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Introduction

Extracellular vesicles (EVs) are subcellular components 
produced by a variety of cells, which are microscopic 
spherical particles containing specific lipids, RNA species, 
DNA and proteins (1). These small particles of 40 to 
5,000 nm in diameter are released by several cells into the 
extracellular matrix. While they were previously considered 
as a means to discard cellular metabolic waste, recently 
emerging evidence suggest that they are essential players 
in cell-to-cell communication (2,3). Based on their cellular 
biogenesis and characteristics, EVs are classified into three 
categories: exosomes, microvesicles, and apoptotic bodies. 
Exosomes, small vesicles (40–100 nm) synthesized and 
matured inside multivesicular bodies, are the most studied 
EVs (4). Also, atypically large (1–10 μm diameter) vesicles, 
termed large oncosomes, can be secreted by specific cancer 
cells (5). Given the fact that EVs and their cargo represent 
the physiopathological state of the cells by which they 
are emitted, and cancer cells produce a relatively large 
amount of EVs, recent studies have suggested that EVs 
and their cargo have a significant impact on the tumor 
microenvironment, tumor growth and differentiation (6).  
There is an increasing amount of research suggesting 
that EVs and their cargo serve as promising biomarker 
candidates in the diagnosis and prognosis of cancers (7,8). 
Furthermore, these particles wrapped in lipid bilayer 
represent a potential target for therapeutic use, and  
ex vivo modified or synthesized EVs can be engineered as 
therapeutic shuttles in treating cancerous diseases (9).

Hepatocellular carcinoma (HCC) is the most common 

primary liver cancer which is identified as the second 
leading cause of all cancer-related deaths (10,11). Due to 
the absence of typical early clinical manifestations and 
insufficiency of public surveillance (serum AFP test and 
abdominal ultrasound), many patients with liver cancer have 
lost the chance of radical surgical resection by the time of 
diagnosis (12). Localized interventional chemoembolization, 
systemic therapy, and chemotherapy can only prolong the 
survival time of patients with advanced liver cancer for a 
rather short period (10,12). The same dilemma goes with 
cholangiocarcinoma (CCA), let alone the worse prognosis 
of CCA is another problem we have to cope with (12-14). 
Studies have found that EVs play a critical role in HCC 
and CCA carcinogenesis and metastasis. Altered EVs in 
serum and bile as well as their cargo may serve as diagnostic 
biomarkers and therapeutic target for HCC and CCA and 
engineered EVs may be a brand-new therapeutic approach 
(15-17). Here we reviewed the research progress of EVs 
and their cargo in the diagnosis and treatment of HCC  
and CCA.

Liver-derived EVs and their physiological 
characteristics

The liver is a multicellular substantive organ composed 
of hepatocytes, bile duct epitheliums, hepatic stellate cells 
(HSCs), sinusoidal endothelial cells, and various immune 
cells (18). To perform a normal liver function, cells within 
the liver need to collaborate according to intercellular 
exchanges of substances and information. In addition to 
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direct contact between liver cells, liver cell-derived EVs 
are essential carriers of intrahepatic signal transduction (4). 
EVs released from different cells function distinctively. For 
example, EVs released by hepatocytes can regulate their 
proliferation, while HSCs-derived EVs are involved in liver 
fibrosis formation (19). When the liver is under stress or 
pathological conditions, EVs secreted by liver cells undergo 
significant changes in both quantity and quality, the 
concentration of EVs and the composition of EVs cargo, 
namely proteins, lipids, and nucleic acids, and etc., changes 
dramatically (20).

Bile synthesized by hepatocytes runs through biliary 
tract. It is a non-circulating fluid that contacts with 
the tumors directly, and it collects EVs released from 
hepatocytes, bile duct epitheliums, and cancerous 
cells, and etc. (1,21). EVs in bile are rich in microRNA  
(mi-RNA), long noncoding RNA (lncRNA) and proteins. 
They participate in the regulation of the biliary tract 
microenvironment and biliary cells proliferation (22). 
Masyuk et al. studied the physiological function of EVs in 
bile and argued that bile EVs could adhere to cholangiocyte 
cilia to inhibit the proliferation of bile duct epitheliums by 
decreasing the phosphorylated-to-total ERK1/2 ratio and 
promoting the expression of miR-15A (21). Wang et al. 
found that chicken bile EVs can enhance the proliferation 
of CD4+ and CD8+ T cells and activate intrahepatic 
monocytes in immune responses (23).

Liver-derived EVs participate in cirrhosis formation. In 
the process of liver cirrhosis, HSCs are the primary effector 
cells that secrete a large amount of insoluble collagen to 
facilitate fibrogenesis. Activation of HSC is the crucial 
step of liver cirrhosis. Chen et al. illustrated that during 
the activation of HSC, the concentration of TWIST1, 
a basic helix-loop-helix transcription factor, in HSC-
derived EVs decreased, which suppressed the expression of  
miR-214 and indirectly accelerated the synthesis of 
connective tissue growth factor 2 (CCN2), which takes 
the key role in the CCN2-dependent fibrogenesis (24). 
Charrier et al. stated that activated HSCs could wrap CCN2 
into secreted EVs, and those EVs transport CCN2 to other 
quiescent or activated HSCs to further promote hepatic 
fibrosis (25).

EVs and their cargo as potential biomarkers in 
HCC and CCA

The concentration and content of EVs released from 
cancer cells are significantly different from those released 

from non-cancerous cells (6), making EVs a new source 
of cancer biomarkers lately. Studies have demonstrated 
that the mi-RNA components in ovarian cancer and 
lung cancer cell-derived EVs are distinct from the mi-
RNA in non-cancerous cell-derived EVs respectively, 
enabling them to be used as diagnostic biomarkers for 
ovarian cancer and lung cancer (26,27). In another study, 
serum glypican-1 (GPC-1) positive EVs can be used as 
biomarkers in discriminating between pancreatic cancer 
and benign pancreatic lesions with absolute sensitivity and 
specificity, and the concentration of serum GPC-1 positive 
EVs is correlated with the tumor burden and prognosis of 
pancreatic cancer patients (28).

EVs as biomarkers for HCC

The study of potential biomarkers of HCC has always 
been a heated issue in the field of cancer research (29,30). 
In 2007, Valadi et al. found that exosomes can carry 
abundant mRNAs and mi-RNAs to target cells and express 
corresponding proteins in target cells (31). Since then, a 
growing number of evidence shows that cancer cells-derived 
EVs contain multiple types of RNA with cancer specificity 
and can serve as potential biomarkers (Table 1).

The predominant nucleotide content of HCC-derived 
EVs is various RNA species (17). Sohn et al. stated that the 
serum level of multiple EVs mi-RNAs in HCC patients 
was considerably higher than those in hepatitis B and liver 
cirrhosis patients, including miR-18a, miR-221, miR-222  
and miR-224, yet miR-101, miR-106b, miR-122, and  
miR-195 were significantly lower (36). Sugimachi et al. 
found that compared with HCC patients who did not have 
cancer recurrence after liver transplantation, the patients 
suffering from cancer recurrence have a decreased expression 
of circulating miR-718 in serum EVs. The declining level 
of miR-718 was associated with HCC aggressiveness (33). 
Wang et al. claimed that the appearance of serum exosomal 
miR-21 in patients with HCC was significantly higher than 
that in healthy people and patients with hepatitis B. The 
expression of EVs miR-21 was correlated with the degree of 
liver cirrhosis and tumor stage (37).

The proportion of lnc-RNA in EVs RNA is rather 
small, accounting for about 3% of total EVs RNA (42). 
However, growing evidence has proven that EVs lnc-RNA 
is involved in proliferation, recurrence, metastasis, and 
resistance to hypoxia and chemotherapy in liver cancer. 
Kogure et al. indicated that 1198-bp lnc-RNA, termed as 
TUC339, was significantly upregulated in HCC cells. The 
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Table 1 EVs cargo as diagnostic biomarkers for HCC and CCA

Cargo 
type

Content
EVs 

specimen
Disease Control SEN (%) SPE (%) References

mRNA hnRNPH1 Serum HCC CHB 85.2 76.5 Xu et al. [2018] (32)

miRNA miR-718 Serum HCC 
recurrence 

after LT

HCC without 
recurrence

– – Sugimachi et al. 
[2015] (33)

miR-203, miR-373 Serum Advanced 
stage of 

HCC

The early stage of 
HCC

– – Jang et al.  
[2017] (34)

miR-125b Serum HCC CHB – – Liu et al. [2017] (35)

miR-18a, miR-221,  
miR-222, miR-224

Serum HCC CHB & LC – – Sohn et al.  
[2015] (36)

miR-101, miR-106b,  
miR-122, miR-195

CHB

miR-21 Serum HCC Normal, CHB – – Wang et al.  
[2014] (37)

lnc-RNA ENSG00000258332.1 Serum HCC CHB 71.6 83.4 Xu et al. [2018] (38)

LINC00635 76.2 77.7

ENSG00000258332.1, 
LINC00635, serum AFP

83.6 87.7

HEIH Serum HCC CHC – – Zhang et al.  
[2018] (39)

Protein AnnexinV+, EpCAM+ Serum HCC Normal 78.5 63.3 Julich-Haertel  
et al. [2017] (40)

AnnexinV+, EpCAM+, 
CD147+

64.6 82.4

AnnexinV+, EpCAM+, 
CD133+

73.4 50.0

AnnexinV+, EpCAM+, 
ASGPR1+, CD133+

82.6 50.0

LG3BP Serum HCC Control 96.6 71.8 Arbelaiz et al. 
 [2017] (41)

PIGR 82.8 71.8

A2MG 92.9 56.2

FIBG 78.6 75.0

AMPN 72.4 71.8

miRNA miR-1274b, miR-16,  
miR-484, miR-486-3p

Bile CCA PSC, biliary 
obstruction, bile leak 

syndromes

67 96 Li et al.  
[2014] (16)

Table 1 (continued)
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proliferation and adhesion of HCC cells could be promoted 
with increasing expression of TUC339or inhibited with 
decreasing expression of TUC339 (43). Another study 
demonstrated that lnc-RNA H19 was enriched in EVs 
released from CD90+ liver cancer stem cells. lncRNA 
H19 induces an early recurrence of HCC and promotes 
metastasis of circulating CD90+ liver cancer stem cells 
by modulating endothelial cell, promoting cell-to-cell 
adhesion and angiogenesis (44). Takahashi et al. found that 
when HCC cells were exposed to antitumor drugs such 
as sorafenib, the stress-responsive lncVLDLR was highly 
expressed in HCC cells as well as within EVs. lnc-VLDLR 
in EVs can reduce chemotherapy-induced cell death. The 
expression of ATP-binding cassette, subfamily G member 
2 (ABCG2) is suppressed, and the viability of cancer cells 
is reduced by silencing lnc-VLDLR (45). Also, lnc-ROR 
is also related to the resistance of liver cancer cells. The 
expression level of lnc-ROR in normal hepatocytes is 
considerably low, while it is notably enriched within EVs 
of HCC cells, resulting in resistance to chemotherapy. 

Silencing the lnc-ROR could improve the sensitivity of 
HCC cells to chemotherapy. Besides, lnc-ROR could also 
serve as a potential biomarker for HCC (46).

EVs as potential biomarkers for CCA

In CCA, Severino et al.  found that bile EVs were 
significantly elevated in patients with CCA and pancreatic 
cancer. The median concentration of bile EVs from 
malignant patients was more than ten times higher than 
that from nonmalignant patients. It correctly classified 
malignant stenosis verse cholelithiasis and chronic 
pancreatitis (diagnostic accuracy, 100%). Results suggested 
that the diagnostic ability of bile EVs concentration was 
more superior when compared to the traditional serum 
carbohydrate antigen 19-9 (47).

Interestingly, there was no significant difference in 
serum EVs concentrations in patients with CCA, primary 
sclerosing cholangitis and HCC. However, several proteins 
with differential degrees of abundance were found in 

Table 1 (continued)

Cargo 
type

Content
EVs 

specimen
Disease Control SEN (%) SPE (%) References

Protein AnnexinV+, EpCAM+ Serum CCA Normal 78.5 63.3 Julich-Haertel  
et al. [2017] (40)

AnnexinV+, EpCAM+, 
CD133+

73.4 50.0

AnnexinV+, EpCAM+, 
ASGPR1+, CD133+

82.6 50.0

AMPN Serum CCA Normal 90.7 65.6 Arbelaiz et al.  
[2017] (41)

VNN1 72.1 87.5

PIGR 83.7 71.8

IGHA1 81.4 75.0

CRP 79.1 68.7

FIBG 79.1 75.0

FIBG PSC 88. 63.3

FIBB 74.4 66.0

IGHA1 74.4 70.1

HCC, hepatocellular carcinoma; CCA, cholangiocarcinoma; LT, liver transplantation; LC, liver cirrhosis; CHB, chronic hepatitis B; 
hnRNPH1, heterogeneous nuclear ribonucleoprotein H1; A1AG1, alpha-1-acid glycoprotein 1; A2MG, alpha-2-macroglobulin; AMPN, 
aminopeptidase N; ASPGPR1, asialoglycoprotein receptor 1; CRP, c-reaction protein; EpCAM, epithelial cell adhesion molecule; FCN2, 
ficolin-2; FIBG, fibrinogen gamma chain; ITIH4, inter-alpha-trypsin inhibitor heavy chain H4; LG3BP, galectin-3-binding protein; lnc-RNA, 
long non-coding RNA; PIGR, polymeric immunoglobulin receptor; PSC, primary sclerosing cholangitis; SEN, sensitivity; SPE, specificity; 
TAMP, tumor-associated microparticle; VNN1, pantetheinase; IGHA1, Immunoglobulin heavy constant alpha 1.



Annals of Translational Medicine, Vol 7, No 5 March 2019 Page 5 of 7

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(5):86atm.amegroups.com

serum EV of CCA versus controls, some of which present 
significant diagnostic potential. In a comparison of patients 
with primary sclerosing cholangitis and HCC, patients with 
CCA suffered from higher levels of C-reactive protein, 
ficolins-2, fibrinogen γ chain, and plasma protease C1 
inhibitors in serum EVs. Ficolin-2 and plasma protease 
C1 inhibitors were significantly elevated in the serum of 
patients with early staged CCA (I–II), indicating a higher 
diagnostic value than serum CA19-9 (41). Furthermore, a 
panel of mi-RNAs (191, 486-3p, 1274b, 16, 484) was found 
upregulated in bile EVs of patients with CCA comparing 
to patients with primary sclerosing cholangitis, biliary 
obstruction, and bile leak syndrome (16). Two lnc-RNAs 
(i.e., ENST00000588480.1 and ENST00000517758) were 
identified upregulated in the analysis of the bile EVs lnc-
RNA profile in CCA patients versus patients with biliary 
obstruction (48) (Table 1).

EVs-based treatment

EVs can serve as therapeutic compounds carriers, such as 
chemicals, RNAs or proteins, and protect those compounds 
from enzymatic degradation. As a result, it bears ideal 
potential in the new drug-delivery system. Recent studies 
show that specific RNAs or chemotherapeutic drugs can be 
effectively delivered to tumor sites once they are packaged 
into EVs, leading to better pharmacokinetic efficiency and 
therapeutic efficacy of the drugs (49).

EVs-based treatment for HCC

On the one hand, EVs can be used as miRNAs delivery 
media in treating liver cancer. Stellate cell-derived 
EVs carrying miR-335-5p, a tumor suppressor miRNA 
downregulated in HCC, inhibit HCC cell viability  
in vitro and induce tumor shrinkage in vivo by suppressing 
proliferation and promote apoptosis (50). Moreover,  
miR-122 loaded EVs released from adipose tissue-derived 
mesenchymal stem cells (ADMSCs) increases HCC cell 
sensitivity to the chemotherapeutic agents, sorafenib and 
5-FU, by inducing G0/G1 arrest and cell apoptosis in 
HCC cell cycle. Furthermore, intratumor injection of 
those loaded EVs in an HCC xenograft mouse model can 
strengthen the anti-tumor efficacy of sorafenib and reduce 
tumor size.

On the other hand, EVs are also used as toxic drugs 
delivery media in treating HCC. The same dosage of 
methotrexate via direct administration and microparticles-

delivered administration causes 2% and 23% cell death 
respectively (51). Toxicated H22 cells-derived drug-
encapsulating microparticles are also cytotoxic, triggering 
a domino-like cancer-killing effect. Methotrexate carried 
by microparticles is more effective than dissociative 
methotrexate in inhibiting tumor growth and prolonging 
survival time in xenograft mice (51).

EVs-based treatments of CCA

In CCA, fibroblast-derived EVs, carrying miR-195, 
inhibit CCA growth and invasiveness in vitro. miR-195  
is  an inhibitor of cancer growth and is  generally 
downregulated in the CCA cells (9). Possible mechanisms 
of the anti-neoplastic effect of EVs carried miR-195 are 
downregulating VEGF, cell division control (CDC) proteins 
25 and 42, as well as cyclin-dependent kinases (CDK) 1, 4, 
and 6.

Discussion

To date, the problem of lacking accurate early diagnosis 
and correct management for staged HCC and CCA is still 
seeking solutions. The carcinogenesis, development, and 
metastasis of HCC and CCA are somewhat complicated. 
Thus, the discovery of methods, as well as treatment for 
patients, remains a significant challenge. The presence 
of EVs, their tumor-associated cargo and their unique 
lipid bilayer characteristics in biological fluids make EVs 
excellent candidates for clinical application. Consequently, 
a growing number of studies have been conducted focusing 
on potential diagnostic use and innovative anti-tumor 
therapy via EVs. However, certain limitations remain to be 
unsolved: (I) the molecular mechanism of EVs synthesis, 
secretion, and participation in information exchange is 
not crystal clear; (II) although the International Society of 
Extracellular Vesicles (ISEV) provided official definition 
and subpopulation categories in 2012, recent literature 
suggested otherwise, such as large oncosomes. Types and 
characteristics of subpopulations of EVs need more in-
depth study, not until then shall we have the terminology 
unified; (III) there is no universally recognized procedure in 
preparation, separation, purification, and reservation of the 
EVs, especially for each subpopulation.

In conclusion, EVs represent a rather appealing and 
promising field of research in HCC and CCA with multiple 
potential applications, including being diagnostic and 
prognostic biomarkers and new approaches for cancer 
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treatment. However, more research and data are still needed 
to learn about EVs and their possible role in cancerous 
disease.
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