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Background: Errors in grammar, spelling, and usage in radiology reports are common. To automatically 
detect inappropriate insertions, deletions, and substitutions of words in radiology reports, we proposed using 
a neural sequence-to-sequence (seq2seq) model.
Methods: Head CT and chest radiograph reports from Mount Sinai Hospital (MSH) (n=61,722 and 
818,978, respectively), Mount Sinai Queens (MSQ) (n=30,145 and 194,309, respectively) and MIMIC-III 
(n=32,259 and 54,685) were converted into sentences. Insertions, substitutions, and deletions of words were 
randomly introduced. Seq2seq models were trained using corrupted sentences as input to predict original 
uncorrupted sentences. Three models were trained using head CTs from MSH, chest radiographs from 
MSH, and head CTs from all three collections. Model performance was assessed across different sites and 
modalities. A sample of original, uncorrupted sentences were manually reviewed for any error in syntax, 
usage, or spelling to estimate real-world proofreading performance of the algorithm.
Results: Seq2seq detected 90.3% and 88.2% of corrupted sentences with 97.7% and 98.8% specificity 
in same-site, same-modality test sets for head CTs and chest radiographs, respectively. Manual review of 
original, uncorrupted same-site same-modality head CT sentences demonstrated seq2seq positive predictive 
value (PPV) 0.393 (157/400; 95% CI, 0.346–0.441) and negative predictive value (NPV) 0.986 (789/800; 
95% CI, 0.976–0.992) for detecting sentences containing real-world errors, with estimated sensitivity of 0.389 
(95% CI, 0.267–0.542) and specificity 0.986 (95% CI, 0.985–0.987) over n=86,211 uncorrupted training 
examples. 
Conclusions: Seq2seq models can be highly effective at detecting erroneous insertions, deletions, and 
substitutions of words in radiology reports. To achieve high performance, these models require site- and 
modality-specific training examples. Incorporating additional targeted training data could further improve 
performance in detecting real-world errors in reports.
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Introduction

Errors in grammar, spelling, and usage in radiology reports 
are common. Studies performed between 2008 and 2012 
have found errors in 23–36% of final reports for various 
types of non-plain film imaging (1-5). More recent studies 
performed with state-of-the-art dictation systems also 
demonstrate high error rates. A 2015 review of 213,977 
radiology reports at the Mayo Clinic found a 9.7% error 
rate, ranging from a high of a 19.7% in neuroradiology to 
a low of 3.2% in chest plain films (6). Most significantly, 
nearly 20% of these reports containing errors were found 
to contain a clinically material error (6). A 2015 study at a 
hospital in Staffordshire, UK found that 23% of their CT 
reports and 32% of their MRI reports contained an error (7).  
Frequent interruptions and an increasingly fast pace of work 
contribute to such errors, as well as the widespread adoption 
of automatic speech recognition systems (8-13). Such 
systems have the benefit of making reports immediately 
available after a radiologist has completed dictating, but 
increase their proofreading responsibility and the amount of 
time radiologists spend creating reports (14-16).

The use of structured report templates has not been 
shown to reduce rates of error (3,7). Radiologists believe 
such errors are far less frequent than actual rates, and 
such errors may become increasingly problematic in 
an era when patients can directly see their imaging 
reports in online patient portals (4,17). The American 
College of Radiology’s official ‘Practice Parameter for 
Communication of Diagnostic Imaging Findings’ holds 
radiologists ultimately responsible for proofreading 
dictated reports (18). However, many radiologists feel that 
they do not have adequate time to do so, as indicated in the 
response of a radiological journal editor in a letter on the 
topic: “Proofreading of our radiologic reports is required, 
although we all realize that most of us have limited or no 
time to do it” (19). 

While popular commercially available dictation systems 
include spell checkers, they do not include systems to detect 
erroneous word insertions, deletions, or substitutions. 
Recent advancements in deep learning may be able to 
support radiologists by checking their reports for such 
errors, flagging potential errors and suggesting corrections. 
Ideally, such a system would suggest the precise correction 
necessary. However, even a system that simply identified 
sentences likely to require correction could be valuable, as 
such sentences could be flagged for review before a report 
was submitted. 

Methods

Dataset and pre-processing

A total of 91,867 head CT and 1,013,287 chest radiograph 
reports from the Mount Sinai Health System covering 
a period of 2006–2017 were obtained (Figure 1). These 
reports were drawn from two sites: Mount Sinai Hospital 
(MSH) (n=61,722 head CT, 818,978 chest radiograph) and 
Mount Sinai Queens (MSQ) (n=30,145 head CT,194,309 
chest radiograph). These hospitals do not share radiology 
reporting templates, and are staffed separately by attendings 
and residents at MSH, and by attendings only at MSQ. 
A total of 32,259 head CT and 54,685 chest radiograph 
reports from Beth Israel Deaconess were additionally 
obtained from the MIMIC-III database (20).

Preprocessing was applied to convert text to lowercase, 
to convert numbers, times, and numeric dates to a special 
common token, and to remove all punctuation except for 
periods, commas, colons, semicolons, and apostrophes. 
Phrases with both letters and numbers, such as “C3”, 
which were preserved. Sentences longer than 50 words 
were truncated; such sentences were extremely uncommon, 
occurring in only 5,165 of 12,696,846 sentences (0.04%). 

Reports were then tokenized into individual sentences. 
Words that appeared fewer than 10 times in the training 
corpus were replaced with an ‘unknown’ placeholder token 
for model training and prediction. As a post-processing 
step, ‘unknown’ tokens were replaced with the words that 
mapped to ‘unknown’ tokens at the same position in the 
corrupted sentence as the ‘unknown’ token (21). 

To generate training examples, corruptions of insertion, 
substitution, and deletion were introduced, each with 
probability 1% for each word in an original sentence (21). 
Insertions were drawn from other sentences in the corpus 
to simulate dictating into the wrong section of a report 
and ranged between 1–4 words with equal probability. 
Substitutions consisted of swapping a given word for 
another word in the report corpus (e.g., “no CT evidence” 
→ substitute ‘hemorrhage’ for ‘CT’ → “no hemorrhage 
evidence”). Deletions removed a given word from the 
sentence (e.g., “no CT evidence” → ‘CT’ deleted → “no 
evidence”). This yielded a set of corrupted sentences, with 
each matched to an uncorrupted ground truth sentence. 
This process was repeated 5 times for head CT reports in 
training, twice for chest radiograph reports in training, and 
once for both tune and test data. The corrupted sentences 
served as the input for our model, while the original 
sentences served as the output.
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Training corpus set as one of:

• Chest radiographs from MSH

• Head CTs from MSQ

• Head CTs from MSH,MSQ,

MIMIC-III

Seq2seq model trained on corrupted <--> original pairs in training 
Validation used to see out-of-sample performance during training

Seq2seq predicts original sentences given corrupted sentences in test set of training corpus 
Seq2seq used to predict to corrupted sentences of other corpora for additional comparison

10% test set

Original sentences paired with randomly corrupted
versions

1% probability of each error for each word in a sentence
Insertions: 

findings: the frontal and lateral scout views are unremarkable →
findings: the frontal and removal of lateral scout views are unremarkable

Substitutions:
comparison: none available

comparison: beveled available
Deletions:

the ventricular system is midline and symmetrical →
the system is midline and symmetrical

80% train set 10% validation set

Figure 1 Overview of the approach. MSH, Mount Sinai Hospital; MSQ, Mount Sinai Queens.

Modelling approach

Neural sequence-to-sequence (seq2seq) models were 
then trained to predict ground truth sentences from the 
corrupted sentences. Seq2seq is a state-of-the-art deep 
learning architecture that maps an input sequence to an 
output sequence (22). It has been applied in a variety of 
natural language processing applications, including machine 
translation, autoreply, and error correction (21,23-25). 
This model represents each word in the corpus as a vector 
of arbitrary length, and subsequently learns a mapping 
between them. A simple example is presented in Figure 2.

The approach used in this paper adds several features 
to the basic model of Figure 2 to maximize its predictive 
performance. It incorporates long short-term memory 
(LSTM) cells to encode its hidden states, which facilitate 
learning a more expressive hidden representation (26). It 
also uses two stacked hidden layers to increase its flexibility. 
Our seq2seq models are bidirectional to take advantage of 
the fact that words both preceding and following a given 
word provide information about its meaning. We also 
include an ‘attention’ mechanism which allows the model 
to “attend” to more influential features using the learned 
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attention weights (23).
A PyTorch implementation of seq2seq from OpenNMT-

py was used to implement these bidirectional neural seq2seq 
models, each with 512 hidden units, two layers, and an 
attention mechanism following Luong (27,28). Word vector 
embeddings were set to a length of 500. Models were trained 
with a batch size of 64 on a single Nvidia GTX 1080ti 
GPU until there was no further improvement in validation 
perplexity over 3 epochs; this occurred after 5 epochs  
for single-site chest radiography and 12 epochs for single- 
and multiple-site head CT. We trained our model utilizing 
stochastic gradient descent (SGD) with an initial learning 
rate set to 1.0. This rate was decayed by 50% after any 
epoch in which perplexity did not decrease on the validation 
set compared to the prior epoch. The LSTM cells were 
regularized utilizing dropout at a rate of 0.3, and gradient 
normalization at a threshold of 5.

Assessment

We were primarily interested in identifying sentences that 
contained any of these randomly introduced errors. We 
considered a sentence marked for change when seq2seq 
predicted a sentence different from the entered input 
sentence. We were secondarily interested in obtaining a 
corrected version of that sentence. An accurate correction 
was defined as a perfect match with the original uncorrupted 
sentence. 

Analysis

Radiology reports were divided into 80% training data, 10% 
validation data, and 10% test data; all sentences in a given 
report were included in the same subset. Three separate 

models were then trained using sentences from the following 
datasets: (I) head CTs from MSH (n=936,392, 117,716, and 
119,412); (II) chest radiographs from MSH (n=6,331,802, 
786,779, and 791,217); (III) head CTs from MSH, MSQ, 
and MIMIC-III (n=2,043,696, 209,030, and 214,169). 

Single-modality (head CT or chest radiograph only) 
model performance was assessed on test cases (I) for the 
same modality across sites and (II) across modalities at 
MSH. The jointly trained head CT model (III) was assessed 
on test cases at each site. For sentences in each test corpus, 
we report the sensitivity and specificity of the algorithm 
for identifying sentences with introduced errors. For 
each group of error (insertion, substitution, deletion, all 
errors), we also report the percent accurately identified as 
requiring correction and the percent of original sentences 
seq2seq exactly recovered for the same-site, same-modality 
comparisons.

We performed an additional experiment to evaluate the 
ability of a model trained to synthetic error data to detect 
real-world radiologist errors in syntax, usage, or spelling 
in final reports. The MSH head CT model was used to 
make predictions on uncorrupted test sentences (n=86,211). 
A sample of 400 flagged sentences and 800 unflagged 
sentences were manually reviewed by one of the authors 
(JZ). He was blinded to the algorithm’s predictions and 
labeled these sentences for any kind of apparent error in 
usage, syntax, or spelling. Positive predictive value (PPV) 
and negative predictive value (NPV) were calculated for 
this sample. To facilitate comparison with sensitivity and 
specificity results from other experiments, the PPV and 
NPV calculated for this sample were used to estimate 
sensitivity and specificity for the full group of n=86,211 
uncorrupted sentences. This was done by randomly 
drawing PPV* and NPV* from their respective posterior 

comparison

comparison

none

none:

: available < stop >

< stop >separated

e1 e2 e3 e4 e5 d1 d2 d3 d4 d5

Figure 2 Schematic of a simplified sequence-to-sequence model. In this example from our dataset, a sentence with an incorrect substitution 
(in orange) is corrected to the correct source sentence (in blue). Encoded hidden states in the input are represented e1–e5; after the network 
sees the special <stop> token, it passes forward the final encoded hidden state to the decoding side of the network (d1–d5), which regenerates 
the correct sentence. Each word and encoded/decoded states e and d are represented by one dimensional vector, and each arrow represents 
a matrix multiplication by a set of learned weights followed by an activation function. We note that our model included a bidirectional long-
short-term memory (LSTM) with two layers and an attention mechanism, but these details are omitted from the diagram for simplicity. 
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distributions under a uniform prior [i.e., beta(1+correct_
cases,1+incorrect_cases)], assigning all seq2seq-changed and 
unchanged cases positive for a true error with probability 
PPV* and 1-NPV*, respectively, calculating sensitivity and 
specificity for the full n=86,211 sentences, and repeating 
this process 10,000 times to generate a 95% confidence 
interval.

Results

In same-site, same-modality test sets, seq2seq detected 
90.3% of corrupted sentences in head CTs and 88.2% 
in chest radiographs with 97.7% and 98.8% specificity, 
respectively (Table 1). For errors introduced in same-
site, same-modality test sets, seq2seq recovered 74.1% of 
the original head CT sentences and 73.0% of the chest 
radiograph sentences (Table 2). When it did not recover 

the original sentence, it sometimes offered reasonable 
alternatives. Examples from the same-site head CT test set 
are given in Figure 3.

Seq2seq performance degraded when test sites (Table 1)  
and modalities (Table 3) were not included in training but 
performed well when trained jointly on multiple sites (Table 4). 
Performance was strongest in the same-site, same-modality 
comparison as radiology reports are typically standardized 
within a site but vary between sites, and the language 
of reports is highly specific to modality. For head CT, 
sensitivity decreased from 90.3% to 87.9% and 81.7% in 
two external test sets, and specificity decreased from 97.7% 
to 91.1% and 72.3%. For chest radiography, sensitivity 
decreased from 88.2% to 83.2% and 74.5% in these 
external test sets, and specificity decreased from 98.8% to 
88.4% and 79.6%. Performance decreased sharply when 
the head CT model was used to identify errors in same-
site chest radiography reports (sensitivity 70.0%, specificity 
81.1%) and vice-versa (sensitivity 70.0%, specificity 72.8%). 

A seq2seq model jointly trained on head CT reports 
from all three collections achieved a sensitivity of 90.1%, 
94.2%, and 85.9% and specificity of 97.9%, 99.0%, and 
97.0% at each site, respectively.

Manual review of 400 seq2seq-flagged and 800 unflagged 
same-site same-modality original uncorrupted head CT 
sentences to estimate real-world performance demonstrated 
errors in usage, syntax, or spelling in 157/400 seq2seq-
flagged (PPV 0.393, 95% CI, 0.346–0.441) and 11/800 
unflagged (NPV 0.986, 95% CI, 0.976–0.992) sentences. 
Estimated sensitivity over the n=86,211 unmodified training 
examples was 0.389 (95% CI, 0.267–0.542) with specificity 
0.986 (95% CI, 0.985–0.987). Examples of real-world errors 
are included in Table 5. 

Discussion

When trained on reports for a specific modality at a 
specific site, seq2seq can effectively detect random 
insertion, deletion, and substitution errors introduced into 
radiology reports (sensitivity 90.3% and 88.2%, specificity 
97.7% and 98.8% for head CT and chest radiograph, 
respectively). While accurate prediction is desirable, we 
note that we do not require accurate predictions for seq2seq 
to function well in its primary role of detecting errors, 
where it achieved high sensitivity and specificity. In the 
majority of cases (74.1% and 73.0%), it reproduced the 
exact sentence from the original report. This performance 
yields a conservative lower bound on the actual accuracy, 

Table 1 Seq2seq error detection performance on test data degraded 
when used at sites not included in training data (same modality 
trained on MSH)

Test

Head CT Chest X-ray

Sensitivity 
(%)

Specificity 
(%)

Sensitivity 
(%)

Specificity 
(%)

MSH 90.3 97.7 88.2 98.8

MSQ 87.9 91.1 83.2 88.4

MIMIC-III 81.7 72.3 74.5 79.6

MSH, Mount Sinai Hospital; MSQ, Mount Sinai Queens.

Table 2 Performance of seq2seq for detection of errors on models 
trained and tested at a single site (Mount Sinai Hospital)

Error

Seq2seq changed 
sentence

Seq2seq recovered  
original sentence

Head CT  
(%)

Chest X-ray 
(%)

Head CT  
(%)

Chest X-ray 
(%)

Any error 90.3 88.2 74.1 73.0

Insertion error 96.9 94.5 80.2 80.2

Deletion error 82.3 77.6 63.1 59.1

Substitution  
error

94.4 95.6 72.0 72.6

Seq2seq accurately marked most sentences containing an error 
(i.e., proposed an alternative different from the input sentence) 
in this same-site, same-modality comparison, and was more 
accurate in cases of insertion and substitution compared to 
deletion. CTH, CT head; CXR, chest radiograph.
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as synonymous but different phrases (e.g., “I agree with 
the resident’s interpretation” vs. “I agree with the resident’s 
interpretation thereof”) would not be counted as a correct 
recovery. Seq2seq performed best at detecting inappropriate 
insertions (96.9% and 94.5%, respectively, for head CT and 
chest radiographs) and substitutions (94.4% and 95.6%, 

respectively) compared to deletions (82.3% and 77.6%, 
respectively). Intuitively, insertions and substitutions 
introduce out-of-place content into a sentence and typically 
stand out, whereas deletions can be subtler (e.g., deleting an 
adjective). 

Table 3 Seq2seq error detection performance on test data degraded 
when used on modalities not included in training data (cross 
modality trained on MSH)

Train Test Sensitivity (%) Specificity (%)

Head CT Chest X-ray 70.0 81.1

Chest X-ray Head CT 70.0 72.8

MSH, Mount Sinai Hospital.

Table 4 Seq2seq error detection on test data remained highly 
sensitive and specific when jointly trained on data from multiple 
sites (head CT trained jointly on MSH, MSQ, and MIMIC-III)

Test Sensitivity (%) Specificity (%)

MSH 90.1 97.9

MSQ 94.2 99.0

MIMIC-III 85.9 97.0

MSH, Mount Sinai Hospital; MSQ, Mount Sinai Queens.

Figure 3 Examples of corrupted sentences, seq2seq corrections, and the original sentences.
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Seq2seq can learn detailed modality-specific and site-
specific patterns, which is facilitated by the limited lexical 
complexity of radiology corpora, but these models have 
limited generalization (29). Predictions for head CT and 
chest radiography reports had substantially lower specificity 
when used to detect errors at a new site or on a new 
modality. High specificity is critical to the practical utility 
of a proofreading tool for radiology reports: one cannot 
reasonably imagine that radiologists under time pressure 
will elect to use a tool that requires them to sift through 
many false positives. Accordingly, we believe these models 
would need to be trained with data from individual sites to 
achieve maximal specificity. Our results suggest that such 
a model could be jointly trained on data from multiple 
sites while maintaining predictive accuracy, as a head CT 
model jointly trained on data from all 3 sites had excellent 
predictive accuracy at all three. While site-specific data 
would need to be provided, the proofreading engine itself 
could be deployed as a software-as-a-service tool requiring 
no engineering on the user side.

Future work could explore how the probability of 
sentence corruption can function as a tuning parameter. 
Because of the randomness of this corruption process, a mix 
of uncorrupted and corrupted sentences were included in 
train and test data. For example, in MSH test data, 27.8% 
of head CT and 24.8% of chest radiograph sentences 

were corrupted. This prevented the model from trivially 
learning to change every sentence and determined seq2seq’s 
sensitivity and specificity threshold.

Our approach is limited by the fact that it considers each 
sentence of a report in isolation, eliminating the possibility 
of detecting inconsistencies between different sections of 
a report (e.g., “unremarkable study” in Impression should 
only appear if there is no description of any acute pathology 
in Findings). Other work has shown how seq2seq models 
can be extended hierarchically to encode paragraphs from 
building blocks of words and sentences, and our approach 
could extend to the level of a full report (30). Additional 
training data would likely be required to provide sufficient 
training examples for a hierarchical seq2seq model.

Our models are also limited by our use of simulated 
error data. While this presents a unique opportunity for 
creating training data, it is not ideal: some of our ground 
truth data contains uncorrected errors, as we demonstrated 
in our manual review. A stronger dataset would consist 
of radiology reports containing errors and corresponding 
manual corrections, but the scale at which seq2seq requires 
training data makes such an approach prohibitively 
expensive. Numerous reports would have to be reviewed to 
find sufficient examples of errors because an overwhelming 
number of radiology reports are error-free. For example, 
based on our manual review, we estimate that sentences 

Table 5 Examples of real-world errors in head CT reports

Category Sentence Error Likely cause

Insertion There is there is lucency within the white matter of the 
posteriomost left frontal lobe series # images # which may 
represent chronic ischemic change

‘there is’ repeated twice Repeated dictation

Insertion CT of the brain shows blood in the fourth ventricle third 
and lateral ventricles with evidence of no evidence of clot 
retraction

‘evidence of no evidence of’ Mis-dictation

Insertion Findings: again seen is evidence of a left parietal 
craniotomy for resection of a left lateral ventricle 
intraventricular cyst resection

repetition of ‘resection’ Mis-dictation

Substitution No acute infarction or hemorrhage isn’t identified ‘is’ → ‘isn't’ Speech recognition

Substitution Note ismade of senescent calcifications within the basal 
ganglia and dentate nuclei

‘is made’ → ‘ismade’ Typographical

Deletion There prominent chronic small vessel ischemic changes missing ‘are’ Speech recognition

Deletion Findings: again noted is a left frontal at the superior 
margin of the calvarium

deletion after ‘left frontal’ Typographical, speech 
recognition

Deletion This finding is similar prior examination deleted ‘to’ before ‘prior’ Typographical, speech 
recognition
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in the MSH head CT corpus contain an error in 2.2% of 
cases. Because reports contain many sentences, the error 
rate per sentence is substantially lower than the error rate 
per report. The vast majority of original sentences used as 
ground truth data are therefore free of errors and can serve 
as a useful basis on which to simulate errors.

We believe further refinement is needed to improve 
performance before such a model will be able to detect 
all types of real-world errors. The MSH head CT model 
demonstrated an estimated same-site sensitivity of 0.389 
(95% CI, 0.267–0.542) and specificity of 0.986 (95% CI, 
0.985–0.987) in detecting real-world errors in reports. This 
demonstrates the potential of this approach to detect real-
world errors that made it into final reports despite being 
trained exclusively on randomly generated errors. We 
note that this estimation is limited by its dependence on 
a very small number of observed false negatives (n=11) in 
our manually reviewed data, which is responsible for the 
observed wide confidence interval over sensitivity. Real-
world errors can be much subtler than the ones randomly 
introduced into our training data; for example, one false 
negative case was deemed incorrect because a plural verb 
was used with a singular subject (“Vascular calcification is 
also quite prominent and quite distal which likely reflect 
severe disease”), while another was missing “of” (“No 
evidence large infarct, parenchymal hemorrhage, or mass 
effect”). The inclusion of additional simulated errors, 
especially those most likely to adversely affect patient 
care (adding/removing negation, inverting laterality, etc.), 
would likely improve performance. It may also be possible 
to incorporate additional training data from radiologists 
themselves. Attending radiologists routinely review and 
correct draft resident reports, and many systems track 
changes made; these could be included as training data. 
With collaborating radiologists and necessary technical 
infrastructure, it would be possible to track radiologist 
report edits in real-time and learn from these examples how 
to correct common types of mistakes. We believe iterative 
improvements such as these could improve seq2seq’s 
sensitivity and specificity.

Conclusions

Seq2seq models can be highly effective at detecting 
erroneous insertions, deletions, and substitutions of 
words in radiology reports. To achieve high performance, 
these models require site- and modality-specific training 
examples. Incorporating additional targeted training data 

can further improve performance in detecting real-world 
errors in reports.
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