
Page 1 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2018;6(9):159atm.amegroups.com

Review Article 

Colorectal cancer genomics and designing rational trials

Sebastian Mondaca, Rona Yaeger

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA

Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: R Yaeger; 

(IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.

Correspondence to: Rona Yaeger, MD. Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, 10th Floor, New York, 

NY 10065, USA. Email: yaegerr@mskcc.org.

Abstract: The widespread use of next generation sequencing (NGS) has led to a refined understanding of 
the genomics of colorectal cancer (CRC). However, progress in the use of molecular biomarkers in standard 
practice has been slow, and there is no approved targeted therapy for CRC based on a positive predictive 
marker yet. In this review, we will first summarize biomarkers with clinical utility in standard practice or 
targeted therapy trials and then consider how to rationally design clinical trials to more effectively target 
CRC. Specifically, we will discuss current clinical applications of genomic information consisting of the use 
of the MAPK (mitogen-activated protein kinase) pathway genes KRAS, NRAS, and BRAF as prognostic and 
predictive biomarkers for standard treatment, risk stratification by primary tumor site and consideration 
of tumor laterality in patient selection for epidermal growth factor receptor (EGFR) antibody treatment, 
and the evaluation for genomic biomarkers, including BRAF V600E, HER2 amplification, and gene 
rearrangements, for targeted therapies in clinical trials. Applying lessons from targeted therapy trials in 
CRC, we now appreciate that both tumor genomics and tissue of origin affect targeted therapy response 
and that the development of resistance to targeted therapies is dynamic and often subclonal. Based on these 
understandings, we propose the design of adaptive clinical trials that evaluate real-time pharmacodynamic 
markers and monitor tumor subpopulations during the course of treatment to overcome challenges targeting 
genetic drivers in CRC.
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Genomics of colorectal cancer (CRC)

The description of the adenoma-carcinoma sequence by 
Vogelstein and Fearon in 1990 first led to an understanding 
of CRC as a disease of successive genomic changes (1) and 
subsequent genomic studies have refined and expanded 
this understanding. Among the most important milestones, 
The Cancer Genome Atlas (TCGA) network performed a 
comprehensive molecular characterization of 224 resected 
colon and rectal tumors, demonstrating similar patterns of 
genomic alterations in these tumors, identifying recurrent 
genomic alterations, and characterizing tumors based on 
mutation frequency as ultramutated, hypermutated, and 

non-hypermutated (2) and the CRC Subtyping Consortium 
analyzed gene expression profiles to describe a consensus 
molecular subtype (CMS) classification consisting of 
four subgroups based on results from six independent 
transcriptomic-based subtyping systems (3). Despite the 
rapidly advancing understanding of genomic alterations 
in CRCs, until recently the clinical utility of molecular 
information in standard practice was limited to the use 
of KRAS as a negative predictive biomarker of response 
to EGFR (epidermal growth factor receptor) targeting 
antibodies. With decreasing costs and turnaround time, next 
generation multi-gene sequencing panels of tumor tissue and 
circulating free DNA (cfDNA) have entered the clinic and 
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the use of these methods has been rising exponentially (4).  
In this review, we will discuss the increasing incorporation 
of genomics in the treatment of patients with metastatic 
colorectal cancer (mCRC) both in the context of standard 
practice and clinical research.

Standard genomic markers in current clinical 
practice

Our knowledge of the genomic landscape of human cancers 
has rapidly accelerated with technological advances in 
sequencing, from capillary-based sequencing technologies 
to the modern massively parallel sequencing of today (5).  
Next generation sequencing (NGS) assays are highly 
sensitive, can analyze a large panel of genes, and detect 
novel mutations, small insertions and deletions (indels), 
copy number alterations, and select gene fusions and 
rearrangements from small amounts of DNA (6). A 
detailed description of technical aspects of NGS is beyond 
the aims of this review, but its fundamental principle is 
the spatial separation of individual DNA molecules and 
simultaneous analyses of millions of individual molecules. 
As each nucleotide in the sequences of each of the DNA 
strands is individually analyzed, the data are recorded and 
compiled computationally. The compiled data enable the 
bioinformatic analysis of multiple genes from multiple 
samples (7). 

RAS

EGFR targeting antibodies, the first molecular targeted 
therapy for CRC, brought genomic data to the clinical 
assessment of CRC patients. These drugs improve survival 
in metastatic disease, but response is seen in only about 10% 
of unselected CRC cases (8,9). EGFR expression, the logical 
marker for these agents, was found not to correlate with 
tumor response (10), and thus a search began for predictive 
markers to guide patient selection. The major breakthrough 
in this area was the identification of KRAS exon 2 mutations 
as predictors of lack of benefit (11,12). KRAS, a small 
GTP-binding protein, lies downstream of EGFR and acts 
as signal switch whose activation engages effectors that 
control proliferation, differentiation, and survival (13). 
Subsequently, activating KRAS hotspot mutations in exons 
3 and 4 and in NRAS were found to also predict for lack of 
benefit from EGFR therapies, refining the population of 
patients for these agents (14). Clinical data suggest that the 
use of EGFR inhibitors in patients with RAS mutant tumors 

may be associated with harm and shorter survival (14)  
and it has been speculated that this may be due to the 
inhibition of wild-type RAS within these tumors (15). The 
prognostic value of RAS mutations is more controversial, 
but increasing data associate RAS activating mutations in 
CRC with shorter survival and increased risk of recurrence 
after resection of metastases (16-18).

 

BRAF

BRAF  encodes a serine/threonine protein directly 
downstream from RAS in the canonical mitogen-activated 
protein kinase (MAPK) pathway and mutations in this 
gene occur in up to 12% of mCRC patients (19). The 
majority of these consist of a substitution of glutamic 
acid for valine at the V600 hotspot in exon 15. The 
resultant V600E BRAF mutant is constitutively activated 
and can signal independent of RAS activation (20). The 
clinical validation of this biomarker contrasts with that 
of RAS, as BRAF V600E was demonstrated early on to 
be a strong negative prognostic biomarker in mCRC and 
later was appreciated as a negative predictive marker for 
EGFR inhibitor treatment. BRAF V600E mutation is 
associated with shorter overall survival, estimated around 
14 months (21,22). This survival interval is similar to what 
was seen before modern combination chemotherapies, 
suggesting limited activity of second line treatment in 
this subgroup. BRAF V600E is associated with the poor 
prognostic features of T4 primary tumors, poor tumor 
differentiation, and peritoneal carcinomatosis (23-25).  
Whether the presence of this mutation should alter first line 
treatment remains controversial, but molecular subgroup 
analysis of the TRIBE trial suggests that for fit patients the 
combination FOLFOXIRI-bevacizumab can achieve better 
overall survival compared to FOLFIRI-bevacizumab (16).

In contrast to the strong prognostic effect of BRAF 
V600E, the predictive effect of BRAF V600E on EGFR 
inhibitor response has been less clear, likely due to the poor 
prognosis of this subgroup overall and a more subtle effect 
compared to RAS mutation; EGFR inhibitor treatment 
does not appear to cause harm in BRAF V600E mCRC, 
presumably due to the low levels of activated wild-type RAS 
in these tumors where high extracellular signal-regulated 
kinase (ERK) activation feedback suppresses upstream 
signaling. Three systematic reviews have evaluated BRAF 
V600E as a predictive marker for response to anti-EGFR 
therapy and all have found no significant benefit for 
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EGFR inhibition in BRAF V600E mCRC (26-28). SWOG 
1406 which tested irinotecan-cetuximab combination as 
a control arm in the second or third line setting in BRAF 
V600E mCRC found a response rate of 4% and median 
progression-free survival of 2 months to this combination, 
further supporting limited activity of cetuximab in this 
population (29). The National Comprehensive Cancer 
Network (NCCN) guidelines recognize that BRAF V600E 
mutation makes response to panitumumab or cetuximab 
highly unlikely (30).

 It has recently become appreciated that not all BRAF 
mutants act the same (31). Two groups of non-V600 BRAF 
mutants have been described (32). The first group acts 
as constitutively activated proteins that signal as dimers, 
independent of RAS, and the second group consists of 
hypoactive BRAF mutants that bind more tightly than 
wild-type BRAF to RAS and exhibit enhanced binding 
and activation of wild-type CRAF to amplify upstream 
signaling. Hypoactive BRAF mutants have been associated 
with improved survival and increased sensitivity to EGFR 
inhibitors (32-34). 

Differences in genomics between right and left primary 
tumors 

The different ontogenesis of right- and left-sided colorectal 
tumors suggests biological differences within CRC, but 
it was not until recently that this variable started to be 
analyzed thoroughly in the metastatic setting. The two 
major clinical implications of primary tumor laterality are 
that right-sided tumors have a worse prognosis (35,36) 
and are insensitive to anti-EGFR therapy (37-39). The 
difference in prognosis appears to be driven by a higher 
rate of mitogenic mutations in right-sided tumors, with 
an increased frequency of RAS, PI3K, and TGFβ pathway 
alterations. Among microsatellite stable mCRC, 80% 
of tumors with a right-sided primary harbor a hotspot 
RAS mutation or BRAF V600E compared to 46% of left-
sided primary tumors. Left-sided tumors often have no 
discernable mitogenic genomic driver, and growth factor 
ligand expression is higher in left colon primaries (40). 
Specifically, left-sided tumors express higher levels of 
amphiregulin and epiregulin, which are associated with 
increased sensitivity to EGFR antibodies (41). Microsatellite 
instability-high CRC, while rare in metastatic disease, 
occurs much more commonly in the right colon. All mCRC 
cases should be evaluated for microsatellite instability as 

immune checkpoint inhibitors are associated with high 
response rates in this population (42,43). 

Genomic markers for targeted therapies in 
clinical trials

BRAF V600E

BRAF V600E is the most prevalent potentially targetable 
alteration in mCRC. RAF inhibitors are FDA approved for 
the treatment of BRAF V600 mutant melanoma, non-small 
cell lung cancer (NSCLC), and Erdheim-Chester disease 
(44,45). While RAF inhibitors have a high response rate in 
these diseases, these drugs have limited efficacy in BRAF 
V600E CRC as single agents (46). It is thought that high 
levels of basal receptor tyrosine kinase (RTK) signaling, 
particularly EGFR, in CRC underlie rapid adaptive 
resistance because ERK inhibition releases these receptors 
from negative feedback suppression (47,48). Receptor 
reactivation causes a rebound in ERK phosphorylation 
both by reactivating ERK signaling and by recruiting RAS 
which forms RAF dimers, which are insensitive to current 
RAF inhibitors (as these drugs selectively inhibit RAF 
monomers). Based on this understanding, clinical trials have 
tested combination therapies of RAF and EGFR inhibitors 
with modest response rates of 10–25% (29,44,49-52)  
(Table 1). Adding a mitogen-activated protein kinase  
(MEK) inhibitor to RAF and EGFR inhibitors leads to 
more profound inhibition of ERK signaling and improved 
response rates (53). The ongoing phase 3 BEACON trial 
will evaluate whether doublet or triplet targeted therapy 
extends survival compared to standard therapy containing 
irinotecan and cetuximab for patients with BRAF V600E 
mCRC. Early results from the safety lead-in (n=29) for 
the triplet combination of the RAF inhibitor encorafenib, 
MEK inhibitor binimetinib, and cetuximab showed an 
overall response rate of 48% in patients with BRAF V600E  
mCRC (54).

While combination therapy has increased response 
rates in mCRC, most patients progress within a few 
months of starting targeted therapy. Reactivation of ERK 
signaling, rather than alterations in parallel signaling 
pathways, appears to underlie resistance in patient 
tumors (59,60). ERK inhibitors and novel RAF inhibitors 
that inhibit mutant monomers and dimers have been 
proposed as new agents that may be able to overcome 
resistance (59,60).
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HER2 amplification 

Amplification of ERBB2 (also called HER2) occurs in 2% to 
6% of mCRC and is associated with insensitivity to EGFR 
antibody treatment (61-63). Targeting this RTK with 
the anti-HER2 antibody trastuzumab is one of the major 
successes in the treatment of breast cancer and since then 
further anti-HER2 drugs have demonstrated benefit in this 
disease. Treatment of colon cancer xenografts with HER2 
amplification indicated that trastuzumab and lapatinib, a 
small molecular inhibitor of EGFR/HER2 did not cause 
tumor regression as monotherapy, but the combination 
demonstrated tumor shrinkage (64). This combination was 
studied in the phase 2 HERACLES study in 27 patients 
with HER2-positive mCRC and 30% of patients achieved 
an objective response (55). Cohort B of the HERACLES 
trial, which is currently ongoing, will evaluate the activity of 
the antibody-drug conjugate TDM-1 and TDM-1 together 
with the anti-HER2 antibody pertuzumab in the second 
line setting. The multi-basket MyPathway study included 
a HER2 amplified mCRC cohort treated with trastuzumab 
plus pertuzumab of 37 patients and found a response rate 
of 38% (56). The clinical significance of HER2 mutations 
in mCRC has been less studied, and HER2 mutations are 
more commonly concurrent with RAS mutations in mCRC 

than is HER2 amplification. In two CRC patient-derived 
xenografts (PDXs) with HER2 mutations, treatment with 
trastuzumab plus the pan-HER inhibitor neratinib or 
lapatinib produced tumor regression (65). There is initial 
evidence of efficacy in HER2-mutated NSCLC and breast 
cancer patients treated with targeted therapy (66,67), but if 
these results will be replicated in mCRC remains to be seen.

NTRK fusions

The NTRK family of kinases includes three genes, NTRK1, 
NTRK2, and NTRK3, which encode three transmembrane 
receptors—TRKA, TRKB, and TRKC, respectively. Fusions 
involving the NTRK genes have been identified, at low 
frequencies, across various tumor types including CRC and 
involve numerous partners (68). Selective NTRK inhibitors, 
such as larotrectinib and entrectinib, have been associated 
with high response rates in tumors with these fusions (57), 
including responses seen in mCRC patients (69). 

ALK, ROS, and RET fusions

Recurrent gene fusions involving ALK and ROS have 
been described primarily in NSCLC, but infrequently are 
present in other tumors types, including CRC (70,71). 

Table 1 Clinical trial efficacy data for targetable genomic alterations in mCRC

Alteration Therapy
Number of 

patients
ORR (%)

Median PFS 
(months)

Reference

BRAF V600E V 21 5 2.1 (46)

V + P 15 13 3.2 (49)

V + I + C 54 16 4.4 (29)

D + T 43 12 3.5 (50)

D + T + P 83 18 NR (53)

E + C 50 22 4.2 (52)

E + C + A 52 27 5.4 (52)

E + B + C 29 48 8.0 (54)

HER2 amplification Tras + Lap 27 30 5 (55)

Tras + Pert 34 38 NR (56)

NTRK fusion Laro 4 50 NA (57)

ALK fusion Ceritinib 1 NA NA (58)

V, vemurafenib; I, irinotecan; C, cetuximab; D, dabrafenib; T, trametinib; P, panitumumab; E, encorafenib; A, alpelisib; B, binimetinib; Tras, 
trastuzumab; Lap, lapatinib; Pert, pertuzumab; Laro, larotrectinib; NR, not reached; NA, not applicable; ORR, objective response rate; 
PFS, progression-free survival; mCRC, metastatic colorectal cancer.
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Targeted therapies against ALK or ROS kinase, including 
crizotinib, ceritinib, and alectinib, are FDA-approved for 
NSCLC with these alterations. In CRC, these fusions are 
present in 0.2% to 2.4% of patients (72,73). An analysis 
by Foundation Medicine of 3,117 advanced CRC cases 
genotyped with their NGS panel identified 6 cases (0.2%) 
with ALK fusions. One of these patients was treated with 
ceritinib and achieved a partial response lasting 9 months, 
until the tumor acquired a KRAS mutation (58).

RET kinase fusions are frequent in papillary thyroid 
cancer and have been described rarely also in lung 
adenocarcinoma and chronic myelomonocytic leukemia. 
In the Foundation Medicine series of 3,117 advanced CRC 
cases, RET fusions were present in 6 cases (0.2%). None 
of these patients had another driver mutation, and one 
of them was treated with regorafenib, which has activity 
against RET kinase. This patient had clinical and CEA 
tumor marker responses, but unfortunately no further 
follow-up was available as the patient died of unrelated 
causes shortly thereafter (74). In RET-rearranged lung 
adenocarcinoma drugs such as cabozantinib and lenvatinib 
have demonstrated initial activity (75,76), but in RET-
rearranged mCRC these multikinase inhibitors have not 
been studied.

Designing rational trials

As noted above, currently targetable genomic alterations in 
mCRC are found in only a minority of cases and it has been 
difficult to bring targeted therapy for matched genomic 
alterations in mCRC to the clinic. Here we discuss some 
of the challenges and lessons learned in the delivery of 
precision medicine for mCRC. 

Both genomic alteration and tissue histology influence 
response to targeted therapy

Where the same genomic alteration has been identified 
in mCRC and other tumor types, differing responses 
have been seen in mCRC compared to other tumor types. 
This is most dramatic for V600E BRAF where the BRAF 
inhibitors vemurafenib or dabrafenib are associated with a 
response rate of over 50% in melanoma and less than 10% 
in mCRC and combined RAF and MEK inhibitors, for 
example dabrafenib plus trametinib, achieves responses of 
about 70% in melanoma and 12% in mCRC (50,77). Also 
HER2 amplified mCRC appears relatively insensitive to 
single agent trastuzumab and dual HER2 inhibitor therapy 

is needed for responses, while trastuzumab alone is effective 
in treatment of HER2 amplified breast and gastric cancers 
(78,79). These differences have been attributed to the high 
RTK environment of the colorectum, where the activity 
of the targeted therapy is attenuated by release of negative 
feedback loops, reactivation of receptors, and a rebound in 
pathway signaling. Thus combination therapy is required 
to effectively inhibit pathway signaling and achieve clinical 
benefit. For example, in BRAF V600E mCRC, analysis of 
phosphorylated ERK expression levels before treatment 
exposure and after 14 days of treatment in paired tumor 
biopsies showed greater ERK inhibition with the triplet of 
RAF, MEK, and EGFR inhibition (dabrafenib, trametinib, 
and panitumumab) compared to baseline or to RAF and 
EGFR inhibition alone (dabrafenib and panitumumab), 
mirroring the improved response rate for the triplet, but 
the degree of ERK inhibition achieved with the triplet (60%) 
remained less than that seen for RAF inhibition (dabrafenib) 
in melanoma (84%) (53), providing a mechanistic 
explanation for the difference in activity between these 
tumor types. These data suggest that the activated oncogene 
(e.g., V600E BRAF or amplified HER2) remains a driver 
in CRC, but combination strategies that effectively inhibit 
the signaling network in mCRC must be devised to achieve 
greater clinical benefit.

Resistance is dynamic and often involves subclonal 
populations

The most common mechanism of acquired resistance to 
EGFR inhibitors in mCRC patients is the emergence 
of KRAS hotspot mutations (80-82). These mutants are 
thought to emerge from selection of a minor, pre-existing 
clone (83). Analysis of cfDNA in patients with progression 
through EGFR inhibitors indicates that the prevalence of 
these KRAS mutations in cfDNA is lower than that seen 
in patients with baseline KRAS mutant mCRC and the 
percent mutant reads decreases with time from last EGFR 
inhibitor exposure (82). These data suggest that resistance 
results from selection of subclonal populations and is 
dynamic based on exposure to the selective pressure. In 
patients with BRAF V600E mCRC progressing through 
targeted therapies, serial studies of cfDNA identified the 
emergence of more than one RAS mutation in 25% of 
patients (53), consistent with multiple, subclonal, resistant 
populations. In a patient at Memorial Sloan Kettering 
Cancer Center with BRAF V600E mCRC treated with 
vemurafenib/panitumumab who developed resistance 
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with a newly detected NRAS Q61K mutation (60), the 
resistance alteration became undetectable off treatment, but 
reemerged after 8 weeks of rechallenge with vemurafenib 
and panitumumab (Figure 1). These data suggest clinical 
trials with intermittent schedules may be able to forestall 
resistance (84). 

Adaptive trial design with real-time monitoring of tumor 
subpopulations

The initial experience with targeted therapy in mCRC 
recommends a future of drug development with real-
time pharmacodynamic markers and with tracking of 
sensitive and resistant tumor populations, for example 
with circulating tumor DNA (ctDNA) analysis. The 
best treatment regimens will need to profoundly inhibit 
the target while minimizing toxicity, perhaps by taking 
advantage of real-time cfDNA analysis guiding intermittent 

dosing schedules. As RTK signaling plays a key role in 
relative resistance in the colorectum, future adaptive 
designs may further refine patient subpopulations by testing 
personalized combination regimens aimed at inhibiting the 
activated oncogene and the dominant reactivated receptor.

Conclusions

CRC results from successive genomic and epigenetic 
alterations, but it has not been straightforward to realize the 
promise of targeted therapies in mCRC. Often it has not been 
sufficient to directly inhibit the target, but rather addressing 
the signaling network that feeds into the target is required. At 
this time, negative predictive markers for response to EGFR 
targeted therapies and the positive predictive marker of 
microsatellite instability for response to immune checkpoint 
blockade are part of standard care. Emerging data support a 
developing role for targeted therapies in mCRC with HER2 

Figure 1 Rechallenge with RAF and EGFR inhibitors in a patient with V600E BRAF colon cancer. (Upper panel) Treatment history 
showing timing and duration of targeted therapy. (Bottom panel) BRAF and NRAS variant allele fractions  in tissue samples (left) collected 
prior to all treatment and at the time of progression on vemurafenib/panitumumab and in serial plasma samples (right) collected every  
4 weeks during a rechallenge with vemurafenib and panitumumab. In the absence of the selective pressure of vemurafenib/panitumumab 
treatment, the resistant NRAS Q61K becomes undetected in plasma, but with restarting treatment, the resistance alteration rapidly 
reemerges. The detection of the resistance NRAS Q61K mutation in plasma coincides with a plateau in suppression of BRAF V600E 
ctDNA. vem, vemurafenib; p-mab, panitumumab; bev, bevacizumab; T, trametinib.
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amplification, NTRK rearrangements, or BRAF V600E 
mutations. Real-time pharmacodynamic and cfDNA analysis 
will allow further refining and optimizing targeted therapy 
approaches for mCRC.
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