x4 .

x21:x3:x4 .

tA:x3:x4 .

By setting s = “lambda.min”, the variables and 
interactions are selected at the minimum value of lambda. 
From the above output, it is noted that the coefficient for 
the term x1:x21:tA is 1.51. The changing pattern of AUC 
with different lambda values can be visualized.

> plot(cvfit)

Figure 1 is the cross-validation curve plotting AUC values 
against lambda values. Two selected lambda values which 
give the maximum AUC (minimum error) and the most 
regularized model such that error is within one standard 
error of the minimum, are indicated by two vertical dashed 
lines. The selected lambda values can be visited by the 
following code:

25     23    18     16    12     7    5    3    3    3    3     1   1

A
U

C

log(Lambda)
–8 –7 –6 –5 -4 –3 –2

0.80

0.75

0.70

0.65

0.60

Figure 1 Cross-validation curve plotting AUC values against 
lambda values. The algorithm tries to find a parsimonious model 
with a large AUC value. Two selected lambda values which give the 
maximum AUC (minimum error) and the most regularized model 
such that error is within one standard error of the minimum, are 
indicated by two vertical dashed lines. 
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> cvfit$lambda.min

[1] 0.009523456474

> cvfit$lambda.1se

[1] 0.06121747454

The LASSO model can be fit with the following code.

> lassofit <- glmnet(x=mmatrix,

 y=dt$y,

 family='binomial',

 alpha=1,#lasso penalty

 )

The glmnet() function fits a generalized linear model 
via penalized maximum likelihood. The regularization 
path is computed for the lasso penalty at a grid of values 
for the regularization parameter lambda. It is noted that 
the argument specification is the same as the one in the 
cv.glmnet() function.

> par(mar=c(4.5,4.5,1,5))

> plot(lassofit)

> vn <- colnames(mmatrix)

> vnat=coef(lassofit)

> vnat=vnat[-1,ncol(vnat)] # remove the intercept, 

#and get the coefficients at the end of the path

> axis(4, at=vnat,line=-.5,label=vn,

 las=1,tick=FALSE, cex.axis=0.8)

The above code generates a coefficient path at different 
L1 Norm values (Figure 2). Each colored line represents the 
value taken by a different coefficient in the model.

Lambda is the weight given to the regularization term 
(the L1 norm), so as lambda approaches zero, the loss 
function of the model approaches the ordinary least square 
(OLS) loss function. In other words, when lambda is very 
small, the LASSO solution should be very close to the 
OLS solution, and all of the coefficients are in the model. 
As lambda becomes larger, the effect of the regularization 
term increases and you will see fewer variables in the model 
(because more and more coefficients will be shrunken  
to zero).

As mentioned above, the L1 norm is the regularization 
term for LASSO. Another way to look at this is that the 
x-axis is the maximum permissible value the L1 norm can 
take. So when you have a small L1 norm, you have a lot 
of regularization. Therefore, an L1 norm of zero gives an 
empty model, and as you increase the L1 norm, variables 
will “enter” the model as their coefficients take non-zero 
values.

It is noteworthy that the interaction term x1:x21:tA is 
the last term to be shrunken to zero, indicating there is a 
subgroup defined by the variables x1 and x2. 

Model-based recursive partitioning

Model-based recursive partitioning can be used to identify 
subgroups of patients with different responses to a given 
treatment. The approach incorporates recursive partitioning 
into conventional parametric model. At the beginning, a 
parametric model (e.g., logistic regression model) is fitted 
to the whole dataset. Then, parameter instability is tested 
over all potential splitting variables, and the parent node 
is split by a variable at a specific cutoff point which results 
in the highest parameter instability (9,10). The highest 
parameter instability is searched because we want to ensure 
the daughter nodes have the largest difference in model 
parameters. In our situation, the difference in parameter is 
equivalent to the difference in treatment effect size.  

0 2 4 6 8 10

−1
0

1
2

L1 Norm

C
oe

ffi
ci

en
ts

x21

tA:x3
x1:tAx3:x4x21:tAx1:x21

x1:x4x1:x3
x21:x3
x21:tA:x4x21:x3:x4
tA:x3:x4
tA:x4x1:x21:x4(Intercept)
tAx4x1:tA:x4x1:x3:x4
x1:x21:x3
x3x21:x4
x1:tA:x3

x1

x21:tA:x3

x1:x21:tA

Figure 2 Coefficient path at different L1 Norm values. The 
coefficients including interaction terms shrink with decreasing 
values of L1 Norm (more panelized). It is noteworthy that x1, x2 
and x1:x2:t are the last terms shrunken to zero.
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For treatment-subgroup identification this model 
contains the treatment as a covariate. In the case of a logistic 
regression model, for example, the model parameters are 
the intercept and the treatment effect. This model is the 
basis for the subgroup identification.

> dt.num = as.data.frame(sapply(dt, as.numeric))

> dt.num$y<-dt.num$y-1

> mbase <- glm(y ~ t, data = dt.num, 

  family = binomial())

> round(summary(mbase)$coefficients,3)

Estimate Std. Error Z value Pr(>|z|)

(Intercept) 0.508 0.145 3.506 0.000

t 0.030 0.093 0.318 0.751

The current version of model4you package (version: 
0.9-0) requires numeric variables for further analysis, thus 
the data frame is first transformed before fitting a base 
model. Then, the base model is computed for the given 
simulated data. The model-based recursive partitioning 
algorithm starts by computing the model for the entire 
dataset and tests for instability in the model parameters 
(e.g., intercept and treatment effect) by testing for 
independence between each patient characteristic and 
the partial score contributions. If instability is found, the 
patient characteristic corresponding to the test with the 
smallest P value is chosen as split variable and defines the 
subgroups. For each subgroup, the model is computed and 
again tested for parameter instability. This goes on until no 
further instability can be found or other stop criteria are 
fulfilled. Through this process the algorithm detects patient 
characteristics that have an effect on the outcome and/or 
interact with the treatment.

The pmtree() function in the model4you package is used 
to compute a model-based tree.

> library("model4you")

> pmtr <- pmtree(mbase, zformula = ~ x1 + x2 + x3 + x4, 

               data=dt.num,

control = ctree_control(minbucket = 250))

The pmtree() function takes the fitted base model 
(model4you package). Patient characteristics to be used 
for splitting can be set via the zformula argument (default 
is to use all remaining variables). Stopping criteria, such 
as the minimum number of observations per subgroup 

(minbucket), and other algorithm settings can be set via the 
control argument. The tree can be visualized as follows:

> plot(pmtr, terminal_panel = node_pmterminal(pmtr, 

           plotfun = binomial_glm_plot, 

           confint = TRUE))

Figure 3 shows the visualization of the model-based tree.  
The tree recovers the data generating process quite well. It 
first splits in x1 close to zero (−0.006) and then in x2. Due to 
the linear effect of x1 on the outcome in the data generating 
process, the algorithm splits again in x1 for patients with 
x2=0 (see the changes in intercept). As for other model 
implementations in R, the summary() function can be used 
for the examination of more statistics. 

> summary(pmtr)

…

Coefficients:

node4 node5 node6 node9 node10 node11

(Intercept) -0.8670 0.9012 1.014 1.6810 2.6017 -1.493

t 0.1738 -0.1612 -1.952 -0.1888 -0.1252 2.004

…

It gives the coefficients in all leaf nodes of the tree. 
According to the data generating process, x1 should 
be included in the model as a linear effect. This can be 
achieved in two different ways: With a model-based tree 
including x1 as a covariate, which can be achieved via the 
glmtree() function in the partykit package (version: 1.2-0). 

> library("partykit") 

> glmtr <- glmtree(formula = y ~ t + x1 | x1 + x2 + x3 + x4, 

               data = dt, minsize = 250, family = binomial) 

> coef(glmtr)

(Intercept) tA x1

2 1.0261464 -0.1021561 1.0038475

4 -0.4592989 -1.9261103 0.7002547

5 0.2272313 2.0274241 0.3741397

> plot(glmtr, terminal_panel = NULL)

Figure 4 shows that the population is first split by x2 and 
then by x1. The two terminal nodes (4 and 5) are subgroups 
that have opposite treatment effects. 

Alternatively, the model can be fit with a partially 
additive linear model tree (PALM tree) including x1 as a 
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Figure 3 Model-based tree by the pmtree() function. The tree recovers the data generating process quite well. It first splits in x1 close to 
zero (−0.006) and then in x2. Due to the linear effect of x1 on the outcome in the data generating process, the algorithm splits again in x1 for 
patients with x2 = 0 (see the changes in intercept).

n = 1416 
Estimated parameters: 

(Intercept) 1.0261 
tA −0.1022 
×1 1.0038

n = 294 
Estimated parameters: 

(Intercept) −0.4593  
tA −1.9261 
×1 0.7003

n = 290 
Estimated parameters: 

(Intercept) 0.2272 
tA 2.0274 
×1 0.3741

2

1

4 5

3

>0.002≤0.002

0 1

×2

×1

p <0.001

p <0.001

Figure 4 Model-based tree by the glmtree() function. 
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covariate with fixed parameter across subgroups (palmtree() 
function in package palmtree version: 0.9-0).

> library("palmtree")

> palmtr <- palmtree(formula = y ~ t | x1 | x1 + x2 + x3 + x4, 

         data = dt, minsize = 250, family = binomial)

> cbind(coef(palmtr, model = "tree"),

         x1 = coef(palmtr, model = "palm"))

(Intercept) tA x1

2 1.0117813 -0.1017731 0.9489689

4 -0.3055816 -1.9319013 0.9489689

5 -0.1961561 2.1071153 0.9489689

> plot(palmtr, terminal_panel = NULL)

The functions glmtree() and palmtree() use different 
tests for parameter instability and use a different syntax 
for specifying the model (via the formula argument), but 
are closely related to pmtree(). The plots are shown in  
Figures 4,5. Of the three model-based trees, the palmtree() 
is the one representing the data generating process best, 
then glmtree(), and finally pmtree().

The QUINT method

The QUalitative INteraction Trees (QUINT) method, 
which was first introduced by Dusseldorp E and Mechelen 
IV, aims to subdivide the study population into subgroups 
by using recursive partitioning (11). The terminal nodes 

(leaves) are then assigned to one of three classes. Class 1: 
the treatment has beneficial effect; class 2: the treatment 
is harmful; class 3: the treatment and control groups 
have a similar effect. There are two components for the 
partitioning criteria: the difference in treatment outcome 
and the cardinality component. While the former ensures 
that the treatment difference in subgroups is sufficiently 
large, the latter ensures that the number of patients in 
a subgroup is sizable. The global partitioning criterion, 
denoted as C, is the combination of the two components. 
The goal of recursive partitioning is to maximize criterion 
C via an exhaustive search of all possible split variables and 
split points. 

The QUINT method can be easily performed using the 
quint package (version: 1.2.1) (12).

 
> library(quint)

> fquint <- quint(z~t|x1+x2+x3+x4,data=dt)

> plot(fquint)

The formula passed to the quint() function describes the 
model to be fit. The function requires a continuous outcome 
variable, thus the variable z is used instead of the binary 
variable y. In reality z would not be known, but the for the 
illustration purpose we used it here. The variable t before the 
“|” symbol is binary treatment variable, and variables after 
the “|” symbol are potential splitting variables. 

The results are shown in Figure 6. At the top of the 
tree, the algorithm examines the parent node and looks for 

n =1416 
Estimated parameters: 

(Intercept) 0.9980 
tA −0.1013

n =294 
Estimated parameters: 

(Intercept) −0.3386  
tA −1.9302

n =290 
Estimated parameters: 

(Intercept) −0.158  
tA 2.099

2

1

4 5

3

>0.002≤0.002

0 1

×2

×1

P<0.001

P<0.001

Figure 5 Model-based tree by the palmtree() function.
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a feature variable at a cutoff point that can split the node 
into child nodes with increasing values in criterion C. Also, 
the child nodes can be assigned to one of the three classes 
as mentioned before. In the example, x1 is first chosen as a 
splitting variable at the cutoff value of 0. The binary splitting 
results in two child variables. The algorithm repeats the 
procedure until a split can no longer results in a higher value 
of C. The second split is based on x2. Since x2 is a factor 
variable with two levels, there is no need to find a cutoff 
point. The QUINT algorithm results in four leaves. The 
P1 leaf with green color represents the subgroup of patients 
who benefit from treatment. P2 represents the subgroup of 
patients for whom the treatment is harmful, and the P3 leaves 
represent the subgroup of patients for whom the treatment 
is neutral. The main results of the QUINT algorithm can be 
viewed with the summary() function.

> summary(fquint)

Partitioning criterion: Effect size criterion 

Fit information: 

               Criterion 

                - - - - 

split #leaves apparent biascorrected se

1 2 2.71 2.73 0.01

2 3 3.31 3.30 0.01

3 4 3.73 3.70 0.01

Leaf 1 Leaf 2 Leaf 3 Leaf 4

×1

> –0.01

0 1 10

≤ –0.01

×2 ×2

P3 P1 P3 P2

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

Figure 6 Partitioning tree based on the QUINT method. x1 is 
first chosen as a splitting variable at the cutoff value of 0. The 
binary splitting results in two child variables. The second split is 
based on x2. Since x2 is a factor variable with two levels, there is no 
need to find a cutoff point. The QUINT algorithm results in four 
leaves. The P1 leaf with green color represents the subgroup of 
patients who benefit from treatment. P2 represents the subgroup 
of patients for whom the treatment is harmful, and the P3 leaves 
represent the subgroup of patients for whom the treatment is 
neutral. 

Split information: 

parentnode childnodes splittingvar splitpoint

Split 1 1 2,3 x1 -0.0123996231423869

Split 2 2 4,5 x2 0

Split 3 3 6,7 x2 0

Leaf information: 

#(T=1) meanY|T=1 SD|T=1 #(T=2) meanY|T=2 SD|T=2 d se class

Leaf1 353 0.21 0.63 329 0.21 0.55 0.00 0.05 3

Leaf2 157 -0.78 0.61 133 -2.83 0.62 3.34 0.16 1

Leaf3 387 1.78 0.60 347 1.85 0.63 -0.11 0.05 3

Leaf4 147 0.81 0.68 147 2.74 0.53 -3.17 0.16 2
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The summary output contains fit, split and leaf 
information in sequence. The fit information shows the 
criterion C value for each split. It is noteworthy that the 
criterion C value increases from 2.73 to 3.70 when the tree 
is growing. The split information shows the split point 
for each variable. The leaf information table gives mean 
values of Y for the treatment and control groups in each 
leaf, as well as the mean difference (column d). The mean 
difference is also displayed in the leaves of Figure 6.

Adapted support vector machine classifier 

Imai K and Ratkovic M proposed an adapted supporter 
vector machine classifier by placing separate sparsity 
constraints over the pretreatment parameters and 
causal heterogeneity parameters. In this framework, 
the conditional average treatment effect (CATE) can 
be estimated as   ( ; ) ( ( 1) ( 0) )i i l

t x Y t Y t X xτ = Ε = − = = ,  which can 
also be considered as the difference in predicted values 
under different treatment assignments conditional on 
covariates (13). The FindIt package is designed to estimate 
heterogeneous treatment effects, and it returns a model 
with the most predictive treatment-covariate interactions.
 
> library(FindIt)

> dtfdt <- transform(dt, 

  y =as.numeric(y)-1, t=as.numeric(t)-1)

The binary outcome variable will be transformed by the 
formula { }* 2 1 1,1i iY Y= − ∈ −  in the package (13). To make sure 
the outcome variable takes the value of 1 or -1, the outcome 
y in the original data need to be transformed to take values 
0 and 1. In our example, the variable y is a factor which 
would be transformed into a numeric variable with values 1 
and 2 by the as.numeric() function. Thus, we need to minus 
1 from the transformed numeric values. 

> F1 <- FindIt(model.treat=y~t,

  model.main= ~x1+x2+x3+x4,

  model.int= ~x1+x2+x3+x4,

  data=dtfdt,

  type="binary",

  treat.type="single")

The above code specifies the model structure. The 
model.treat argument specifies the outcome and treatment 
variables. model.main specifies pre-treatment covariates 

to be adjusted for, and model.int specifies pre-treatment 
covariates to be interacted with treatment variable when 
treat.type=“single”. The type argument receives a string 
“binary” to indicate that the outcome variable is a binary 
outcome. A “single” treatment type indicates interactions 
between a single treatment variable. 

> pred <- predict(F1)

> trteff <- rbind(head(pred$data, n=10),

   tail(pred$data, n=10))

> transform(trteff,

  Treatment.effect=

  round(Treatment.effect,2),

  x1=round(x1,2),

  x3=round(x3,2),

  x4=round(x4,2))  

T re a t m e n t .

effect

outcome treatment x1 x2 x3 x4

1098 0.34 1 1 1.04 1 0.97 0.42

650 0.33 0 0 0.99 1 0.98 0.10

466 0.33 1 1 1.21 1 0.85 0.79

1638 0.32 1 1 1.12 1 0.69 0.11

45 0.32 0 0 1.21 1 0.95 -0.17

818 0.32 1 0 1.21 1 0.57 0.71

1505 0.32 0 1 1.12 1 0.75 -1.21

182 0.32 1 1 1.26 1 0.46 -0.34

1138 0.31 1 1 1.30 1 0.46 -0.89

1454 0.31 1 0 1.33 1 0.96 0.76

1066 -0.28 0 0 -0.98 1 0.06 -0.33

65 -0.28 0 1 -1.07 1 0.27 0.29

1679 -0.29 0 0 -0.47 1 0.15 -3.26

1975 -0.29 0 1 -1.13 1 0.07 1.13

181 -0.29 0 0 -1.06 1 0.06 0.30

304 -0.29 0 1 -1.05 1 0.16 0.55

1991 -0.29 0 0 -1.10 1 0.08 1.13

974 -0.30 0 1 -1.10 1 0.15 1.46

1041 -0.30 0 0 -1.02 1 0.08 1.32

628 -0.32 0 1 -1.06 1 0.23 2.52

The predict() function is employed to estimate the 
treatment effect of each individual patient. The output 
shows 10 patients with the most positive treatment effect 
and 10 patients with the most negative treatment effect. 
It appears that patients with positive treatment effect have 
x1>0 and x2=1, whereas patients with negative treatment 
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effect have x1<0 and x2=1. The results can be visualized 

with the following code. While the treatment effect is 

not precisely a difference in probabilities, the algorithm 

approximates probabilistic estimates of the CATE.  

> plot(pred)

The output is shown in Figure 7, plotting treatment 
effect against index of observation. The treatment effects 
are heterogeneous in the study population with subgroups 
for whom the treatment can be beneficial or harmful. We 
can also examine the distribution of treatment effects in the 
x1*x2 covariate space with contour plot. 

> library(lattice)

> colRG <-colorRampPalette(c("red","yellow","green"))

> contourplot(Treatment.effect~x1*x2,

  data=pred$data, region=T,

  col.regions=colRG(20))

The colorRampPalette() function returns functions that 
interpolate a set of given colors to create new color palettes. 
In the example, three colors “red”, “yellow” and “green” 
are mixed to generate a new color palette. The contour 
plot shows that the subgroups for whom the treatment is 
beneficial and harmful represented by green and red colors, 
respectively, are defined by x1 at cutoff point of 0 and x2 
(Figure 8). 

Virtual twins method

The “virtual twins” method for the identification of 
subgroups of patients in RCTs has been previously 
described by Foster JC and colleagues (14). This method 
utilizes random forest ensemble to predict the probability of 
the outcome of interest for each subject in a counterfactual 
framework. Thus, there are two response probabilities, 
representing the treatment and control “twins”, for each 
patient. The difference in probabilities of the event of 
interest for the treatment and control “twins” is estimated as 
Zi = P1i –P0i, which can be considered as treatment effect for 
patient i. Then a regression or classification tree is built by 
including Zi as response variable, and other baseline feature 
variables as the covariates (15). The aim of the method is to 
identify a set of covariates Xs which are strongly associated 
with Z and thereafter to define a region A in which the 
treatment effect is significantly better than the average 
effect. The virtual twins algorithm can be performed using 
the aVirtualTwins package in R. 

> library(aVirtualTwins)

Causal moderation: heterogeneous treatment effect 

Tr
ea

tm
en

t e
ffe

ct

Index of observation

0                  500                1000              1500              2000

1391

0.3

0.2

0.1

0.0

–0.1

–0.2

–0.3

Figure 7 Heterogeneous treatment effect across the study 
population. Treatment effect is plotted against index of 
observation.
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Figure 8 Contour plot showing the distribution of treatment 
effects in covariate spaces defined by x1 and x2. It is noted that the 
subgroups in which the treatment is beneficial and harmful effects 
as represented by green and red colors, respectively, are by x1 at 
cutoff point of 0 and x2.
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> data.format <- formatRCTDataset(dtfdt, "y", "t", TRUE)

"1" will be the favorable outcome 

x2 is two-level factor. It has to be transformed into numeric 

value : 

0 becomes 0 

1 becomes 1

The formatRCTDataset() function generates a dataset 
that can be analyzed using the Virtual Twins method. The 
dataset argument of the function is a typical data frame 
recording RCT data. The outcome and treatment variables 
should be explicitly defined by “y” and “t”, respectively. 

> vt.o <- vt.data(dtfdt[,-7], "y", "t", T)

T h e  v t . d a t a ( )  f u n c t i o n  i s  a  w r a p p e r  o f 
formatRCTDataset() and VT.objectm to initialize Virtual 
Twins data. The argument of the function is similar to the 
formatRCTDataset() function. 

> set.seed(123)

> vt.f <- vt.forest("one", vt.o)

> summary(vt.f$difft)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.5804181 -0.1002006 -0.0077816 -0.0004478 0.1011804 0.6732131

The above code creates a random forest to compute the 
difference in treatment and control “twins” (Zi). By default, 
the difference is measured in absolute scale: Zi = P1i – P0i. 
Other scales for the difference include “relative” (P1i /P0i) 
and “logit” (logit(P1i) – logit(P0i), which can be specified in 
the vt.forest() function by method=c("absolute", "relative", 
"logit"). The resulting difference can be visited in the object 
vt.f$difft. As shown in the above output, the difference in 
absolute scale ranges from -0.58 to 0.67. 

> contourplot(vt.f$difft~x1*x2,

  data=vt.f$vt.object$data,region=T,

  col.regions=colRG(20))

The difference computed by random forest can be 
visualized with contour plot (Figure 9). It is noteworthy that 
the difference Z is well separated by the x1*x2 covariate 
space.

> vt.tr1 <- vt.tree(tree.type="class", 

  vt.f, threshold = 0.01,

  control = rpart.control( minbucket=200))  

> vt.tr2 <- vt.tree(tree.type="reg", 

  vt.f, threshold = 0.1,

  control = rpart.control( minbucket=250))

 
The vt.tree() function tries to find a strong association 

between difference Z and covariates (e.g., which covariates 
are associated with big change in Z). When setting tree.
type=“class”, a classification tree is fitted by creating a new 
variable Z* = 1 if Zi > c and Z* = 0 if Zi ≤ c. In the example, 
the threshold for classification regression is set at 0.01. The 
new binary variable Z* is used as the outcome in fitting the 
classification tree. By setting tree.type=“reg”, a regression 
tree is computed on Z, with covariates X. The regression 
tree is then used to predict Zi value for each patient. Then 
patients with predicted Zi greater than a threshold value are 
categorized into region A. In the example, the threshold 
is set at 0.1. The regression and classification tree can be 
visualized using the rpart.plot() function. 

> library(rpart.plot)

> par(mfrow=c(2,1))
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×
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×1
–3         –2         –1          0          1           2          3
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Figure 9 The distribution of the difference in probabilities of the 
event of interest for the treatment and control “twins”. It is noted 
that the subgroups in which the treatment is beneficial and harmful 
effects as represented by green and red colors, respectively, are by 
x1 at cutoff point of 0 and x2.
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> rpart.plot(vt.tr1$tree,

  main="Classification tree",

  extra=102)

> rpart.plot(vt.tr2$tree,

  main="Regression tree")

The results are shown in Figure 10. The upper plot 
shows the classification tree. The package employs rpart() 
function to perform tree modeling, in which the Gini 
index is used to measure the impurity in each node (16). 
By setting extra=102, the classification rate, expressed as 

the number of correct classifications and the number of 
observations, is displayed in each node. The root node 
is split by x1 at the value of 0.035. If x1<0.035, the tree 
predicts patients belonging to the class with Z* =0, which 
is not the class of interest in the example (e.g., recall that 
the algorithm tries to find a region A where the difference 
in treatment effect is greater than c=0.01. Zi ≤ c in the 
region defined by x<0.035). In contrast, the covariate 
space x1≥0.035 and x2≥0.5 defines a region where Zi>c. It 
is noteworthy that 281 of the 288 patients at the rightmost 
terminal node have Z*=1, which is the exact region the 

Classification tree

Regression tree

Figure 10 Classification (upper panel) and regression (bottom panel) trees partitioning the whole study population into subgroups. The 
subgroup in which the difference in probabilities is greater than a prespecified value c is of interest. The classification tree (upper panel) 
predicts patients belong to the class with Z* = 0 when x<0.035, which is not the class of interest in the example. In contrast, the covariate 
space x1≥0.035 and x2≥0.5 defines a region where Zi > c. It is noteworthy that 281 of the 288 patients at the rightmost terminal node have  
Z* = 1, which is the exact region the vt.tree() function tries to find. The regression tree (bottom panel) shows the difference in probability 
Zi at inner and terminal nodes. The percentage of patients are shown at the bottom of each nodes. In the terminal node defined by x1≥ 
0.047 and x2≥0.5, the difference in probabilities of the treatment and control “twins” is 0.23, which accounts for 14% of the whole study 
population.
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vt.tree() function tries to find. Also note that x2 has been 
transformed to a numeric variable and its cutoff value is 0.5, 
instead of the binary value 0 and 1. The regression tree 
shows the difference in probability Zi at inner and terminal 
nodes. The percentage of patients is shown at the bottom 
of each node. In the terminal node defined by x1≥0.047 
and x2≥0.5, the difference in probabilities of the treatment 
and control “twins” is 0.23, which accounts for 14% of the 
whole study population. 

Summary

This article reviews several commonly used methods for 
the identification of subgroups. Simple regression based 
methods are generally easy to understand and can be 
implemented by most clinical investigators. However, 
such methods require hypothesis on interaction terms 
and higher-order interactions are often missed. Panelized 

regression model is able to search a large number of 
covariate and interaction terms, shrinking unimportant 
terms. However, the selection of penalty value is somewhat 
arbitrary. Model-based regression tree has more direct 
interpretation than higher-order interaction terms but they 
have inherent limitations of identifying subgroups that 
cannot be verified in subsequent trials (e.g., false positive 
results). Furthermore, the parameter confidence interval 
is questionable (9,17). The QUINT method reported 
qualitative treatment-subgroup interactions and is suitable 
for studies aiming to assign patients to optimal treatments. 
Virtual Twins method works in a counterfactual framework 
and treatment effects of each subject can be estimated. 
In conclusion, all methods have their limitations and 
advantages. No one is definitively superior to the other 
and the choice on which to use depends on the specific 
questions under investigation, as well as the familiarity of 
the investigators to a specific method (Table 1). 

Table 1 Comparisons of different methods for subgroup identification

Methods Philosophy Advantages Limitations

Conventional 
regression model

Truth is known/hypotheses are clear Easy to understand for 
subject-matter audience

Needs hypothesis on interaction terms; higher-
order interaction effects may be missed

Panelized 
regression model

Effects and treatment covariate 
interactions are linear or nonlinearities 
are known

Able to search a large number 
of covariate/interaction 
space; the model is easy to 
understand 

Technically difficult to perform, needs 
sophisticated computation; the selection of 
penalty value (Lambda) is difficult; high order 
terms, if exist, is hard to interpret

Model-based 
recursive 
partitioning

Patients can be classified into 
subgroups where within the subgroups 
the model parameters (intercept and 
treatment effect) and between the 
subgroups at least one parameter is 
different. Effect sizes matter

Straightforward interpretation; 
effect size in subgroups can be 
illustrated; more interpretable 
than high-order interactions

Instability of tree structure; validity of parameter 
confidence interval is questionable (9,17)

QUINT method Patients can be classified into 
subgroups with treatment effects 
going in different directions. Effect 
sizes don’t matter.

Report qualitative treatment-
subgroup interaction; Suitable 
for situations when the optimal 
treatment assignment is 
the primary focus; stepwise 
greedy search of covariates

Vulnerable to false positive and negative 
results;  no treatment effect estimates

Adapted support 
vector machine 
classifier

Heterogeneous treatment effect is 
estimated as a variable selection 
problem

Able to account for the 
fact that predictive effects 
(treatment effect modifier) 
are weaker than prognostic 
effects; treatment effect for 
each subject can be estimated

Subject to false positive and negative results

Virtual twins 
method

Random forest ensemble to predict the 
probability of the outcome of interest 
for each subject in a counterfactual 
framework

Counterfactual framework 
that treatment effect for each 
subject can be estimated

Tendency to identify a false subgroup
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