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Abstract: Ventilator-associated pneumonia (VAP) remains an important clinical problem globally, being 
associated with significant morbidity and mortality. As management of VAP requires adequate and timely 
antibiotic administration, global emergence of antimicrobial resistance poses serious challenges over our 
ability to maintain this axiom. Development of antimicrobials against MDR Gram-negative pathogens has 
therefore emerged as a priority and some new antibiotics have been marketed or approach late stage of 
development. The aim of this review is to analyse new therapeutic options from the point view of potential 
treatment of VAP. Among recently developed antimicrobials presented herein, it is obvious that we will have 
promising therapeutic options against VAP caused by Enterobacteriaceae excluding those producing metallo-
β-lactamases, against which only cefiderocol and aztreonam/avibactam are expected to be active. Against 
infections caused by carbapenem non-susceptible Pseudomonas aeruginosa, ceftolozane/tazobactam and to a 
lesser extend ceftazidime/avibactam may cover a proportion of current medical needs, but there still remain a 
considerable proportion of strains which harbor other resistance mechanisms. Murepavadin and cefiderocol 
hold promise against this particularly notorious pathogen. Finally, Acinetobacter baummannii remains a 
treatment-challenge. Eravacycline, cefiderocol and probably plazomicin seem to be the most promising 
agents against this difficult-to treat pathogen, but we have still a long road ahead, to see their position in 
clinical practice and particularly in VAP. In summary, despite persisting and increasing unmet medical needs, 
several newly approved and forthcoming agents hold promise for the treatment of VAP and hopefully will 
enrich our antimicrobial arsenal in the next few years. Targeted pharmacokinetic and clinical studies in real-
life scenario of VAP are important to position these new agents in clinical practice, whereas vigilant use will 
ensure their longevity in our armamentarium.
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Introduction

Hospital-acquired pneumonia (HAP) remains one of 
the most important hospital-acquired infections, being 
associated with significant mortality, morbidity and increase 

in health expenditures (1,2). Gram-negative pathogens and 

particularly Enterobacteriaceae, Pseudomonas aeruginosa 

and Acinetobacter baumannii have progressively become 

predominant, the latter being more prevalent in patients 
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with ventilator-associated pneumonia (VAP) (3). These 
pathogens harbor a variety of mechanisms that confer 
resistance to antibiotics, rendering sometimes infections 
untreatable (4,5). A dry pipeline for years, led to the belief 
that we are approaching “the end of antibiotics” (5). 

Inappropriate treatment has clearly been associated with 
increased mortality and healthcare costs (6,7) and MDR 
pathogens have been associated with inappropriate initial 
treatment, leading to a vicious cycle (8). In a recent meta-
analysis, infections by carbapenem-resistant Klebsiella 
pneumoniae portended a 42% overall mortality versus 21% 
for carbapenem-susceptible counterparts (9). The World 
Health Organization (WHO) has listed carbapenem-
resistant Enterobacteriaceae (CRE) among the highest 
priority pathogens in order to strive antibiotic development 
as a response to unmet public health threats (10). Following 
regulatory initiatives and social pressure, the antimicrobial 
pipeline has produced in the last decade a considerable 
number of new molecules. The aim of this article is to 
summarize the newly available or in late stage of development 
agents (phase 3 trials), expected to treat HAP and VAP 
caused by multi-drug resistant Gram-negative bacteria 
(MDR-GNB), focusing on agents with activity against CRE, 
MDR P. aeruginosa, and MDR A. baumannii.

Basic terms and mechanisms of resistance

After the introduction of the term MDR, a designation 
implying resistance to at least three different antibiotic 
classes, the terms extensively-drug-resistant (XDR) and 
pan-drug-resistant (PDR) have been introduced, implying 
respectively non-susceptibility in all but two or fewer 
antimicrobial categories and all agents in all antimicrobial 
categories (11). Multiple mechanisms of resistance 
contribute to an MDR, XDR or PDR profile in GNB 
(12,13). Intrinsic antimicrobial resistance mechanisms 
may be gradually selected by evolutional pressures; as an 
example, chromosomal genes that encode efflux pumps 
which pull antibiotics out of the bacterial cell. Acquired 
resistance in GNB can emerge through horizontal gene 
transfers, which are most commonly plasmid-mediated, 
or spontaneous mutations of existing genes (12). Acquired 
resistance mechanisms may be enzymatic (i.e., β-lactamases) 
or non-enzymatic (i.e., alteration of the bacterial membrane 
composition). Production of β-lactamases stands out 
as an important mechanism, hydrolysing β-lactam 
antibiotics which have been for decades the cornerstone of 
antimicrobial treatment of critically ill patients. The most 

relevant β-lactamases encountered in MDR pathogens 
causing HAP and VAP according to Ambler classification 
are presented in Table 1 (12,13).  

New antimicrobials

In this section we will present newly launched antibiotics 
and antimicrobials in late stage of development (having 
entered in phase 3 clinical trials). Data will be presented 
from the view point of their potential treatment of VAP or 
HAP. The main characteristics of the presented antibiotics, 
are shown in Table 2. 

Combinations of cephalosporins or monobactam with 
β-lactamase inhibitors

Ceftazidime avibactam (Avycaz®Allergan, Inc for North 
America only, Zavicefta®, Pfizer)
Ceftazidime–avibactam (CAZ/AVI) combines a well-
established third-generation cephalosporin, with a novel 
non β-lactam β-lactamase inhibitor, avibactam. The latter 
is active against a variety of β-lactamases, including Ambler 
Class A (KPC and ESBL type enzymes), Class C (AmpC) 
and some class D serine enzymes (such as oxacillinase  
OXA-48). However, it is vulnerable to metallo-β-lactamases 
(MBL) (Table 2) (14). A potent in vitro activity of CAZ/
AVI was shown against CRE and P. aeruginosa excluding 
isolates producing MBLs (15). Avibactam is minimally 
active against A. baumannii and vulnerable to OXA-type 
carbapenemases carried in these species; in addition, it has 
poor activity against anaerobic Gram-negative bacteria and 
no activity against Gram-positive cocci (16). Susceptibility 
of P. aeruginosa to CAZ/AVI is improved relative to 
ceftazidime alone, but to a lesser extend compared to 
Enterobacteriaceae (17-19), with susceptibility of isolates 
resistant to ceftazidime and carbapenems not exceeding 
50% in some studies (19-22). Isolates of P. aeruginosa from 
VAP had CAZ/AVI MIC90 at 16 whereas meropenem-
non-susceptible strains had 32 mg/L, compared to  
2 mg/L for Enterobacteriaceae and 8 mg/L for non-
respiratory Pseudomonas isolates, indicating a more difficult 
PK/PD target (23,24).  

KPC-3 displayed significantly higher MICs of CAZ/AVI, 
compared to KPC-2 variants, attributed to a compilation of 
resistance mechanisms, including de novo mutations in the 
blaKPC-3 gene, production of multiple carbapenemases, 
reduced porin expression and overexpression of efflux 
pumps (25,26). Emergence of resistance to CAZ/AVI 



Annals of Translational Medicine, Vol 6, No 21 November 2018 Page 3 of 22

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2018;6(21):423atm.amegroups.com

reported after a relative short course of therapy and 
particularly after monotherapy, for infections caused by K. 
pneumoniae, prompts vigilance in clinical practice (4,27). 
Structural derangements of the omega-loop of KPC-
2 were identified, resulting in a new active site of the 
enzyme, which however can no longer hydrolyze aztreonam 
or imipenem (28,29). As a consequence, carbapenems 
and aztreonam could overcome this new mechanism of 
resistance.

Ceftazidime exerts a time-dependent bactericidal effect, 
possesses linear pharmacokinetics and is excreted with 
glomerular filtration (30). Avibactam is eliminated primarily 
unchanged in the urine (31). Its half-life increases by 2–3 
fold, 4 fold, and 12 fold with creatinine clearance (CrCL) 
values of 30–79 mL/min, <30 mL/min (non-hemodialysis), 
and <30 mL/min (hemodialysis) respectively (32). The 
recommended dosage and frequency of administration of 
CAZ/AVI in patients with normal renal function is 2.5 g 
every 8 h. Dosage adjustment is required in patients with 
moderately or severely impaired renal function (33,34). 
The avibactam pharmacokinetic/pharmacodynamic (PK/
PD) target related with efficacy is the percent of time 
that the free drug levels exceed threshold concentration 
(%fT>CT). Area under curve (AUC) and maximum 
plasma concentration (Cmax) seem to play an important 
role in its pharmacodynamics and particularly against 

KPC producers (35,36). Early PK/PD studies in humans 
have demonstrated that both ceftazidime and avibactam 
penetrate into human epithelial lining fluid (ELF) with 
concentrations proportionally (25–30%) lower compared 
to plasma (37). In a recent study, pooled PK/PD data from 
preclinical pneumonia mice models and phase 1 and phase 
2 studies in humans verified plasma levels as a surrogate 
for lung penetration in patients with HAP and VAP (38). 
Monte Carlo simulation verified PK/PD target attainment 
in patients with HAP with the approved CAZ/AVI  
dose (35,39).

CAZ/AVI has been approved by FDA and EMA for the 
treatment of complicated Urinary Tract Infections (cUTIs), 
complicated Intraabdominal Infections (cIAIs), HAP/VAP 
and for the treatment of infections due to aerobic Gram-
negative organisms in adult patients with limited treatment 
options (EMA only) (33,34). CAZ-AVI with metronidazole 
in registrational phase 3 trials (RECLAIM 1 and 2) 
showed non-inferiority to meropenem in the treatment of  
cIAIs (40). However, patients with moderate renal 
impairment (creatinine clearance/CrCl >30–50 mL/min) 
receiving CAZ/AVI had lower response rates compared 
to those receiving meropenem (40). In the REPRISE 
registrational phase 3 trial, CAZ/AVI established non-
inferiority to doripenem in cUTIs (41). In an open-label 
trial comparing CAZ/AVI with “best available therapy” 

Table 1 Common β-lactamases encountered in Gram-negative bacteria causing hospital-acquired and ventilator-associated pneumonia, according 
to Ambler Classification [adapted from (12,13)]

Ambler class Enzyme type Common bacterial species Examples Substrate

A Narrow-spectrum Escherichia coli, Klebsiella spp. Staphylococcal penicillinase, 
TEM-1, TEM-2, SHV-1

A Extended-spectrum
Or ESBLs

Enterobacteriaceae, Pseudomonas 
aeruginosa, Acinetobacter spp., 
Kluyvera spp.

SHV-like, CTX-like, KLUG-like Penicillins, cephalosporins 
(except cefamycins), 
aztreonam

A Serine carbapenemases Klebsiella spp. KPC-like, IMI-like Penicillins, cephalosporins, 
aztreonam, carbapenems

B Metallo-β-lactamases, 
carbapenemases

Stenotrophomonas maltophilia, P. 
aeruginosa, Bacteroides fragilis, 
Acinetobacter baumannii

VIM-like, IMP-like, NDM-like, 
GIM, SPM, SIM

Penicillins, cephalosporins, 
and carbapenems. 
Monobactams are stable

C Extended-spectrum, 
cephalosporinases

Enterobacter spp., Klebsiella spp., 
Proteus spp., Citrobacter spp., E. coli

AmpC, P99, ACT-like, CMY-
like, MIR-like

D Carbapenemases A. baumannii, P. aeruginosa, E. coli OXA-like Penicillin, aztreonam, and 
carbapenems

CTX, cefotaximase; KPC, Klebsiella pneumoniae carbapenemase; IMP, imipenemase; VIM, Verona Integron metallo-β-lactamase; NDM, 
New Delhi metallo-β-lactamase; OXA, oxacillinase.
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in infections caused by ceftazidime-resistant isolates—
mostly cUTIs—response rates were 90.9% and 91.2%  
respectively (42). 

In a randomized prospective study, CAZ/AVI was tested 
versus with meropenem for the treatment of nosocomial 
pneumonia (NP), including VAP (REPROVE study, 
Clinical-Trials.gov Identifier NCT01808092) (43). Adults 
with NP (N=879), were randomized (1:1) to CAZ/AVI or 
meropenem for 7–14 days. Predominant Gram-negative 
baseline pathogens were K. pneumoniae (36.6%) and P. 
aeruginosa (29.6%), with 28.2% being ceftazidime-non-
susceptible. Non-inferiority of ceftazidime-avibactam to 
meropenem was demonstrated in both co-primary analysis 
populations, with clinical cure rates at test-of-cure 68.8% 
for CAZ/AVI vs. 73% for meropenem [difference (95% 
CI), –4.2 (–10.76, 2.46), P=0.007] in the modified intent-
to -treat population and 77.4% and 78.1%, respectively 
[difference (95% CI), –0.7 (–7.86, 6.39), P<0.001] in 
the clinically evaluable population. Secondary analysis 
produced similar results, including patients with VAP vs. 
non-VAP, renal function status (augmented renal clearance, 
normal renal function/mild impairment or moderate 
to severe impairment) and concomitant medication 
with aminoglycosides (43). Based on the results of the 
RECLAIM1 and 2 studies, the REPROVE protocol was 
amended to increase the CAZ/AVI dose for patients with 
moderate/severe renal impairment reflecting PK/PD data 
and amendments in the Summary of Product Characteristics 
(SPC) (33,34,40,44). Bacterial persistence with increasing 
MIC (≥4-fold MIC increase) at end of treatment and/or test 
of cure was observed in 2/125 (1.6%) patients in the CAZ/
AVI group and 11/131 (8.4%) patients in the meropenem 
group. Overall, CAZ/AVI was well tolerated as in phase 2 
and previous phase 3 trials with no similar to the comparators 
adverse event rates in all published studies (40-43).

In real life, CAZ/AVI is primarily used against CRE 
infections (not enrolled in registrational trials) displaying 
clinical response rates between 45% and 76% and relapse 
rates of 23% (4,26,45,46). A single-center observational 
study showed higher rates of clinical success and lower 
mortality with CAZ/AVI compared with other regimens 
employed for carbapenem-resistant K. pneumoniae (KPC-
3 or -2) bacteraemia (47). Development of resistance to 
CAZ/AVI (MIC ≥16 mg/L) following relatively short 
courses of therapy generated questions as to whether 
combination treatment could avert this event (47). A 
recently published meta-analysis of 4,951 patients deriving 
from nine Randomized-controlled trials (RCTs) and 

three observational studies, reported comparable clinical 
response rate with CAZ-AVI vs. carbapenems and non-
inferior bacterial eradication, with no significant difference 
in mortality rates and adverse events. However, in patients 
infected by CRE, CAZ/AVI produced improved clinical 
response (RR =1.61; 95% CI, 1.13–2.29) with reduced 
mortality (RR =0.29; 95% CI, 0.13–0.63) than comparator 
regimens. Improved clinical response with CAZ/AVI was 
also shown in bloodstream infections (48).

Summarizing, CAZ/AVI represents an important 
addition to our armamentarium against MDR Gram-
negative pathogens, being the first marketed treatment 
option against KPC producers. Treatment as monotherapy 
is however questionable with existing data, particularly in 
the context of life-threatening infections.  Expert-driven 
recommendations argue for combination treatment (an 
aminoglycoside, fosfomycin, tigecycline or colistin and 
hopefully plazomicin in the near future), based on the 
antibiogram and the required PK/PD parameters in the 
infectious focus (4). Its expanded spectrum, covering a 
considerable proportion of Enterobacteriaceae harboring 
ESBLs and variable proportions of P. aeruginosa strains, 
makes CAZ/AVI an appealing treatment option in the 
empiric treatment of severe infections by MDR pathogens 
and low probability of metallo-β-lactamases and A. 
baumannii. Empiric use of CAZ/AVI should be reserved 
for patients with strong risk factors for infections by KPC- 
or OXA-48-producers. Monitoring of prescriptions by 
antibiotic-expert teams is highly advisable. The need of 
combination treatment should be balanced, considering 
microbiology data and severity of infection. Figure 1 
summarizes potential indications for use of ceftazidime 
avibactam (4). 

Ceftolozane/Tazobactam (Zerbaxa®, Merck & Co., Inc)
Ceftolozane/tazobactam (C/T) combines a well-established 
β-lactamase inhibitor with ceftolozane, a novel oxyimino-
cephalosporin structurally related to ceftazidime. The latter 
has  higher affinity than ceftazidime for the penicillin-
binding proteins PBP1b, PBP1c, PBP2 and PBP3, which 
are essential in Pseudomonas aeruginosa (49,50). Ceftolozane 
remains active in  AmpC overproduction, overexpression of 
efflux pumps, and loss of the OprD outer membrane porin, 
which are common in P. aeruginosa (51). The development 
of mutational resistance to C/T in P. aeruginosa requires 
several mutations leading to AmpC overexpression and 
structural modification (52). 

Tazobactam provides stability against most extended-
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spectrum β-lactamases (ESBLs) which hydrolyze ceftolozane 
alone (49), but the combination of C/T is vulnerable in 
the presence of carbapenemases (e.g., KPC, VIM, NDM, 
GES), except for OXA-48 (51). Large surveillance studies 
show that C/T has the most potent in vitro activity among 
β-lactams against P. aeruginosa and excellent activity 
against Enterobacteriaceae. Haemophilus influenzae and 
Moraxella catarrhalis are susceptible to C/T whereas some 
of the Burkholderia spp. and Stenotrophomonas maltophilia 
isolates have relatively low MICs to C/T. A. baumannii 
displays no substantial susceptibility (51-53). Among Gram-
positive bacteria, C/T shows considerable in vitro activity 
against Streptococcus viridans and β-hemolytic streptococci 
(Streptococcus pyogenes and S. agalactiae), but has uncertain 
activity against S. pneumoniae. While it is not active 
against staphylococci and enterococci and has minimal 

anaerobic activity (49,51,53). Time-kill studies have also 
shown a greater bactericidal activity against P. aeruginosa 
compared with other cephalosporins whereas carbapenems 
appear to be more potent against Enterobacteriaceae (54). 
Pharmacodynamic studies have shown that the time of free 
drug concentration above the MIC required to induce the 
same magnitude of bactericidal activity or to prevent the 
emergence of resistance is lower for C/T compared with 
other cephalosporins against Gram-negative bacteria (55). 

C/T is currently approved for clinical use in the United 
States and Europe for the indications of cIAIs and cUTIs, 
based on phase 3, non-inferiority clinical trials that 
compared C/T in combination with metronidazole versus 
meropenem and C/T versus levofloxacin, respectively 
(56,57). Another phase 3 clinical trial (ASPECT-NP) 
comparing C/T with meropenem in patients with HAP 

Targeted 
treatment 

Infection by an isolate 
with documented in 
vitro susceptibility 

and absence of MBL 
mechanism of resistance 

Empiric treatment 

Strong or multiple risk 
factors for infection by 
MDR strains producing 

KPC or OXA-48 enzymes 

• KPC or OXA-48 producing 
Enterobacteriaceae 

• Pseudomonas spp if no other treatment 
option exists 

• In mild infections such as skin and soft tissue 
infections or urinary tract infections other 
options may be applicable as monotherapy 
if in vitro activity is demonstrated (i.e 
aminoglycosides or tigecycline, depending 
on the infectious focus) 

• Monotherapy with ceftazidime avibactam 
should be reserved in non-lifethreatening 
infections 

• Known colonisation or prior infection (or 
roomate infected) by Enterobacteriaceae 
strain producing KPC or OXA-48 OR 

• Local epidemiology (or recent hospitalization 
in settings) with more than 20-25% 
prevalence of carbapenem-producing and 
ESBL-producing Enterobacteriaceae 

• PLUS any of the following 
• Prior use of carbapenems and/or colistin 
• ICU admission or long admission in hospital 

wards 
• Severe hospital-acquired infection 
• Immunossuppression, multiple comorbidities

Figure 1 Summary of potential indications of ceftazidime-avibactam, as empiric or targeted treatment. 
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requiring mechanical ventilation or VAP has been 
completed in June 2018. Up to this writing, the results have 
not been announced.

The dosage of C/T used in the nosocomial pneumonia 
trial was double (3 g every 8 h for normal renal function) 
the dosage used in the previous trials (1.5 g every 8 h). 
This was based on a phase 1 pharmacokinetic study 
in healthy volunteers that showed the area under the 
concentration (AUC)—time curve for ceftolozane in the 
ELF was approximately half than that in plasma (12,58). A 
population pharmacokinetic model verified that doubling 
of the ceftolozane dosage is required for a higher than 90% 
probability of pharmacodynamic target attainment for 1-log 
killing of pathogens with an MIC ≤8 mg/L (13,59). Of note, 
the breakpoint of susceptibility for C/T against P. aeruginosa 
is 4 mg/L according to both CLSI and EUCAST. The 
3 g every 8 h dosage for C/T has been further evaluated 
in healthy volunteers for a duration of 10 days. No safety 
concerns were raised (60). A study using an experimental 
rabbit P. aeruginosa pneumonia model showed that C/T was 
equally effective to ceftazidime, piperacillin/tazobactam, 
and imipenem, if a dosage of C/T of 1.5 g every 8 h used, 
but more effective than the comparators with doubling of 
the dosage (61).

Pending the announcement of the results of the 
ASPECT-NP trial, data on the clinical effectiveness of 
C/T for respiratory infections and VAP in particular, 
are currently based on small case series and case-reports 
relating to off-label use. Variable dosage regimens were 
used and C/T was often administered in combination with 
other antibiotics. The published relevant case-series up 
to this writing overall show that C/T resulted in clinical 
success in 61.4% of patients with P. aeruginosa pneumonia 
(62-69). Based on the available data, failure of C/T therapy 
in serious P. aeruginosa infections is associated with an 
MIC higher than 4 mg/L (70) and the use of the lower 
dosage regimen (71). Development of C/T resistance 
during therapy of P. aeruginosa infections has also been  
described (64,67,70).

Regarding the effectiveness of C/T for infections caused 
by ESBL-producing Enterobacteriaceae, in a secondary 
analysis of the cases included in the clinical trials of cIAIs 
and cUTIs C/T achieved clinical cure rates (97.4%) among 
patients with E. coli or K. pneumoniae infections compared 
with 82.6% for levofloxacin and 88.5% for meropenem (72).

Both ceftolozane and tazobactam are excreted mainly 
through kidneys. Substantial reductions in the dosage of 
C/T should be made with decreasing creatinine clearance 

according the approved label of the drug. Monte Carlo 
simulations have shown the currently approved dosage 
of C/T for various degrees of renal impairment have 
a probability of pharmacodynamic target attainment 
more than 90% for an MIC up to 8 mg/L (73). This 
figure decreases to an MIC of 4 mg/L for patients with 
normal renal function or augmented renal clearance (73). 
Moderate renal impairment has not shown to affect the 
outcomes of C/T therapy in the clinical trials of cIAIs and  
cUTIs (71). Higher than the currently approved dosage may 
be required though to treat serious respiratory infections 
due to MDR P. aeruginosa (74). Case-reports have proposed 
a dosage up to 1.5 g three times daily for continuous 
venovenous hemofiltration (75) and of 1.5–3 g three times 
daily for continuous venovenous hemodiafiltration (76,77). 
The labelled duration of the infusion is 1 hour. However, 
a 4- to 5-hour extended infusion regimen has been shown 
to maximise the probability of pharmacodynamic target 
attainment for infections with pathogens with elevated 
MICs, according to Monte Carlo simulations (75,78).

As part of combination empiric regimens, C/T can 
provide adequate coverage of P. aeruginosa isolates in 
settings where carbapenemase-production is low (79). In 
conclusion, C/T appears to be a valuable addition to the 
antimicrobial armamentarium for the treatment of VAP. 
The main place in therapy of C/T in this setting is for 
empirical or targeted coverage of infections caused by P. 
aeruginosa. It has been recommended for this indication 
in a reiteration of the current international guidelines 
for ventilator-associated pneumonia (80). C/T may be 
the treatment of choice for P. aeruginosa strains with 
resistance to carbapenems attributed to mechanisms other 
than the production of carbapenemases. Against ESBL-
producing Enterobacteriaceae C/T may be considered as 
a carbapenem-sparing option. The results of a recently 
completed phase 3 clinical trial are awaited to establish the 
role of C/T in HAP/VAP.

Aztreonam/avibactam (Pfizer)
Aztreonam, a well-established monobactam antibiotic since 
1986, with clinically useful activity against aerobic MBL-
producing bacteria, is currently being re-examined due 
to its potential to treat MDR Gram negative bacteria. Its 
activity in current clinical practice against MBL-producers 
is hampered by the frequent co-production of additional 
β-lactamases including ESBLs, AmpC enzymes, and serine 
carbapenemases on the same isolate, which hydrolyse 
and inactivate aztreonam (81-84). Its combination with 
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avibactam expands the in vitro spectrum to include strains 
producing Ambler class A and class C, and some class D 
β-lactamases, including ESBLs, and serine carbapenemases 
(KPC and OXA-48-type) (85). The combination of 
aztreonam-avibactam achieved a significant reduction in 
MIC values for Enterobacteriaceae isolates producing 
β-lactamases, ESBL and AmpC enzymes, including  
OXA-48 (86). The addition of avibactam to aztreonam failed 
to restore susceptibility in MDR strains of P. aeruginosa and 
A. baumannii, suggesting that resistance to aztreonam in these 
species is primarily driven by other mechanisms (82,83,87-89).

At present, a phase 3 clinical trial is recruiting 
patients with serious infections due to Gram- negative 
bacteria and limited or no treatment options, in order to 
determine efficacy, safety and tolerability of aztreonam/
avibactam ± metronidazole versus meropenem ± colimycin 
(NCT03329092). In addition, a randomized phase 3 clinical 
trial is estimated to start in September 2018, with aim to 
evaluate the clinical use of aztreonam/avibactam compared 
to best available therapy (BAT) in hospitalized patients with 
infections due to metallo-β-lactamase (MBL)- producing 
Gram-negative bacteria, including HAP and VAP.

In this regard, aztreonam/avibactam represents one of 
the most promising treatment options for serious infections, 
including HAP and VAP, caused by resistant bacteria, 
and particularly those expressing metallo-b-lactamases, 
for which currently very few agents are coming from the 
pipeline.

Ceftaroline/Avibactam (ZinforoTM, Pfizer)
Ceftaroline is a novel, fifth generation cephalosporin, 
which has been approved by the FDA and EMA for acute 
bacterial skin and skin structure infections caused by MRSA 
and community-acquired pneumonia (CAP) including that 
caused by S. pneumoniae (90-92). This novel cephalosporin 
possesses both Gram-positive and Gram-negative 
coverage, including methicillin susceptible Staphylococcus 
aureus (MSSA), MRSA and Enterobacteriaceae, although 
demonstrates limited anaerobic activity and no activity 
against abdominal anaerobes as well as ESBL and AmpC 
expressing species, A. baumannii and P. aeruginosa (90,93). 
The prodrug, ceftaroline fosamil, is converted to active 
ceftaroline in the plasma, which binds to the plasma 
proteins in approximately 20% and it is mainly excreted 
by the kidneys. The recommended dose is 600 mg iv over  
one-hour infusion twice daily and adjustment for moderate 
and severe renal impairment is needed (36,90,94).

Although the ceftaroline/avibactam combination is not 

yet thoroughly tested, the addition of avibactam seems 
promising with view to overcoming the above-mentioned 
limitations in terms of spectrum and extending activity 
against many multidrug-resistant (MDR) pathogens, 
while preserving its potent anti-staphylococcal spectrum 
(including MRSA strains) (95). This combination could 
prove to be extremely useful as a single-agent empirical 
coverage for Gram-positive/Gram-negative pathogens 
with multiple mechanisms of resistance. Although further 
pharmacokinetic studies are required in critically ill and 
mechanically ventilated populations, this antibiotic, due to 
its relative antimicrobial spectrum covering both Gram-
negative and Gram-positive strains, seems quite promising 
coupled with avibactam in VAP/HAP. 

New cephalosporins

Cefiderocol (Shionogi Inc)
Cefiderocol,  formerly S-649266, is  a siderophore 
cephalosporin for parenteral use with a novel mechanism 
of bacterial cell entry. Siderophores are small, high-affinity 
iron-chelating compounds that are produced by a variety 
of bacteria and fungi (96). Microorganisms recognize 
only certain siderophores, therefore, such conjugates 
exhibit a selective antimicrobial activity (97). For years, 
use of the iron transport abilities of siderophores to carry 
antimicrobials into cells has been a great challenge (98). 
Cefiderocol possesses a catechol moiety functioning as 
a siderophore to form a chelating complex with iron; it 
utilizes the bacterial iron transport system to penetrate 
susceptible microorganisms (99). 

Cefiderocol demonstrated in vitro activity against ESBL-
producers and CRE. Organisms producing Ambler Class A, 
D and B enzymes (metallo-β-lactamases) including NDM-1 
enzymes were susceptible to cefiderocol (100). In vitro study 
of a large international collection of clinical strains showed 
for cefiderocol MIC90s of 0.5 and 1 μg/mL respectively, 
including a variety of MDR-bacterial pathogens such as 
P. aeruginosa, A. baumannii, S. maltophilia and Burkholderia 
cepacia (101). In an in vitro study of cefiderocol against 282 
meropenem-nonsusceptible isolates of P. aeruginosa, A. 
baumannii, K. pneumoniae, and Providencia stuartii collected 
from Greek hospitals, cefiderocol displayed the lowest MIC 
values among 10 comparators (102). In the neutropenic 
murine thigh infection model, cefiderocol achieved bacterial 
stasis 85%) P. aeruginosa isolates, 88% A. baumannii isolates, 
and 77% of Enterobacteriaceae isolates with cefiderocol 
MIC ≤4 μg/mL. Furthermore, it was efficacious against two 
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tested isolates of NDM-producing K. pneumoniae (103).
Cefiderocol  i s  currently  in phase 3 of  c l inical 

development. Data from one Phase 3 trial known as 
APEKS-cUTI has been reported by Shionogi (104). 
Cefiderocol in hospitalized patients at risk for MDR 
cUTI, demonstrated non-inferiority over treatment 
with imipenem/cilastatin. Cefiderocol non-inferiority 
was consistent across patient clinical and microbiologic 
subgroups demonstrating a treatment difference of 15–20% 
vs. comparator arm, while being generally well tolerated, 
with no unexpected safety concerns identified (104). 

Two phase 3 clinical trials are currently ongoing for 
various infections, including VAP. The APEKS-NP trial 
is a clinical study on adults with nosocomial pneumonia 
[HAP, VAP and healthcare-associated pneumonia (HCAP)] 
caused by Gram-negative pathogens versus meropenem 
(NCT03032380). A second multicenter Phase 3 trial 
comparing cefiderocol to best available therapy in infections 
caused by carbapenem-resistant pathogens (CREDIBLE) is 
also underway (NCT02714595). 

Cefiderocol stands out as one of the most promising new 
antimicrobials against MDR Gram negative pathogens, 
with possible indication nosocomial pneumonia. Some of 
the most appealing characteristics of this molecule are the 
unique mechanism of entry into the bacterial cell and the 
expanded antimicrobial spectrum including metallo-β-
lactamase producers and A. baumannii, against which very 
few forthcoming therapeutic options will be active. 

Combinations of carbapenems with novel β-lactamase 
inhibitors

Meropenem/vaborbactam (VabomereTM, Melinta 
Therapeutics)
This combination includes an existing β-lactam antibiotic 
(meropenem) with a novel inhibitor (vaborbactam) which 
is a cyclic boronate non-β-lactam β-lactamase inhibitor. 
Vaborbactam (formerly RPX7009) possesses high affinity 
for serine proteases therefore inhibits KPC enzymes, 
as well as other Ambler class A and C enzymes but 
not members of Amber class B (metallo-β-lactamases/
MBLs). It has not antibacterial activity itself (105). In 
a concentration of 8 μg/mL, vaborbactam augments in 
vitro the activity of meropenem against carbapenemase-
producing Enterobacteriaceae isolates by least 64-fold 
but has no effect on meropenem non-susceptible A. 
baumannii spp producing OXA-type carbapenemases or 
on P. aeruginosa (106,107). The half-life of vaborbactam 

is 1.23 h and the steady state volume of distribution 21.0 
L mimicking PK properties of β-lactams (108). The used 
combination dose of meropenem–vaborbactam in clinical 
studies is 2 g—2 g iv every 8 h. With this dose the achieved 
concentrations in plasma and ELF display a similar time-
course and magnitude, with a penetration of 65% and 79% 
for meropenem and vaborbactam respectively (108). 

In a phase 3, multi-center, 1:1 randomized, double-
blind study comparing meropenem-vaborbactam to 
piperacillin-tazobactam in the treatment of cUTI in 
adults (TANGO-1) non-inferiority was achieved for the 
FDA and the EMA endpoints (109). According to the 
TANGO-1 study data, the US FDA approved recently 
meropenem–vaborbactam for the treatment of cUTIs 
including pyelonephritis (110). The TANGO-2 study 
(ClinicalTrials.gov Identifier: NCT02168946) was a 
randomized 2:1 study comparing meropenem-vaborbactam 
to best-available therapy (BAT) for the treatment of a 
variety of infections including  cUTI, hospital-acquired 
and ventilator-associated bacterial pneumonia (HABP/
VABP), cIAI and bacteremia by suspected carbapenem-
resistant Enterobacteriaceae (111). TANGO-2 recruitment 
was prematurely terminated following interim analysis by 
the independent Data and Safety Monitoring Board (DSMB) 
based on 72 patients. Preliminary results showed statistically 
significant efficacy over BAT (57.1% vs. 33.3%), decreased 
nephrotoxicity and fewer treatment-related adverse events 
across all groups (111,112). In the cohort of patients with 
HABP/VABP and bacteremia, a lower day-28 all-cause 
mortality rate was demonstrated versus BAT (25.0% vs. 
44.4%, respectively) (112). TANGO-3 (ClinicalTrials.
gov identifier: NCT03006679, not yet recruiting at 
the writing of this review) will compare meropenem-
vaborbactam vs. piperacillin-tazobactam in patients with 
HABP/VABP. Furthermore, a new phase 1 trial is currently 
underway in pediatric patients (ClinicalTrials.gov Identifier: 
NCT02687906). 

Imipenem-relebactam (Merck Sharp & Dohme Corp.)
This combination includes an existing β-lactam antibiotic, 
imipenem-cilastatin, with the novel non β-lactam 
β-lactamase inhibitor relebactam (formerly MK-7655) 
which is a bridged bicyclic urea molecule (113). Relebactam, 
is a serine-based molecule with a diazabicyclooctane core 
and a piperidine ring has a mechanism of action similar 
to that of avibactam, resulting in a potent inhibition of 
both class A and C β-lactamases including KPC enzymes 
but is not active against metallo-beta-lactamases (MBLs) 
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and class D carbapenemases (113). The combination of 
relebactam with imipenem broadens the spectrum to 
include imipenem-resistant Enterobacteriaceae and P. 
aeruginosa strains without however providing any benefit 
against A. baumannii. At a concentration of 4 mg/L it 
relebactam reduced the imipenem MIC for KPC-producing 
Enterobacteriaceae from 16–64 mg/L to 0.12–1 mg/L, but 
is not clear if there is an activity against OXA-48 producing 
isolates (114,115). 

The PK index correlating to efficacy of relebactam is 
AUC while the optimal dosing has not been determined 
yet. However, phase 1 studies suggested that relebactam 
doses at or above 125 mg every 6 h achieve an adequate PK/
PD target (116). Imipenem and relebactam are associated 
with a promising intrapulmonary penetration (ELF 53% 
of plasma) reflecting a good therapeutic profile against 
nosocomial respiratory infections (117). Clinical but not 
published yet data from phase 1 trials showed a favorable 
tolerability and the most common observed adverse events 
(incidence >5%) are diarrhea, nausea, and vomiting (117). 
In phase 2 clinical studies in patients with cIAI and cUTI 
the administration of imipenem (500 mg every 6 h) with 
relebactam in different dosages (125 and 250 mg) vs. 
imipenem-cilastatin alone was associated with high clinical 
response (>97%) in both infections and similar rates of 
microbiological response, confirming non-inferiority of 
both imipenem/cilastatin + relebactam doses to imipenem/
cilastatin alone (118). All 23 patients with imipenem non-
susceptible pathogens had favorable microbiological 
responses (100% in each group).  A phase 3, randomized, 
double-blind, controlled trial (including HAP and VAP) 
in adult patients with infections due to imipenem-resistant 
strains (imipenem-relebactam versus colistimethate sodium 
plus imipenem/cilastatin was used) has been completed 
without announced results yet (ClinicalTrials.gov Identifier: 
NCT02452047). Currently a phase 3 study is ongoing, 
aiming to assess the non-inferiority of imipenem-relebactam 
against piperacillin/tazobactam in patients with HAP or 
VAP (ClinicalTrials.gov Identifier: NCT02493764).   

New tetracyclines 

Eravacycline (Xerava™, Tetraphase Pharmaceuticals, 
Inc.)
Eravacycline is a novel, synthetic fluorocycline, with  
in vitro broad-spectrum activity against aerobic bacteria, 
both Gram-positive cocci and Gram-negative bacilli, 
including difficult-to-treat resistant pathogens such 

as methicillin-resistant Staphylococcus aureus (MRSA), 
Vancomycin-resistant Enterococcus (VRE), GNB producing 
ESBL and KPC enzymes and MDR A. baumannii except 
for P. aeruginosa (119,120). Eravacycline, compared to 
commonly used antibiotics showed a potent in vitro activity 
against the majority of MDR pathogens with an MIC90 of  
0.5 mg/L against E. coli isolates that were non-susceptible 
to third-generation cephalosporins and fluoroquinolones 
(120,121). In a PK/PD study of eravacycline in a murine 
model of infection by Enterobacteriaceae, fAUC/MIC 
index was confirmed, as the parameter which is associated 
with efficacy of the tetracyclines class (122). Eravacycline, 
has similar structure, mechanism of action and antibacterial 
spectrum with tigecycline, retaining activity against most 
tetracycline resistance mechanisms (efflux pumps and 
ribosomal protection proteins) (123). However, eravacycline 
is more potent in vitro, 2- to 4-fold versus Gram-positive 
cocci and 2- to 8-fold versus Gram-negative bacilli 
(119,124). In addition, eravacycline has excellent oral 
bioavailability, high metabolic stability and low potential for 
drug to drug interactions while its activity in biofilm cultures 
appeared more effective than tigecycline (119). Against 
clinical isolates of A. baumannii, eravacycline displayed 
greater susceptibility than tigecycline and demonstrated 
improved in vitro activity against CRE isolates, higher 
serum levels, and better tolerability (120,125). PK/PD 
studies support once-daily administration. The availability 
of both oral and intravenous formulations is an advantage, 
whereas good lung penetration and activity on bacterial 
biofilm provide promising features for the treatment of ICU 
infections and particularly VAP and VAT (119,125,126). 
PK/PD studies in murine thigh infection have shown 
maximum plasma concentration (Cmax) values of 0.34 to  
2.58 mg/L, area under the concentration-time curve 
(AUC) from time zero to infinity (AUC0–∞) values of 2.44 to  
57.6 mg·h/L, and elimination half-lives of 3.9 to 17.6 h (127). 

The clinical efficacy of eravacycline was demonstrated 
in community-acquired cIAIs and cUTIs (128-130). At the 
time of the writing of this review, several studies have been 
completed, including a phase 2 clinical trial for the treatment 
of cIAIs and four phase 3 clinical trials known as IGNITE 
trials (Investigating Gram-negative Infections Treated with 
Eravacycline). IGNITE1 and IGNITE4 were randomized, 
double-blind, double-dummy, multi-center studies assessing 
the efficacy and safety of intravenous (IV) eravacycline  
(1 mg/kg iv q12h) compared to ertapenem and meropenem, 
respectively, in patients with cIAI. Both IGNITE1 (541 
enrolled patients) and IGNITE 4 (500 enrolled patients) 
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met the primary endpoints of clinical cure (128,129). In 
a pooled analysis of IGNITE1 and IGNITE 4 studies 
announced as congress presentation, favorable clinical and 
microbiological responses were observed for eravacycline 
against Enterobacteriaceae and Acinetobacter baumannii, including 
those demonstrating resistant phenotypes and genotypes (130). 
In patients with cIAIs caused by A. baumannii, of which 
most strains were MDR, eravacycline-treated patients 
achieved a 100% clinical and microbiological response rate. 
Both IGNITE 2 and 3 phase 3 randomized, multi-center, 
double-blind, clinical trials evaluating the efficacy and 
safety of once-daily iv eravacycline (1.5 mg/kg every 24 h) 
compared to levofloxacin (750 mg every 24 h) and ertapenem  
(1 g every 24 h) respectively for the treatment of cUTI 
failed to meet non-inferiority criteria. Full data analysis is 
not yet available however the selected lower dose compared 
to that administered in the cIAI trials may have contributed 
to this. The manufacturing company applied in US and 
European regulatory agencies only for the cIAI indication. 
Approval was granted at the time of writing for US  
market (131). 

A phase 1 study in healthy volunteers showed an 
excellent penetration profile in lung tissue (concentrations 
greater than plasma by six-fold in the ELF and 50-fold 
in the alveolar macrophages), highlighting eravacycline 
as a perfect candidate for treatment against MDR 
bacteria causing pneumonia in critically ill patients (126). 
Summarizing, eravacycline allows good coverage of the vast 
majority of difficult-to-treat bacteria except P. aeruginosa. 
It is the only antibiotic under development with potential 
activity against MDR A. baumannii and it may play a role 
in reducing the use of cephalosporins and carbapenems. 
However, considering the discordance of pharmacokinetics 
encountered in healthy volunteers compared to critically 
ill patients with tigecycline, and the surprising failure of 
eravacycline pivotal trials in cUTIs, further PK/PD studies 
of eravacycline in critically ill patients with HAP/VAP 
are warranted in order to establish adequate lung tissue 
penetration in mechanically ventilated patients and inflamed 
lung tissue (132,133). 

New aminoglycosides

Plazomicin (Zemdri™, Achaogen)
Plazomic in  i s  a  nex t -genera t ion  s emi syn the t i c 
aminoglycoside which acts by inhibiting bacterial 
protein synthesis and was developed to target MDR 
Enterobacteriaceae and specifically strains that express 

aminoglycoside-modifying enzymes (134,135). However, 
before its entry into clinical practice, ribosomal ribonucleic 
acid (rRNA) methyltransferase enzymes were already 
identified in Enterobacteriaceae, P. aeruginosa, and A. 
baumannii, conferring broad-spectrum resistance to 
all aminoglycosides, including plazomicin (136-139). 
Plazomicin exhibits dose-dependent bactericidal activity 
and is active in vitro against Gram-negative bacteria, such 
as Enterobacteriaceae, including CRE, ESBL and MDR 
isolates resistant to currently available aminoglycosides 
(136,138,140). In vitro activity with MIC90 ≤2 mg/L 
or 4 mg/L was demonstrated against KPC-producers 
exhibiting resistance to other aminoglycosides (137,140). 
In vitro activity of plazomicin against nonfermenters 
is less potent compared to Enterobacteriaceae. MDR 
P. aeruginosa had plazomicin MICs similar to those of 
other aminoglycosides (138). However, OXA-producing 
A. baumannii resistant to other aminoglycosides may be 
susceptible to plazomicin (139). Tested against 82 isolates 
of CRE, plazomicin showed 79% in vitro susceptibility 
with MICs ≤2 mg/L, including isolates producing 
metallo-β-lactamases type VIM or IMP but not NDM-1. 
Ribosomal methyltransferases are commonly co-produced 
by NDM-1-positive Enterobacteriaceae, therefore, 
plazomicin is not anticipated to be active against these 
isolates (136). In addition, plazomicin has shown potent 
activity against Gram-positive bacteria such as MRSA, 
including isolates with resistance to previous generation  
aminoglycosides (138).

The PK/PD properties of plazomicin revealed a linear 
and dose-proportional profile, with an elimination half time 
(t1/2) estimated at 4 h and lack of accumulation supportive 
of once daily therapy, whereas the dosage of plazomicin  
15 mg/kg should be considered as therapeutic (141,142). With 
15 mg/kg once daily dose, steady state volume of distribution 
was 0.19±0.02 L/kg, clearance 1.04±0.11 mL/min/kg, urinary 
excretion 89%±6% of the dosage after a single dose, Cmax at 
144±45 mg/L for the first dose and 142±32 mg/L following 
repeated administration, whereas the trough levels were 
0.21±0.06 mg/L after multiple dose.  

Plazomicin showed promising clinical characteristics 
and safety in the phase 2 trial (ClinicalTrials.gov under 
identifier NCT01096849) (143). EPIC (Evaluating 
Plazomicin in cUTI), was the first phase 3 registration 
trial (NCT02486627), in which plazomicin met the non-
inferiority endpoint when compared with meropenem (144). 
The second phase 3, CARE descriptive trial (ClinicalTrials.
gov Identifier NCT01970371), evaluated the efficacy and 
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safety of plazomicin versus colistin as part of a definitive 
combination regimen for the treatment of serious infections 
due to CRE excluding NDM-producers. CARE enrolled 
39 patients with a variety of infections including 29 
bloodstream infections (BSI), and 8 HAP/VAP. Patients 
received plazomicin 15 mg/kg every 24 h or colistin, in 
both arms combined with a second agent (tigecycline or 
meropenem). The plazomicin group was associated with a 
lower rate of mortality (23.5% vs. 50.0%, respectively; 90% 
confidence interval: 0.7–51.2%). Serious disease-related 
complications were observed in 5.6% vs. 19% in plazomicin 
and colistin groups respectively (145,146). Plazomicin 
exhibited a favorable safety profile including renal function 
and no reported ototoxicity. 

Plazomicin was FDA approved in June 2018 for patients 
18 years of age or older for the intravenous treatment of 
cUTIs, including pyelonephritis caused by the following 
susceptible microorganism(s): Escherichia coli, Klebsiella 
pneumoniae, Proteus mirabilis, and Enterobacter cloacae. In 
the drug’s SPC it is advised to be reserved for use in cUTI 
patients who have limited or no alternative treatment 
options, whereas potential nephrotoxicity, ototoxicity, 
neuromuscular blockade and foetal harm have been 
included in a boxed warning (147,148). 

In summary, plazomicin is characterized by a favorable 
lung penetration, minor toxicity issues and a challenging 
antimicrobial spectrum including MDR Gram-negatives 
(mainly Enterobacteriaceae but variably P. aeruginosa and A. 
baumannii) and MRSA. It could be an important treatment 
option in patients with VAP, particularly as part of empiric 
regimens and also as combination treatment where 
monotherapy is not advised. As an aminoglycoside, its use 
as monotherapy particularly in VAP requires further strong 
clinical evidence. 

Outer membrane protein targeting antibiotics (OMPTA)

Murepavadin (Polyphor Ltd)
Murepavadin (POL7080) is a 14-amino-acid macrocyclic 
peptide and is the first in-class pathogen-specific 
peptidomimetic antimicrobial. OMPTA possess a novel, 
non-lytic mechanism of action against Gram-negative 
bacteria. Murepavadin is Pseudomonas-specific and acts 
by binding to the lipopolysaccharide transport protein D 
(LptD), involved in lipopolysaccharide biogenesis (149). 
Disruption of the lipopolysaccharide transport causes 
alterations in the outer membrane of the bacterial cell and, 
ultimately death. Due to its selective affinity for Pseudomonas 

spp and the targeted mechanism of action, selection of 
resistance to other bacterial species or disruption of the 
colonic flora is not anticipated with murepavadin (150). 
In vitro, murepavadin exhibits potent antimicrobial 
activity against P. aeruginosa and good activity against 
some other tested Pseudomonas species but is not active 
against other Gram-negative species (i.e., S. maltophilia, B. 
cepacia, Enterobacteriaceae, A. baumannii) or Gram-positive 
cocci (151). In large in vitro studies of murepavadin and 
comparators, carbapenemase-producing, colistin-resistant, 
XDR and PDR isolates of P. aeruginosa were susceptible 
to murepavadine and exhibited an MIC90 of 0.12 mg/L, 
similar to non-MDR isolates (152,153). 

Murepavadin has shown to be highly effective in 
several animal infection models and particularly potent in 
neutropenic lung infection models against XDR isolates 
where polymyxins were the only treatment option (151). 
Murepavadin has completed 6 phase 1 (POL7080-
001, NP29332, NP29333, NP29334, POL7080-005 
and POL7080-009 and two phase 2 trials (POL7080-
002 and POL7080-003) (151,154), assessing safety and 
pharmacokinetics. PK studies after a single dose of 
murepavadin, showed a geometric mean half-life of 2.52 
to 5.30 h, a total clearance of 80.1 to 114 mL/h/kg, and 
a volume of distribution of 415 to 724 mL/kg, consistent 
across dose levels, with linear and dose-proportional 
pharmacokinetics (155,156). Lung penetration was assessed 
in a multiple dose study (ClinicalTrials.gov identifier: 
NCT02165293); ELF concentrations measured in this 
and subsequent studies were comparable with free plasma 
concentration with a third compartment effect (157-159). 

Murepavadin was well tolerated, adverse events were 
transient and generally mild (155). Nephrotoxicity, might 
be a concern in clinical practice, since systemic exposure to 
murepavadin (both as AUC and Cmax) increased in subjects 
with renal function impairment compared to subjects 
with normal renal function; therefore dose adjustments 
according to CrCl will be required (156). A phase 2 
open-label study in VABP (ClinicalTrials.gov identifier: 
NCT02096328) enrolled 25 VABP patients who received 
murepavadin, twelve of which had a microbiologically 
documented infection due to P. aeruginosa (in nine cases 
MDR or XDR isolate). Clinical cure rate was 83% at test 
of cure among patients with confirmed P. aeruginosa with 
a reported 28-day all-cause mortality rate of 8%, far below 
the 20–40% expected mortality rate (160). No development 
of treatment-emergent resistance to murepavadin was 
detected. Small sample size calls for caution in the 
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interpretation of this encouraging however preliminary data 
in humans with VABP. Currently a phase 3 clinical study of 
murepavadin in HABP/VABP is underway. 

In conclusion, murepavadin is a promising “concept 
approach to pathogen-specific treatment”. Its broad  
in vitro spectrum against XDR isolates of Pseudomonas spp, 
offers therapeutic option against this notorious pathogen 
and could enhance initial appropriate treatment regimens 
in patients with strong risk factors for infections by this 
pathogen. The drug would also be ideal for de-escalation of 
initial treatment, once identification and susceptibility are 
available. Due to its unique mechanism of action, no cross-
resistance with other antibiotics and no ecologic damage in 
bacterial flora seem to be additional advantages. 

Conclusions

As management of VAP requires adequate and timely 
antibiotic administration, global emergence of antimicrobial 
resistance poses serious challenges over our ability 
to maintain this axiom. Among recently developed 
antimicrobials presented herein, it is obvious that we will 
have good therapeutic options against Enterobacteriaceae 
excluding those producing metallo-β-lactamases, against 
which only cefiderocol and aztreonam/avibactam are 
expected to be active. As far as carbapenem non-susceptible 
P. aeruginosa is concerned, ceftolozane/tazobactam and 
to a lesser extend ceftazidime/avibactam may cover a 
proportion of current medical needs, but there still remain 
a considerable proportion of strains which harbor other 
resistance mechanisms. Murepavadin and cefiderocol 
hold promise against this particularly notorious pathogen. 
On the other hand, A. baummannii remains a treatment-
challenge. Eravacycline, cefiderocol and maybe plazomicin 
seem to be the most promising agents against this difficult-
to treat pathogen, but we have still a long road ahead, to see 
their position in clinical practice and particularly in VAP. 

In summary, despite persisting and increasing unmet 
medical needs, several newly approved and forthcoming 
agents hold promise for the treatment of VAP and 
hopefully will enrich our antimicrobial arsenal in the next 
few years. Some very optimists believe that we will be 
able to delete the term PDR from our medical dictionary. 
Recent experience with new antibiotics however, calls 
for studies assessing the efficacy of these novel agents 
in real-life, particularly considering their potential of 
selecting resistance. A crucial question is the potential 
of these agents to stand alone as monotherapy, which is 

questionable in an empiric regimen given their “precise” 
spectrum, whereas in the context of targeted therapy more 
real-life data are required. Companion drugs have to be 
carefully evaluated in terms of potential adverse events and 
ecologic consequences; finally, the economic component of 
combinations must be carefully balanced. The introduction 
of rapid microbiological methods of identification albeit 
costly and labour-demanding at this timepoint, could 
provide invaluable support in the rational use of new 
antimicrobials. Newly approved and forthcoming antibiotics 
with activity against MDR, XDR and currently PDR Gram 
negative pathogens have to be protected against unjustified 
use, otherwise, the joyful dawn will end and the PDR 
nightmare will be a global reality.
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