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Editorial

Host-pathogen interactions in typhoid fever: the model is the 
message
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Salmonella enterica  subspecies enterica  is classified 
into serovars based on serological identification of 
lipopolysaccharide (O) and flagellar (H) antigens (1). 
Depending on the serovar and the host, Salmonella infection 
of humans has different outcomes that can be classified into 
two general types: (I) gastroenteritis, a self-limited infection 
of the terminal ileum and colon leading to diarrhea and 
inflammation, often caused by the broad-range serovars 
Typhimurium and Enteritidis; (II) typhoid fever, a systemic 
infection caused by the human-adapted serovars Typhi 
and Paratyphi. Both types of infection usually occur upon 
ingestion of contaminated food or water. Gastroenteritis, 
popularly known as salmonellosis, is confined to the 
intestine and rarely presents complications in healthy adults. 
In typhoid fever, Salmonella cells disseminate through 
the lymphatic system and within phagocytes, leading to 
colonization of internal organs such as the liver, the spleen, 
the bone marrow, and the gall bladder (2). Infection by S. 
Typhi may remain asymptomatic for 1–2 weeks, and its 
symptoms vary from one infected individual to another, 
depending on age, immune proficiency, and other factors. 
Common symptoms include high fever, constipation, 
headache, abdominal tenderness, coughing, and vomiting. 
Serious complications of typhoid fever are intestinal 
bleeding, sometimes with perforation, and typhoidal 
encephalopathy (2). Outbreaks of typhoid fever occur 
mostly in developing countries, especially in areas with a 
high population density, and the number of cases per year 
may be as high as 10–20 million worldwide, resulting in 
10,000–20,000 deaths. A fraction of typhoid fever survivors 
(2–5%) become chronic carriers of S. Typhi (3). The main 

niche for chronic carriage is the gall bladder, especially in 
patients with gallstones. A potential link between chronic 
carriage and hepatobiliary cancer has been considered (3,4). 
As a consequence of gall bladder contraction during food 
passage, bacterial shedding into the intestine of chronic 
carriers occurs, with concomitant release of S. Typhi into 
the environment. 

Over several decades, studies with animal models and cell 
cultures have unraveled mechanisms employed by Salmonella 
serovars to cause disease in humans. A specially successful 
animal model has been infection of immunodeficient mice 
(BALB/c and other breeds) with S. Typhimurium, which 
causes an illness somewhat similar to human typhoid  
fever (5). An obvious advantage of these popular models 
is the avoidance of the cumbersome biosafety constraints 
involved in work with typhoidal serovars. However, 
discrepancies between the S. Typhimurium model and the 
S. Typhi infection have accumulated in the last decade, 
and have been comprehensively reviewed recently (6). 
Differences in genome content, gene regulation and 
activity of virulence effectors illustrate the limitations 
of S. Typhimurium-based models of typhoid (6). As a 
consequence, crucial aspects of S. Typhi infection remain 
to be understood, thus limiting the efficacy of diagnostic 
and therapeutic procedures as well as the development of 
reliable vaccines.

In a recent study, the early stages of S. Typhi infection 
have been investigated in intestinal biopsies and in 
organoids derived from human intestinal epithelial  
tissue (7). Infected biopsies were used to monitor 
transcriptional changes in the host and the pathogen, to 
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determine cytokine profiling, and to perform electron 
microscopy observation. In turn, specific mechanisms 
were investigated using an organoid model. Unlike 
traditional epithelial cell cultures growing as monolayers 
on a plate, organoids mirror the in vivo organization of the 
intestinal epithelium as they develop a three-dimensional 
architecture (8). Organoids contain the different cell types 
that constitute the intestinal epithelium (9), which is a 
major line of defense against microbial pathogens due to 
the abundance of immune system components (10). Such 
components are present in organoids and not in epithelial 
cell cultures. 

Active immune evasion by Salmonella Typhi 

Transcriptomic analysis in biopsy cells infected with S. 
Typhi revealed downregulation of human loci involved 
in B-cell receptor signaling and in coordination between 
innate and adaptive immune responses. In contrast, 
few human genes were found to be upregulated during 

infection. Interestingly, comparison of expression patterns 
in biopsies infected with either S. Typhi or S. Typhimurium 
showed stronger downregulation of host genes upon S. 
Typhi infection. Monitoring of MAPK and NF-κB signaling 
cascades triggered by bacterial invasion also provided 
evidence that S. Typhimurium elicits a stronger immune 
response. Cytokine release was detected in supernatants 
from biopsies infected by S. Typhi; however, cytokine 
genes were not found to be upregulated during infection, 
suggesting that exposure to S. Typhi reduces transcription 
of cytokine genes. The observation that S. Typhimurium 
elicits a stronger immune response may help to understand 
the capacity of S. Typhi to invade deep tissues, and confirms 
previous evidence that S. Typhi disarms early innate and 
adaptive immune responses (Figure 1). For instance, the 
regulatory protein TviA, encoded within the S. Typhi-
specific pathogenicity island SPI-7, has been shown to 
attenuate the innate immune response by downregulating 
bacterial functions that induce the host inflammasome  
(11-13). Another SPI-7 product, the virulence-associated 
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Figure 1 Differences between S. Typhimurium and S. Typhi infection illustrate the limitations of the mouse model of typhoid fever. 
(A) Flagella, very long LPS O-antigen chains and SPI-1 effectors induce an acute immune response in the host upon S. Typhimurium 
infection. Cytokine production results in recruitment of immune cells and migration of neutrophils into the intestinal lumen. This localized 
inflammatory response helps to contain bacterial dissemination beyond the intestinal submucosa, resulting in self-limiting gastroenteritis. 
(B) Salmonella Typhi evades the host immune response by downregulation of immunogenic surface structures like flagella and T3SS, and 
by upregulation of the Vi capsule genes. Due to genome degradation, S. Typhi does not produce very long O-antigen chains. Absence 
of immunogenic components reduces recognition by host cell receptors, allowing stealthy crossing of the epithelial barrier and further 
dissemination.



Annals of Translational Medicine, Vol 6, Suppl 1 November 2018 Page 3 of 4

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2018;6(Suppl 1):S38atm.amegroups.com

(Vi)  capsular  polysaccharide,  appears  to  prevent 
complement-mediated phagocytosis (14-16). Active immune 
evasion during epithelium invasion may thus contribute to 
‘silent’ crossing of the intestinal barrier, permitting stealthy 
establishment of systemic infection.

Electron microscopy observation indicated that, unlike 
S. Typhimurium, S. Typhi invades more frequently 
enterocytes rather than M cells (7). Microvilli destruction, 
cell cytoskeleton remodeling and vesicle formation was 
observed both in biopsy tissues and organoid-derived 
epithelium monolayers upon S. Typhi infection, but 
cell death was not detected (7). Transcriptomic analysis 
revealed downregulation of genes involved in cytoskeletal 
reorganization and in pathways that control formation 
of cellular protrusions, cytoplasm organization and 
microtubule dynamics, among others. Altogether, these 
observations agree with a previous study that compared S. 
Typhimurium and S. Typhi interactions with epithelial cells: 
S. Typhi was found to be less adherent, less invasive and less 
cytotoxic (17). 

Distinct gene expression patterns of Salmonella 
Typhi and Salmonella Typhimurium during 
infection

Analysis of S. Typhi gene expression patterns during 
infection of human biopsies showed discrepancies with 
S. Typhimurium (7). For instance, genetic loci required 
for S. Typhimurium invasion like rpoS, ompR and SPI-1 
were found to be downregulated in S. Typhi. In contrast, 
metabolism and ribosomal genes were upregulated during S. 
Typhi invasion. Upregulation of pathogenicity island SPI-
7 during biopsy invasion is consistent, as discussed above, 
with the role of SPI-7 products in immune evasion (7). 

Discrepancies in gene expression patterns between 
S. Typhi and S. Typhimurium are not surprising: after 
their evolutionary divergence, each serovar acquired 
distinct virulence determinants, and S. Typhi underwent 
genome degradation, a distinctive trait of host-restricted  
serovars (18). Furthermore, differences between S. Typhi 
and S. Typhimurium pathogenicity determinants have been 
previously described. Examples include the structure of the 
outer core of the LPS (19), the responses to bile (20), and 
the regulation of flagella and chemotaxis (20).

The model is the message

Animal models are precious tools in translational research if 

their predictive value to human disease is high enough (21). 
In the case of typhoid fever, infection of immunodeficient 
mice by Salmonella Typhimurium has been used for 
decades to simulate human infection by S. Typhi. Aside 
from permitting the study of Salmonella interaction with 
the animal host without the constraints and the dangers 
of working with a highly pathogenic species, the mouse 
model has provided a wealth of information on Salmonella 
virulence mechanisms. However, the steadily growing list 
of discrepancies between S. Typhimurium and S. Typhi 
infection mechanisms illustrates the limitations of the 
immunodeficient mouse model (6) (Figure 1). In medical 
practice, the limited efficacy of existing typhoid fever 
vaccines further illustrates such shortages (22). In this 
scenario, breakthroughs may require the introduction of 
novel models like the human biopsy cultures and organoids 
used in the study discussed in this editorial (7). Organoids 
may be especially appropriate to study infection, immunity, 
and inflammation as they provide a source of human tissue 
that accurately reflects human responses (23).
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