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Abstract: Childhood obstructive sleep apnea syndrome (OSAS) is characterized by anatomical and 
functional upper airway abnormalities as pathophysiological determinants, and clinical symptoms are 
frequently clear. OSAS is widely described in rare genetic disorders, such as achondroplasia, Down syndrome, 
Prader-Willi syndrome, Pierre Robin sequence, and mucopolysaccharidosis. Craniofacial and upper airway 
involvement is frequently morbid conditions. In children with genetic diseases, the clinical symptoms of 
OSAS are often slight or absent, and related morbidities are usually more severe and can be observed at any 
age. The present review is aimed to updating the discoveries regarding OSAS on Achondroplasia, Down 
syndrome, Prader-Willi syndrome, Pierre Robin sequence, Sickle cell disease, or encountered in our clinical 
practice (Ehlers-Danlos syndrome, Ellis-van Creveld syndrome, Noonan syndrome). Two additional groups 
of genetic disorders will be focused (mucopolysaccharidoses and osteogenesis imperfecta). The flowing items 
are covered for each disease: (I) what is the pathophysiology of OSAS? (II) What is the incidence/prevalence 
of OSAS? (III) What result from the management and prognosis? (IV) What are the recommendations? 
Considering the worries of OSAS, such as inattention and behavioural problems, daytime sleepiness, failure 
to thrive, cardiological and metabolic complications, the benefit of a widespread screening and the treatment 
in children with genetic diseases is undoubtful. The goals of the further efforts can be the inclusion of 
various genetic diseases into guidelines for the screening of OSAS, updating the shreds of evidence based on 
the research progression.
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Introduction

Obstructive sleep apnea (OSA) is the consequence of a 
partial or complete intermittent cessation of airflow and 
bring on recurrent oxygen desaturations during sleep (1).  
The severity of OSA depends, in large part, from the 
patency of the high airway (2). In children, the major 

contributor to high airway obstruction is hyperplasia of 
pharyngeal tonsils and adenoids; craniofacial disharmony is 
also largely associated (3). Most studies showed a prevalence 
of sleep-disordered breathing (SDB) between 1% and 4% 
in children (4).

Polysomnography (PSG) is suggested for children 
with snoring and symptoms/signs of obstructive sleep 
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apnea syndrome (OSAS) (5). If PSG is not available, 
alternative diagnostic tests (polygraph, pulsossimetry) (6), 
or referral to a specialized centre for evaluation, ought to be  
considered (7). The apnoea-hypopnoea index (AHI) is the 
sum of apneas (obstructive—OA and central apneas—CA) 
plus hypopneas per hour of sleep (episodes/hr). Obstructive 
AHI (oAHI) is the sum of OA plus hypopneas per hour 
of sleep (n./hr). Children with an AHI of >5 episodes/hr,  
those with an AHI of 1–5 episodes/hr, and morbidity or 
factors predicting OSA persistence, and children with 
complex conditions (genetic syndromes affecting the high-
airways morphology) require appropriate management (8), 
ranging from treatment that alters underlying conditions 
contributing to OSAS (weight loss, anti-inflammatory 
treatment, myofunctional therapy) to orthodontic treatment 
(rapid maxillary expansion—RME), upper airway surgery 
(i.e., adenotonsillectomy—A&T, mandibular distraction 
osteogenesis), nasal continuous positive airway pressure 
(CPAP) or nasal noninvasive positive pressure ventilation 
(NPPV), depending upon the severity of the condition (9).

The present review is aimed to update the recent 
findings regarding OSAS in pediatric genetic diseases, 
recommended on research journals and international 
guidelines (achondroplasia—ACH, Down syndrome—DS, 
Prader-Willi syndrome—PWS, Pierre Robin sequence—
PRS, Sickle cell disease—SSD) (10,11) or encountered in 

our clinical practice (Ehlers-Danlos syndrome—EDS, Ellis-
van Creveld syndrome—EVC, Noonan syndrome—NS) 
(Table 1). Two additional groups of genetic disorders will be 
focused (mucopolysaccharidoses—MPS and osteogenesis 
imperfecta—OI). The flowing items are covered on these 
genetic diseases: (I) what is the pathophysiology of SDB? (II) 
What is the incidence/prevalence of SDB? (III) What is the 
outcome of the management and prognosis? (IV) What are 
the recommendations? 

What is the pathophysiology of OSAS in genetic 
syndromes?

Achondroplasia

ACH is a disorder of bone growth that involves the changing 
of cartilage to bone (particularly of the long bones of the 
arms and legs). ACH is characterized by an increased risk of 
SDB (22-25). These patients have macrocephaly and facial 
hypoplasia, dysplasia of the skull base and foramen magnum 
stenosis with cervical spinal cord compression (12), pectus 
excavatum, thoracic kyphosis and lumbar lordosis (22).  
Craniofacial/airway morphology is characterized by upper 
airway stenosis, retruded position of the chin, and increased 
mandibular plane angle, and increased lower facial  
height (26). Enlarged tonsils and adenoids play a role in 

Table 1 Genetic syndromes and pathophysiology of obstructive apnea syndrome in children 

Name MIM
Phenotype-gene 

relationships
Summary of the pathophysiology of OSAS Ref.

Achondroplasia (ACH) 100800 4p16.3 Facial hypoplasia, retruded position of the chin, 
enlarged tonsils and adenoids 

(12,13)

Down syndrome (DS) 190685 21q22.3 obesity, midfacial hypoplasia, an abnormally small 
upper airway, enlargement of the lingual tonsils, 
glossoptosis, or macroglossia

(14,15)

Prader-Willi syndrome (PWS) 176270 15q11.2 hypotonia and/or facial dysmorphic features (16)

Ehlers-Danlos syndrome (EDS) 130000 9q34.3 cartilaginous defects, including nasal-maxillary 
cartilages

(17)

Pierre Robin sequence/complex 
(PRS)

261800 17q24.3-q25.1 Micrognathia and/or retrognathia, glossoptosis, and 
possible cleft palate

(18)

Ellis-van Creveld syndrome 
(EVC)

225500 4p16.2 Malocclusion, hypoplasia of the anterior maxilla, 
prognathism

(19)

Sickle cell disease (SCD) 603903 11p15.4 Smaller upper airway, larger adenoid and tonsils (20)

Noonan syndrome (NS) 163950 12q24.13 Facial deformities, maxillomandibular discrepancy, 
larger adenoid 

(21)

MIM, Mendelian Inheritance in Man; OSAS, obstructive sleep apnea syndrome.
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worsening the upper airway obstruction (13). No correlation 
was found between CA and abnormal magnetic resonance 
imaging (MRI) suggesting foramen magnum stenosis (27).

Down syndrome

Patients with DS have many predisposing factors for 
developing OSAS, including midfacial hypoplasia, an 
abnormally small upper airway with superficially positioned 
tonsils and relative tonsillar and adenoidal encroachment 
and obesity (14). OSAS risks was elevated in obese DS 
children (28,29). The minimal upper airway cross-sectional 
area, measured with CT scan, was smaller in DS children 
with severe OSAS (aged 4.3±2.3 years). Children with a 
less favourable response to A&T had a smaller volume of 
regions below the tonsils, due to enlargement of the lingual 
tonsils, glossoptosis, or macroglossia (15).

Prader-Willi syndrome

PWS is a complex genetic condition that affects many parts 
of the body. In infancy, this condition is characterized by 
weak muscle tone (hypotonia), delayed development, and 
distinctive facial features such as a narrow forehead. OSA 
was the predominant sleep-related disorder in PWS, not 
associated with age or obesity (30). The weak association 
with obesity leaded to hypothesize that hypotonia and/or 
facial dysmorphism play a role in SDB (16). 

Ehler-Danlos syndrome

EDS is a group of rare inherited conditions that affect 
the connective tissue. Several major types are identified 
including classical, hypermobile, vascular, kyphoscoliotic, 
arthrochalasic and dermatosparactic. EDS has been 
suggested as a genetic model for OSA because of 
abnormalities in oral-facial growth. EDS is characterized 
by cartilaginous defects, including nasal-maxillary  
cartilages (17). Abnormal developments of cartilage, 
including those of the airways, impacts the growth and 
development of the nose and maxilla (upper jaw) and upper 
airway stability.

Pierre-Robin sequence/syndrome

PRS is characterized by the triad of micrognathia, 
glossoptosis, and upper airway obstruction. About 50% of 
PRS cases are syndromic rather than isolated. The most 

common syndromes are Stickler syndrome, Velocardiofacial 
syndrome,  and Treacher-Col l ins  syndrome (31) . 
Nasopharyngoscopy have revealed that the etiology of OSA 
is multifactorial. The upper airway obstruction is caused 
by anatomical abnormalities, mechanical collapse of the 
pharyngeal wall, and maxillary hypoplasia (32). 

Sickle cell disease

SCD and its variants are genetic disorders resulting from 
a mutated form of hemoglobin, hemoglobin S (HbS). 
Children with SCD had a smaller upper airway and 
larger adenoid and tonsils (20). High prevalences of SDB 
consistent with OSAS and typical nocturnal symptoms of 
snoring and breathing/sleep disturbances were reported 
among 243 children with a median age of 10 years (33). 
OSAS were associated with higher levels of habitual snoring 
and lower waking pulse oxygen saturation (SpO2) (33). 
Through a variety of mechanisms including nocturnal 
hypoxemia, increased oxidative stress, production of pro-
inflammatory cytokines, and endothelial dysfunction, SCD 
and SDB potentiate each other’s clinical condition and 
organ complications (34).

Mucopolysaccharidosis

MPS are a group of rare lysosomal storage diseases caused 
by the deficiency of one of ten specific lysosomal enzymes. 
Upper airway obstruction is reported in I, II, IV, VI and 
VII subtypes (35). Supraglottic manifestations are common 
due to cranial and spinal abnormalities (e.g., flattened 
nasal bridge, short neck, high epiglottis, mandibular 
abnormalities) and glycosaminoglycans deposition in 
the mouth, nose and throat (36-38). Most MPS patients 
have high airway obstruction from adenotonsillar  
hypertrophy (39). 

Osteogenesis imperfecta

OI, also known as brittle bone disease, is a group of genetic 
connective tissue disorders that affect the bones (40). The 
major clinical manifestation of OI is skeletal fragility, 
but skeletal deformity, joint laxity, and scoliosis may also 
be present (41). Extraskeletal manifestations include 
dentinogenesis imperfecta and cranial malformations 
(Figure 1) such as macrocephaly, hydrocephalus and basilar 
invagination (42). Malocclusions become more predominant 
with increasing age. The OI patients have retarded 
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vertical dimensions, a flattened cranial base angle, relative 
prognathism, larger facial divergence, and more forward 
counterclockwise mandibular growth (43). Studies showed 
OSA in OI children and adults secondary to laryngomalacia 
or redundant supraglottic or epiglottic mucosa (44). A 
paradoxical inspiratory inward motion of the pulmonary 
rib cage, thoracoabdominal asynchronies and rib cage 
distortions characterized the OI type III patients in a supine 
position (45). 

Ellis-van Creveld syndrome

EVC is a chondral and ectodermal dysplasia characterized 
by short ribs, polydactyly, growth retardation and 
heart defects. The oral manifestation spectrum is wide  
(Figure 2), including malocclusion (46). The literature 
describes hypoplasia of the anterior maxilla, prognathism of 
the mandible and the increased height of the lower third of 
the face (19). In EVC children, the prognosis is associated 
with respiratory difficulties in the first months of life (46).

Noonan syndrome

NS is a genetically transmitted autosomal dominant 
disorder characterized by distinctive facial deformities, short 
stature, chest deformity and congenital heart disease (47).  
The main facial features are hypertelorism with down-
slanting palpebral fissures, ptosis, and low-set posteriorly 
rotated ears with a thickened helix. Additional features are 
possible, such as a webbed neck and chest deformity (47-49).

Summary remarks

Pathophysiology of SDB in children affected by genetic 
diseases is addressed but not limited to increased dimensions 
of linfatic tissues in the neck and facial characteristics 
predisposing to reduced patency of the high airways. 
Therefore, in some diseases, muscle hypotonia, connective 
tissue pathology and morbid fatness take a significant role. 

What is the incidence/prevalence of OSAS in 
genetic syndromes?

Achondroplasia

A review of the medical records of 46 ACH children (mean 
age, 3.9 years; range, 3 months–14 years) showed that 54% 
had OSA (22). Sleep investigations were abnormal in 28/30 
(93%) of children with ACH (median age 3.0 years, range: 
0.4–17.1) of which 37% had an AHI ≥1 event/hr and 87% 
had AHI ≥5 events/hr (moderate-severe). The desaturation 
index (ODI ≥3%) was >5 events/hr in 73% of patients (50). 
A review of the clinical charts of 43 children (mean age 
3.9±3.5 years) showed that 59% had OSA (51).

Down syndrome

OSAS is recognized as a consistent problem in DS 
children. In DS infants ≤6 months of age (n=177) the 
overall prevalence of OSA was 31% (52). In a review of 
50 years of research studies, the prevalence rate of OSAS 
ranged between 24% and 59% (53). Among 32 of 8-year-
old children, 66% had an AHI >5 events/hr and 59% 
had oAHI >5 events/hr which showed a moderate-severe  
OSAS (54). Among 44 children (mean age 3.6, min  

Figure 1 MRI of a female child with osteogenesis imperfecta. The 
imaging shows moderate adenoid hyperplasia. MRI, magnetic 
resonance imaging.

Figure 2 Orthopantomography in a child with EVC syndrome. 
The image shows turbinate hypertrophy, absence and malposition 
of teethes. EVC, Ellis-van Creveld.



Annals of Translational Medicine, Vol 6, No 17 September 2018 Page 5 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2018;6(17):343atm.amegroups.com

0.1–max 10 years) OSAS was present in 61% (55). Maris  
et al. diagnosed OSA in 57.1% of 54 children aged 7.5  
(5 .4–11.6)  years  (56) .  87% of  23 chi ldren,  aged  
8–19 years, had OSAS (57). Basil et al. found that 74% of 
177 children (age range: 2.1–19.1 years) had OSAS and the 
obese individuals had moderate-severe SDB (28). Among 
57 children, with a mean age of 6.2±5.9 years, mean AHI 
was 14±16 events/hr. 80% patients had OSA with an  
AHI >1 event/hr and 39% had AHI ≥10 events/hr (severe) (58).

Prader-Willi syndrome

A systematic review of the literature (40 studies) showed 
a high prevalence of OSA in PWS (79.9%; n=179/224), 
of which 53.1% had mild OSA, 22.4% moderate OSA, 
and 24.6% severe OSA (59). OSA was diagnosed in 13/14 
patients (92.9%; age range, 8 months–17 years) (30). 
Central sleep apnea (CSA) was prevalent in infants with 
PWS but improved with age. Some infants had persistent 
CSA and others were at risk of developing OSA (60).

Ehler-Danlos syndrome

In EDS adulthood, OSA is a common condition. The affecting 
prevalence was 32% vs. 6% of healthy controls. OSA severity 
was associated with daytime sleepiness and lower quality of  
life (61). OSA is prevalent in 24 school-aged children with 
EDS (42%) (62). A retrospective review of medical records 
and PSG tests in 65 children with EDS <18-year-old showed a 
high prevalence of sleep disorders, including OSA (26%) (63).

Pierre-Robin sequence/syndrome

Infants with PRS commonly have SDB, including OSA 
and central sleep breathing (CSA). OSA was identified in 
11 of 13 (85%) infants (64). Forty-five infants received 
pre-operative PSG and 80% demonstrated severe sleep 
apnea (AHI ≥10 events/hr), 69% showed severe OSA  
( O a h i  ≥ 1 0  e v e n t s / h r ) ,  a n d  5 6 %  s h o w e d  C A s  
(CAI ≥1 event/hr) (65) A retrospective chart review confirms 
a high prevalence of OSA in infants (aged 0.8±0.3 years).  
Twenty-two out of 46 (47%) had evidence of OSA (32).

Sickle cell disease

SCD imparts an increased risk for OSA in childhood. The 
prevalence of OSAS in children with SCD is higher than 
in the general pediatric population. OSA was diagnosed 

in 38/55 (69%) children (66). PSG showed that 19.4%  
(7 of 36) of children with SCD had OSAS (20). It was also 
present in 41% or 10% children at cut-points of AHI ≥1  
or ≥5 events/hr, respectively (33).

Mucopolysaccharidosis

SDB occurs in >80% of MPS patients (35). The incidence 
of SDB among 61 MPS I (44 Hurler, 17 attenuated) patients 
(median age of 6.8 years) between 6 months to 16 years post-
treatment (following A&T, laryngeal microsurgery or CPAP) 
was 68%, while 13% (4/30) patients had evidence of severe 
OSAS (67). Median AHI was 6.4 events/hr in 30 patients with 
MPS type II (Hunter syndrome) at the median age of 9 years, 
with OSA observed in 27/30 subjects (68). The prevalence of 
OSAS in patients with MPS types I, II, and VI was 69.8% (54 
patients with MPS subtype I, n=17; II, n=16; and VI; n=12) (69).  
Forty patients out of 42 tested with PSG (MPS III, IV, VI 
subtypes) had OSA (95%). There was no significant difference 
between MPS subtypes according to tonsil grade, adenoid 
grade, rate of otitis media with effusion and OSAS severity (39).

Osteogenesis imperfecta

In adulthood with OI, sleep disturbances appeared to be 
common, but remain frequently undiagnosed (70). Mild 
sleep respiratory disturbance was reported in most cases 
of OI, while in a minority, were observed significant 
desaturations during sleep (71). Clinical charts of 188 
patients referred to genetic skeletal disorders reference 
center for OI showed that among the 15 patients (8%) that 
performed a PSG, 12 patients (6.4%) had SDB (72). 

Ellis-van Creveld syndrome

Data from the literature are missing regarding SDB in these 
patients. Mild respiratory disturbance in one (5.6-year-old) 
out of two EVC patients, due to hypopnea, was observed 
with contextually an increased ODI. 

Noonan syndrome

Data on incidence and prevalence of OSAS (Figure 3) in NS 
are unavailable. 

Summary remarks

A body of the literature showed that OSAS is well 
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recognized in children with ACH, DS, PWS, EDS, PRS 
and MPS suggesting that it is a dominant characteristic 
in these syndromes. In SCD the prevalence of OSAS is 
recognized high and requires clinical consideration in its 
management. In children with EVC syndrome, NS and OI, 
data in the literature are insufficient. 

What result from management and prognosis in 
genetic syndromes?

Achondroplasia

Adenotonsillectomy (A&T) was effective in improve sleep 
respiratory disturbances in the long term (73). Children 
who underwent A&T, coupled with turbinectomy, were 
older (mean age 7.5±3.5 years old) and had improved PSG 
results than those who underwent only adeno-turbinectomy 

(3.5±1.7 years old, P=0.015) (51). The persistence of 
significant OSA after A&T is due to the reduced base of 
the skull and hypoplasia of the middle third of the face (50). 
Sleep respiratory disturbances correlated negatively with 
the relative nasopharynx plus oropharynx space measured at 
MRI (Figure 4). The smaller the relative nasopharynx plus 
oropharynx space, the higher the number of OAs during 
sleep. It was recently observed that starting orthodontic 
treatment (RME), as soon as OSAS symptoms appear, may 
be a valuable approach that increased treatment efficacy (74). 
ACH children with OSAS, who do not benefit from A&T, 
should be treated with nasal CPAP therapy (75).

Down syndrome

DS children are more susceptible to the additional 

Figure 3 Sleep apneas assessed by cardio-respiratory polygraphy in a case of Noonan syndrome. The figure shows snoring (green line), 
obstructive apneas (green and blue bands), and desaturations (red bands). 

00:11:41 00:12:00 00:12:30 00:13:00 00:13:30 00:14:00 00:14:30
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negative impact of sleep respiratory disturbance since they 
have frequent pre-existing medical and neurocognitive 
disabilities. OSAS has been associated with cardiovascular 
complication (i .e. ,  pulmonary hypertension) (14). 
Monotherapy was insufficient (76). In a cohort study 
including 41 males and 34 females (age of 5.1±3.6 years), 
tonsillectomy resulted in significant improvements in 
multiple sleep respiratory parameters (77). Tonsillectomy 
resolved 30–50% of OSA (53). Thirty-four children (median 
age, 4.0 years; range, 2.7–5.8 years), showed a significant 
improvement of AHI from 11.4 (range, 6.5–22.7) events/hr 
to 3.6 (range, 2.1–9.5) events/hr after A&T, with a parallel 
increase of the minimum SpO2 (78). Therefore, after A&T, 
69% (of 33 children; aged 4.3±2.3 years) had persistent OSA 
(oAHI >2 events/hr). A greater than 50% decrease in oAHI 
was observed in 79% of patients, associated to a higher air 
volume of the regions below the tonsils (15).

Prader-Willi syndrome

A systematic review showed that A&T was effective in 

reducing OSA for some PWS children, but alternative 
treatments may be considered, given the only moderate 
response rate (59). OAHI decreased after A&T in  
22 children, but a significant number had persistent  
OSA (79). Velopharyngeal dysfunctions (VPD) may occur 
after A&T (80). Oxygen therapy resulted in a significant 
decrease in the median CAI (81).

Ehler-Danlos syndrome

Recommendation for EDS has lacked so far. Management 
is helpful for all diseases involving connective tissue (82). 

Pierre-Robin sequence/syndrome

Children with PRS, who needed respiratory support early after 
birth, were at risk of continuing or re-developing OSA after 
the age of 1 year. Between the age of 1 and 18 years, almost one 
out of four children with PRS had respiratory problems (83).  
International guidelines recommended the surgical 
management of children with PRS who failed conservative 
therapy (65). Among 9 patients who underwent mandibular 
distraction osteogenesis, with pre- and post-operative PSGs, 
significant reductions in AHI and CAI was reported (65). 
Mandibular distraction osteogenesis was the most common 
primary procedure, followed by tongue-lip adhesion, and 
tracheostomy (84). A meta-analysis of 7 studies with 90 patients 
showed that tongue-lip adhesion and tongue repositioning can 
improve AHI and oxygenation parameters during sleep (85).

Sickle cell disease

In children (n=256) with SCD, A&T was associated 
with a reduced rate of visits over time for OSA and of 
cerebrovascular ischemia (e.g., stroke, transient ischemic 
attacks) events (86). In 13 children with SCD, a significant 
reduction in hemoglobin oxygen desaturation, decreased 
AHI, occurred after A&T (87). Among 15 children (aged 
from 2 to 18 years) with a history of SCD and OSA 
followed by A&T there was a significant reduction in mean 
(95% CI) cerebral blood flow velocities (88).

Mucopolysaccharidosis

MPS patients have airway obstruction and OSA due to 
adenotonsillar hypertrophy. MPS have a high prevalence 
of OSAS complicated by pulmonary hypertension (8). Ear, 
nose and throat surgery reduced the frequency and relieved 

Figure 4 MRI in a child with ACH. Imaging allowed the 
measurement of three-dimensional volumes of the high airways. 
MRI, magnetic resonance imaging; ACH, achondroplasia.
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the symptoms related to upper airway obstruction (89). 
Most of these children advantaged from A&T (35,39). 
Lingual tonsils hypertrophy could cause persistent OSA in 
children after A&T (90). A&T and enzyme replacement 
therapy may decrease OSAS severity (8). Interventions 
maximizing substrate reduction (enzyme replacement 
therapy) correlated with long-term SDB improvement (67). 
Hematopoietic stem cell transplantation did not offer long-
term protection against OSAS in MPS type I (91).

Osteogenesis imperfecta

Literature data on management and prognosis in OI are 
insufficient. Few OI patients were started on CPAP, with 
clinical improvement (72). 

Ellis-van Creveld syndrome

Data on management and prognosis in EVC syndrome 
are insufficient. Among OSA patients (n=17; 26%), two 
required CPAP (63). 

Noonan syndrome

Data on management and prognosis in NS are insufficient. 
Khirani et al. (92) reported a 15-month-old boy with severe 
OSAS and moderate hypertrophic cardiomyopathy. After 
adenoidectomy, PSG confirmed the recovery (92). In our 
case, clinical improvement after adenoidectomy was also 
great, but the problem was not completely resolved at 
follow-up. In many children with craniofacial disorders, soft 
tissue correction by adenoidectomy did not always remedy 
the airway obstruction (93).

Summary remarks

A&T was advised in children with ACH, DS, PWS, SCD and 
MPS with OSAS, although most of them did not resolve the 
problem, requiring further interventions. Children with PRS 
required surgical management. Data on EDS, EVC syndrome, 
NS and OI do not make comprehensive suggestions. 

What are the recommendations in genetic 
syndromes?

Achondroplasia

A&T is like an important treatment option in ACH 

children with OSAS (94). Early detections of sleep disorders 
are recommended to these children (95), including the 
use of PSG and imaging (96). Before performing A&T, 
the clinician should refer children with craniofacial 
abnormalities for PSG (11).

Down syndrome

An important role of PSG has been advocated in 
characterizing breathing abnormalities in children with 
DS (10). Formal screening tools for OSA is addressed 
to improve detection of this high-risk patients (97). The 
American Academy of Pediatrics recommended a referrals 
to a pediatric sleep laboratory for all children with DS 
by 4 years of age (98). Before performing tonsillectomy, 
the clinician should refer for PSG all DS children with  
SDB (99). In children with DS, PSG screening is 
mandatory, considering the potential overall morbidities of 
untreated OSAS (55). 

Prader-Willi syndrome

Children with PWS being or not considered for growth 
hormone (GH) replacement therapy should be assessed for 
OSA by PSG (10,59,100).

Pierre-Robin sequence/syndrome

Before performing tonsillectomy, the clinician should refer 
children with SDB for PSG if they exhibit craniofacial 
abnormalities (11). Significant OSAS is often present 
in infants with PRS, and PSG is useful in testing sleep 
breathing disorders (10). PRS should be screened for OSA 
because the incidence is high, and signs may be subtle. 
Symptoms indicative of OSA such as snoring are not always 
present (84). PRS infants often require early and long-
term upper airway management (65). Those who needed 
respiratory support at an early age looked for careful 
monitoring until adulthood (83). 

Sickle cell disease

OSAS in children with SCD was associated with high rates 
of a broad range of complications, including pneumonia 
and acute chest syndrome. Routine screenings, diagnosis, 
and increased therapeutic intervention for children with 
comorbid OSA decreased SCD morbidity (101). Before 
performing tonsillectomy, the clinician should refer SCD 
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children for PSG screening (11).

Mucopolysaccharidosis

In children with MPS, before performing tonsillectomy, the 
clinician should discuss children for PSG (11). PSG should 
be offered in all patients after diagnosis of MPS (8,35).

Osteogenesis imperfecta

OSAS in OI children should be systematically searched (72).

Summary remarks

Recommendations are well established in children with 
ACH, DS, SCD, MPS and in general in those with 
craniofacial abnormalities (PRS). In children with EDS, 
EVC, NS and OI are not stated. 

Discussion and conclusions 

American Academy of Pediatrics (AAP) published in 2002 
the clinical practice guideline of diagnosis and management 
of childhood OSAS (102). In this statement, complex 
high-risk patients (i.e., DS, SCD, genetic/metabolic/
storage diseases, craniofacial disorders) should be referred 
to a sleep specialist. Before performing A&T, other 
authors recommended for PSG all children, particularly 
if had DS, SCD, MPS and craniofacial abnormalities 
(10,11,103). Children with DS have multiple anatomic 
and physiologic conditions that predispose to OSAS 
(hypotonia, macroglossia) (104). Nocturnal hypoxemia 
is common in SCD, because of upper airway obstruction 
secondary to adenotonsillar hypertrophy (105). SDB are 
common to children with MPS because of upper airway 
narrowing caused by hypertrophy of the tongue, tonsils, 
adenoids, and mucous membranes (106). Children with 
craniofacial syndromes are at a high risk of SDB because 
of oropharyngeal and nasopharyngeal crowding and 
laryngeal abnormalities (107). Interestingly, revised clinical 
practice guideline in 2012 included but not limited to DS, 
SCD, metabolic disease and craniofacial anomalies, the 
investigation and management of OSAS (108).

Patients with a complex medical condition are by the 
time established to be at high-risk for OSAS (i.e., ACH, 
DS, PWS, SCD, MPS) including also the condition so-
called neuromuscular disorders, and genetic syndromes 
with craniofacial anomalies. These complex patients with 

OSA would require a sleep study first, followed by an 
implementation of an action plan (109). The complexity of 
these patients is clarified because isolated A&T can rarely 
cure OSAS, causing multidisciplinary approaches (110).  
Thus, other genetic pathologies, as neuromuscular 
disorders (i .e. ,  Duchenne muscular dystrophy) or 
syndromes with craniofacial dysostosis (Apert, Crouzon, 
and Pfeiffer syndromes) or other form of micrognathia 
(Treacher Collins syndrome, Nager syndrome) fallen under 
this definition (10,104), for which were addressed general 
recommendations for their management (103). 

It has been argued an “intentional vagueness” concerning 
the use of a broad category of neuromuscular disorders 
and craniofacial anomalies rather than a comprehensive 
list of diseases and syndromes, to emphasize the need for 
individualized management (11). Several genetic diseases 
are inconclusive regarding the association with sleep 
breathing pathology, and for some other conditions, the 
published studies regarded only case reports. 

Recently, the European Respiratory Society (ERS) 
task force, in line with the American Academy of 
Otolaryngology-Head and Neck Surgery, recommended 
tha t  ch i ldren  wi th  co-ex i s t ing  DS,  SCD,  MPS, 
neuromuscular disorders or craniofacial abnormalities, or 
children in whom the need for treatment is unclear, should 
have the priority in accessing PSG before A&T. These 
children should also have a PSG post A&T due to their 
increased risk of persistent OSA (8). Studies have showed 
a high prevalence of OSAS in children with ACH (midface 
hypoplasia and brainstem compression). Children with DS 
are predisposed to OSAS and hypoventilation while parents 
may not declare SDB symptoms. EDS has been associated 
with SDB. MPS represent a group of rare lysosomal storage 
diseases and the reported high prevalence of OSAS has 
been attributed to the narrowed upper airway lumen. Most 
children with PWS have OSAS, mostly of mild severity 
(8,10). These characteristics highlights the absolute need 
for systematic exploration, to avoid unwarily in attributing 
an intellectual or neurocognitive deficit to the main  
pathology (110).

A high prevalence of sleep disturbances is explained 
for some genetic conditions (Table 2). OSAS takes a 
fundamental part of the disease characteristics in ACH, 
DS, PWS and PRS and should not be considered an 
incidental complication. Among groups of genetic diseases, 
MPS is established for OSAS complication. They have 
infiltration and accumulation of macromolecules in the 
tissues around the upper airway. OSAS, compensatory 
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lymphoid hyperplasia secondary to functional hyposplenism 
and defects in immune surveillance are described in SCD. 
Reactive lymphoid hyperplasia may be from repeated 
infections. Upper airway obstruction during sleep due to 
adenotonsillar enlargement has been found in up to one-
third of children with SCD. Thus, MPS and SCD are at 

high risk for OSAS and should be considered in the overall 
management of these patients. Recent findings claimed a 
high prevalence of sleep disorders in EDS with excessive 
daytime sleepiness and impaired quality of life (61,63). 
Insufficient evidence is available regarding the role of SDB 
in children with EVC and NS. In OI patients the data are 
also insufficient but relevant if associated with high BMI, 
trunk deformations, and in the severe OI subtypes (72).  
Finally, data are insufficient in EDS and OI to make 
comprehensive conclusions. 

Several other genetic conditions suffered from OSAS. 
For example, Follmar et al. reported a prevalence of SDB 
in the 118 patients with Beckwith-Wiedemann syndrome 
(BWS) was 48% (n=57). The aetiology of SDB in these 
patients is multifactorial but may not be solely the result 
of a large tongue (111). Recently, we tested a female child 
with BWS (7-year-old) before spinal intervention for severe 
scoliosis, showing clusters of desaturations, severe AHI 
(25.1 events/hr) and ODI (13.9 events/hr) (Figure 5). The 
measure of daytime and nocturnal etCO2 was in range. The 
data on SDB in these patients are closed to recent findings.

Looking for guidelines with a comprehensive list of 
genetic diseases and syndromes at high-risk for OSAS, 
clinicians, pediatric geneticists and pediatric metabolic 

Table 2 Frequency of the SDB in children affected by various 
genetic conditions

Name
Frequency 
(%) of SDB

Ref.

Achondroplasia (ACH) 54–87 (20,50,51)

Down syndrome (DS) 24–87 (28,52,53,55-58)

Prader-Willi syndrome (PWS) 80–93 (30,59)

Ehlers-Danlos syndrome (EDS) 26–42 (62,63) 

Pierre Robin sequence/complex 
(PRS)

47–80 (32,65)

Ellis-van Creveld syndrome (EVC) Unknown –

Sickle cell disease (SCD) 41–69 (33,66)

Noonan syndrome (NS) Unknown –

SDB, sleep-disordered breathing.

Figure 5 Sleep-disordered breathing in a child with Beckwith-Wiedemann syndrome. The figure shows snoring (green vertical lines), 
obstructive apneas (blue vertical lines), desaturations (red vertical lines). The patter of obstructions and desaturations was distributed in 
clusters during sleep. 
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specialists, must be alert to signs and symptoms of SDB 
or in children affected by anatomic conditions that can 
increase the risk of SDB. Since symptoms of OSAS are 
not frequently overt, all children with genetic syndromes 
affecting connective tissue, craniofacial malformations, 
storage diseases, morbid obesity should be beheld for 
SDB screening. PSG study, included in clinical practice, 
is helpful to screen for suspected for OSAS in all children 
with genetic diseases. 

The advantage of a widespread screening and—in the 
case—of the treatment of OSAS in children with genetic 
diseases is reasonable. The associated complications of 
OSAS are inattention and behavioural problems, daytime 
sleepiness, failure to thrive, cardiological and metabolic 
involvement. The goals of the further efforts can be the 
inclusion of various genetic diseases into guidelines for the 
screening of OSAS, updating the shreds of evidence based 
on the research progression.
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