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Abstract: The article introduces how to validate regression models in the analysis of competing risks. The 
prediction accuracy of competing risks regression models can be assessed by discrimination and calibration. 
The area under receiver operating characteristic curve (AUC) or Concordance-index, and calibration plots 
have been widely used as measures of discrimination and calibration, respectively. One-time splitting method 
can be used for randomly splitting original data into training and test datasets. However, this method reduces 
sample sizes of both training and testing datasets, and the results can be different by different splitting 
processes. Thus, the cross-validation method is more appealing. For time-to-event data, model validation is 
performed at each analysis time point. In this article, we review how to perform model validation using the 
riskRegression package in R, along with plotting a nomogram for competing risks regression models using the 
regplot() package. 
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Introduction 

Model validation plays an important role in identifying the 
problem of model misspecification and overfitting. A model 
is considered to be overfitted if it has a good prediction 
accuracy in a training dataset but a poor prediction 
accuracy in a testing dataset. In such a circumstance, one 
may need to revisit the specification of the model (i.e., 
the proportionality assumption, interaction, and variable 
selection). Multi-state and competing risks are settings 
where, in addition to the main survival time endpoint, the 
cause (or type) of failure and other intermediate events 
are also observed during the follow-up time period. In the 
competing risks model, two or more causes of failures can 
act simultaneously, but only the earlier failure and its cause 
are observed. The competing risks analysis is a special case 

of the survival analysis when an individual experiences 
one of several different types of events. The occurrence of 
competing events prevents the occurrence of an event of 
interest (1), and vice versa. For example, researchers may be 
interested in cancer-specific death, but some patients may 
die of other causes irrelevant to cancer prior to death from 
cancer, yielding two competing causes of death. The event 
of interest is death from cancer, but the occurrence of death 
from other causes prevents the occurrence of death from 
cancer. 

In a standard Cox regression model, competing events 
may be regarded as non-informative censoring, that is, 
their occurrence has no impact on subsequent occurrence 
of the event of interest. In fact, this is the typical case in 
many practical data applications. In competing risks analysis 
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the main quantity of interest is typically the cumulative 
incidence function of a certain type of event in a specific 
time period [0,t], which represent the cumulative risk of 
experiencing this type of event before or at time t, given the 
presence of the remaining competing events.

In the literature there exists several regression approaches 
to modelling competing risks data, and they have the 
potential to respond to different research questions. The 
first approach, generally mentioned as “cause-specific 
hazards” approach, models the cumulative incidence via all 
the cause-specific hazards (2,3). A second approach is the 
Fine-Gray model (4), where the cumulative incidence is 
estimated via the sub-distribution hazard.

In a previous article (5), we have reviewed methods on 
how to draw nomogram for survival model in the presence 
of competing risks. In this paper, we review methods for 
validating competing risks regression models and provide 
R code for implementing model validation with a detailed 
explanation.

Working example

We illustrate how to validate competing risks regression 
models  us ing Melanoma dataset  inc luded in  the 
riskRegression package (6). The dataset contains a cohort of 
205 patients with melanoma. By the end of follow-up, there 
are 134 survivors and 71 non-survivors. The time is the days 
after operation, and status is vital status (0= censored, 1= 
death due to melanoma and 2= death due to other causes), 
where death from melanoma is an event of interest and 
death from other causes is a competing event. There are 
seven predictors measured at the start of follow-up: age, 
sex, tumor thickness (thick), ulcer, invasion, inflammatory 
cell infiltration (ici) and epicel. The first five patients can be 
viewed using the following code: 

> library(riskRegression)

> data(Melanoma)

> Melanoma[1:5,1:5]

time status event invasion ici

1 10 2 death.other.

causes

level.1 2

2 30 2 death.other.

causes

level.0 0

3 35 0 censored level.1 2

4 99 2 death.other.

causes

level.0 2

5 185 1 death.malignant.

melanoma

level.2 2

As shown in the above table, the first patient died due 
to other causes at 10 days after operation. She has level 1 
invasion and grade 2 inflammatory cell infiltration. 

> Melanoma$id<-1:nrow(Melanoma)

> set.seed(123)

> ind.split<-sample(1:nrow(Melanoma),

                  round(nrow(Melanoma)*4/5),

                  replace = F)

> dftrain<-Melanoma[ind.split,]

> dftest<-Melanoma[-ind.split,]

The above code generates a new variable id to indicate 
unique identification number for each patient. The dataset 
is randomly split into training (80%) and testing (20%) 
datasets.

Cause-specific hazard model versus Fine-Gray 
model 

In the regression analysis of competing risks data, the 
effects of covariates on the cause-specific hazard function 
or cumulative incidence function can be investigated via the 
cause-specific hazards model or Fine-Gray (subdistribution 
hazard) model, respectively. In the cause-specific hazards 
model, a hazard ratio represents the instantaneous 
relative risk of an event of interest in the presence of the 
covariate (e.g., the ratio of the hazard rates corresponding 
to the conditions described by two different levels of an 
explanatory variable, all other covariates being equal). 
However, this hazard ratio cannot be directly translated 
to the cumulative incidence function which is clinically 
relevant and may provide useful information to researchers. 
The Fine-Gray model addresses this issue and has the 
advantage that the cumulative incidence of the event of 
interest has a direct link with the estimated sub-distribution 
hazard, and thus regression coefficients quantify the direct 
effects of covariates on the cumulative incidence. However, 
the estimated sub-distribution hazard ratio from Fine-
Gray model has no direct clinical interpretation because the 
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survival times of subjects who did not experience the event 
of interest are transformed into censored times that are 
artificially extended to infinity. Moreover, the probabilistic 
relationship between the cumulative incidences of the 
different types of events and the marginal survival function 
is lost.  

Finally, for the above reason, these two models are 
recommended to be reported simultaneously in the analysis 
of competing risks (7).

> csc <- CSC(Hist(time,status)~age+thick+ulcer,

           data=dftrain)

> fgr <- FGR(Hist(time,status)~age+thick+ulcer,

           data=dftrain,cause=1)

> fgr.full<-FGR(Hist(time,status)~age+thick+ici+

                epicel+ulcer+invasion+sex,

              data=dftrain,cause=1)

The R function Hist() is similar to the Surv() function 
in the survival package, which provides functionality for 
managing censored event history response data. In the 
example, the time and status are numeric vectors used for 
specifying the observed time and vital status, respectively. 
The CSC() function is used to fit the cause-specific 
proportional hazards model, where the first vital status 
is used as a cause of interest by default. Alternatively, the 
cause argument can be used to specify a cause of interest. 
FGR() is an interface for fitting the Fine-Gray model 
and the arguments of the function are similar to that of 
the CSC() function. A full model (fgr.full) is fitted by 

using the Fine-Gray model including all seven predictors. 
Predictions based on these fitted models can be obtained 
using the following code, which provides predictions of the 
cumulative incidence functions for death from melanoma 
for the first five individuals in the test dataset over 1,000 
to 4,000 days after operation. The absolute risk of each 
individual can be obtained by using the autoplot() function. 

> pred.csc<-predict(csc, newdata = dftest[1:5,], 

                  time = 1000:4000, cause = 1)

> autoplot(pred.csc)

Figure 1 shows the cumulative incidence estimates (i.e., 
absolute risk) for death from melanoma for each of the 
five individuals. It appears that patient #4 has the highest 
melanoma mortality rate over the entire follow-up period. 
The absolute risk of each individual can be obtained by 
using the following code:

> predictRisk(csc,newdata = dftest[20,],

              times = 1500,cause = 1)

          [,1]

[1,] 0.2630985

> predictRisk(fgr,newdata = dftest[20,],

              times = 1500)

          [,1]

[1,] 0.2487804

The predict() and predictRisk() function are similar that 
both of them estimate the absolute risk at specified time 
points. The difference is that the former returns covariates 
that have been used for prediction, whereas the latter only 
reports the absolute risk. 

For patient #20, the cumulative incidence estimates by 
1,500 days for death from melanoma are 0.26 under the 
cause-specific proportional hazards model and 0.25 under 
the Fine-Gray model. The difference between estimates of 
the cumulative incidence function from a Fine-Gray model 
and from cause-specific hazards models is caused by different 
proportionality assumptions—proportional subdistribution 
hazards for the Fine-Gray model and proportional cause-
specific hazard for both Cox regression models.  

Calibration plot

A calibration plot is used to compare the predicted 
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probability with the observed probability at a certain time 
point. If a model is ideal, pairs of the observed and predicted 
probabilities lie on the 45-degree angle line, implying that 
both probabilities match well to each other. 

> library(survival)

> score<-Score(list("Cause-specific Cox"=csc,

                  "Fine-Gray"=fgr,

                  "Full"=fgr.full),

             formula = Hist(time,status)~1,

             data=dftest,times = seq(1900,4000,100),

             plots = "calibration",

             summary = "risks")

> dev.new(width=5,height=4)

> plotCalibration(score,times =  2000)

The Score() function provides a set of methods to score 
the predictive performance of risk prediction models. 
The first argument is an object or a list of objects of 
risk prediction models. In the example, all three models 
were assessed for their predictive performance. The data 
argument specifies a dataset that will be used for predictions. 
Recall that we split Melanoma data into the training and test 
datasets. The former is used to train a model, and the latter 
is used to assess model fit. The times argument specifies a 
series of horizons for prediction. The plot argument defines 

a plot to be drawn and corresponding data suitable for the 
plot are put into the results. Finally, the plotCalibration() 
function draws a calibration plot (Figure 2). The closer of 
a calibration curve of a model to the diagonal, the better 
of the model. Furthermore, the area under operating 
characteristic curve (AUC) and Brier score are shown at 
the top of Figure 2. The AUC, also known as C-index, 
is used to assess the discrimination of a model (8). If the 
AUC >0.8, it indicates that the discriminatory accuracy of 
a model is good. The Brier score measures discrimination 
and calibration at the same time (9). The Brier score for an 
event of interest at a time is defined as the expected squared 
distance between the observed status at that time and the 
predicted probability. Thus, a smaller value of Brier score 
indicates a better model. In our example, the full model has 
the smallest AUC and the largest Brier score.  

Calibration with cross validation method  

The above example split the dataset into training and test 
datasets once. This could be problematic since the test set 
we used can happen to be particularly easy (or hard) to 
predict. Thus, it is necessary to use all the data for both 
model training and validation. That is the reason why we 
use the cross-validation method (10). A commonly used 
cross-validation method is the k-fold cross-validation, which 
has been also applied to competing risks regression models 
(11,12). The original sample is randomly partitioned into 
k equal sized subsamples. Of the k subsamples, a single 
subsample is retained as the validation data for testing 
a model, and the remaining k−1 subsamples are used as 
training data. The cross-validation process is then repeated 
k times, with each of the k subsamples used exactly once 
as the validation data. The k results can then be averaged 
to produce a single estimation. The prediction accuracy 
index can be AUC or Brier score in our example. However, 
unlike the one-time splitting method, the cross validation 
will result in k models, and the next question goes to which 
one should be the best to use for prediction. The answer 
is that the purpose of cross-validation is not to come up 
with a final model, but it consists only of model checking 
for improving prediction accuracy. We do not use these k 
instances of our trained model to do any real prediction. To 
reach this scope, we want to use all available data to come 
up with the best possible model. The purpose of cross-
validation is model checking, not model building. We can 
compare model specification by using cross-validation. 
Suppose we have linear regression models with and without 
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validation is performed on the test dataset. AUC and Brier score 
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interaction, cross-validation methods can suggest which 
model is better in terms of prediction, and then we can train 
that model using all data. Note that although the covariate 
effects in the linear model can be different for each training 
iteration, the model specification is the same across these 
iterations. Alternatively, we can use cross-validation to build 
an ensemble model. 

> fgr1<- FGR(Hist(time,status)~age+thick+ulcer,

           data=Melanoma,cause=1)

> score.cv<-Score(list("Fine-Gray"=fgr1),

             formula = Hist(time,status)~1,

             data=Melanoma,times = seq(1000,4000,200),

             split.method="bootcv",

             B=10,

             plots = "calibration")

> plotCalibration(score.cv,times = 2000)

Figure 3 shows the calibration plots for Fine-Gray model 
at day 2,000. Note that the whole dataset is used in fitting 
the model.  

Bandwidth selection

A smother calibration curve can be obtained by different 
smoothing methods, which however rely on the choice of 
a bandwidth (6). The shape of a calibration curve largely 
depends on the choice of bandwidth. A large bandwidth 
may result in a smooth and flat curve (large bias but small 

variance), but a small bandwidth will result in wiggly 
curve (small bias but large variance). Thus, the choice of 
bandwidth is a trade-off between the bias and variance. The 
following code generates calibration curves with different 
bandwidths. 

> par(mfrow=c(2,2))

> plotCalibration(score,times = seq(2000,4000,500),

                bandwidth=0.8,

                auc.in.legend=F,

                brier.in.legend=F,

                legend.x=0,legend.y=1.1)

> text(x=0.2,y=0.6,"bandwidth=0.8",col=4)

> plotCalibration(score,times = seq(2000,4000,500),

                bandwidth=0.5,legend=F)

> text(x=0.2,y=0.6,"bandwidth=0.5",col=4)

> plotCalibration(score,times = seq(2000,4000,500),

                bandwidth=0.2,legend=F)

> text(x=0.2,y=0.6,"bandwidth=0.2",col=4)

> plotCalibration(score,times = seq(2000,4000,500),

                bandwidth=0.1,legend=F)

> text(x=0.2,y=0.7,"bandwidth=0.1",col=4) 

At a bandwidth of 0.8, nearly all observations are grouped 
as one risk group, thus the calibration curves are identical 
for all three models and are flat and smooth. In contrast, the 
curves with bandwidth =0.1 appear to be wiggly (Figure 4). 

Plotting AUC and Brier score over follow-up time

The above example shows the calibration and discrimination 
at a specific time point, which is not the whole picture 
for entire period under study. Researchers may also be 
interested in the prediction accuracy of a model over entire 
follow up time period. Fortunately, the Score() function 
calculates all these scores over time and users can easily 
extract the results for further graphical display. Here, we 
use ggplot2 package for drawing plots (13). 

> ggplot(data = score$AUC$score, aes(x=times,y=AUC,colour=

model))+

  geom_point()+

  geom_line()

> ggplot(data = score$Brier$score,aes(x=times,y=Brier,colour

=model))+

  geom_point()+
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Figure 3 Calibration curves obtained by using cross-validation 
method.
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  geom_line()+

  geom_ribbon(data=score$Brier$score,

              aes(ymin=lower,ymax=upper,colour=model),

              alpha=0.1,linetype=2)

The object score returned by the Score() function is a 
list containing a variety of objects. The structure of this 
list can be viewed by the str(score) syntax. The AUCs of all 
models across all times can be extracted by score$AUC$score. 
The geom_ribbon() is a layer added to the ggplot object. 
The Brier score can be plotted over time in the same way.  
Figure 5 shows the AUC for all three models. Note that the 
cause-specific hazard model has the same values to that of 
the Fine-Gray model, and their dots and lines overlap. Also 
note that the models have higher discriminatory accuracy 
at later follow-up times. Figure 6 shows the Brier score for 

Figure 4 Calibration curves vary depending on different bandwidths. At a bandwidth of 0.8, nearly all observations are grouped as one risk 
group, thus the calibration curves are identical for all three models and are flat and smooth. In contrast, the curves with bandwidth =0.1 
appear to be wiggly.
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Figure 5 The AUC for all three models. Note that the cause-
specific hazard model has the same values to that of the Fine-Gray 
model, and their dots and lines overlap. AUC, area under operating 
characteristic curve.
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all models (e.g., null, cause-specific, Fine-Gray and full 
models). 

Nomogram for visualizing regression models

The regplot() function provides tools for plotting 
nomograms with good aesthetics. However, it receives 
only objects returned by coxph, lm and glm. Thus, in order 
to draw a nomogram in the presence of competing risks, 
we need to create weighted data set for competing risks 
analyses (14), as explained in the following R code. In 
this way, the competing risk model can be fitted with the 
coxph() function and then passed to the regplot() to draw a 
nomogram.

> library(mstate)

> df.w <- crprep("time", "status",

               data=dftrain, trans=c(1,2),

               cens=0, id="id",

               keep=c("age","thick","ulcer"))

> df.w$T<- df.w$Tstop - df.w$Tstart

> f.crr<-coxph(Surv(T,status==1)~

               age+thick+ulcer,

             data=df.w,

             weight=weight.cens,

             subset=failcode==1)

> library(regplot)

> regplot(f.crr,

        observation=df.w[df.w$id==24&df.w$failcode==1,],

        failtime = c(2000, 3000), prfail = T, droplines=T) 

The above code firstly creates a weighted data set, and 
then the competing risk analysis with Fine-Gray model is 
performed with the coxph() function. Finally, the regplot() 
is employed to depict a nomogram. The patient #24 is 
illustrated in the nomogram by mapping its values to the 
covariate scales. The cumulative incidence estimates for 
death from melanoma by day 2,000 and 3,000 are 0.33 and 
0.473, respectively (Figure 7). 

> f.csc<-coxph(Surv(time,status==1)~age+thick+ulcer,

             data=dftrain)

> regplot(f.csc,observation=Melanoma[Melanoma$id==24,],

          failtime = c(2000,3000), prfail = TRUE,droplines=T)

The probability is 0.478 at time 3,000 in the cause-
specific hazard model (Figure 8), which is slightly higher 
than the estimate under Fine-Gray model. 

Discussion

This article reviewed methods for validating competing risks 
regression models. The original sample is split randomly 
into training and test datasets. However, this one-time 
splitting method reduces sample size of both model training 
and test datasets. Roecker stated that “(this method) appears 
to be a costly approach, both in terms of predictive accuracy of the 
fitted model and the precision of our estimate of the accuracy.” (15) 
Furthermore, the accuracy can be fortuitous that different 
processes may result in different estimates. The cross-
validation method is more appealing in this aspect and has 
been more widely used. It should be noted that the cross-
validation method aims to validate a model, not to build 
a model. Thus, the final model can be derived by fitting 
a model on the whole dataset after cross-validation. The 
cross-validation tells you how to specify a model (e.g., 
variable selection, transformation and interaction). The 
prediction accuracy of the fitted model can be assessed by 
discrimination and calibration. The former is represented 
by the AUC or C-index; and the latter can be assessed by 
inspecting a calibration plot. The Brier score takes into 
account the discrimination and calibration at the same 
time. Finally, nomograms can be used to visualize a trained 
model. Since the regplot() function cannot process object 
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Figure 7 Nomogram for predicting cumulative risk at 2,000 and 3,000 days with Fine-Gray model. The patient #24 is illustrated in the 
nomogram by mapping its values to the covariate scales. The probability of melanoma-caused death by day 2,000 and 3,000 are estimated to 
be 0.330 and 0.473, respectively. *, P<0.05; **, P<0.01.

Figure 8 nomogram for predicting cumulative risk at 2,000 and 3,000 days with cause-specific hazard model. The patient #24 is illustrated 
in the nomogram by mapping its values to the covariate scales. The probabilities of melanoma-caused death by day 2,000 and 3,000 are 
estimated to be 0.337 and 0.478, respectively. *, P<0.05; **, P<0.01.
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returned by FGR() function, the competing risk model have 
to be fitted by using coxph() with a weighted dataset. 
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