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Abstract: Metastatic spine disease is a heterogeneous clinical condition commonly requiring surgical 
intervention. Despite this heterogeneity, all cases share the common theme of altered tumor metabolism, 
characterized by aerobic glycolysis and high lactate production. Here we review the existing literature on 
lactate metabolism as it pertains to tumor progression, metastasis, and the formation of painful bone lesions. 
We included articles from the English literature addressing the role of lactate metabolism in the following: 
(I) primary tumor aggressiveness, (II) local tissue invasion, (III) metastasis formation, and (IV) generation of 
oncologic pain. We also report current investigations into restoring normal lactate metabolism as a means 
of impeding tumor growth and the formation of bony metastases. Both in vivo and in vitro experiments 
suggest that high lactate levels may be necessary for tumor cell growth, as small molecules inhibitors of 
lactate dehydrogenase (LDH5/LDHA) decrease both the rate of tumor growth and formation of metastases. 
Additionally, in vitro evidence strongly implicates lactate in tumor cell migration by driving the amoeboid 
movements of these cells. Acidification of the local bony tissue by excess lactate production activates CGRP⁺ 
neurons in the bone marrow and periosteum to generate oncologic bone pain. High lactate may also increase 
expression of acid sensing receptors in these neurons to generate the neuropathic pain seen in some patients 
with metastatic disease. Lastly, investigation into lactate-directed therapeutics is still early in development. 
Initial preclinical trials looking at LDH5/LDHA inhibitors as well as inhibitors of lactate transporters 
(MCT1) have demonstrated promise, but clinical work has been restricted to a single phase I trial. Lactate 
appears to play a crucial role in the pathogenesis of metastatic spine disease. Efforts are ongoing to identify 
small molecules inhibitors of targets in the lactogenic pathway capable of preventing the formation of 
osseous metastatic disease. 
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Introduction

Each year more than 1.7 million Americans receive a new 
cancer diagnosis, most commonly of the prostate, lung, 
or breast (1). Though prognosis varies wildly, for the 

vast majority of patients, disease is progressive and forms 
metastases, most commonly in the lungs, liver, and bones (2). 
More importantly, between 40% and 70% of patients will 
have metastatic cancer to the spine at some point during 
the course of their disease (3,4). Though the symptoms of 
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metastatic spine disease can have significant overlap with the 
symptoms produced by primary vertebral body pathologies 
e.g., osteosarcoma, this clinical entity represents a highly 
heterogeneous group with a varied array of dysregulated 
cell signaling pathways, genetic mutations, and clinical 
interventions. Despite this, some commonalities have been 
observed, notably shared metabolic disruptions (5). Here we 
review the role of these metabolic perturbations, specifically 
the proposed mechanisms involved in lactate metabolism, 
as they pertain to primary tumor growth, the formation 
of osseous metastasis, and the generation of oncologic  
bone pain.

Proposed mechanisms

From the Greek karkinos, or crab, cancer has been known 
to humans since pre-literary times. Despite this relatively 
benign nomenclature, advances in sanitation, childhood 
mortality, and preventative medicine, have led cancer to 
become a common clinical entity that is now the second 
leading cause of death in the US behind only heart disease (6).  
Much of this increase occurred during the 20th century, the 
same period during which cancer was demonstrated to be 
a disease of genetic mutation (7). Occurring concurrently 
with this research on cancer genetics were investigations 
into neoplastic metabolism with the goal of identifying 
how tumor cells fed and could thus be killed (8). This work 
culminated in the description of the Warburg effect, which 
posits that tumor cells are glucose-consuming and lactate-
producing, despite normoxic conditions (9,10). 

During this same time, research in muscle physiology 
and lactate metabolism was transitioning from an era 
where lactate was thought to be a “dead-end waste 
product” formed under hypoxic conditions, to our current 
understanding of it being a dynamic metabolite seen under 
normoxic conditions (5). Lactate is readily mobilized during 
times of stress and is the mechanism by which whole body 
metabolism is coordinated. In fact, lactate flux often exceeds 
glucose flux, and lactate accumulation is rarely if ever due 
to hypoxia in vivo (5). For a more detailed look at normal 
lactate metabolism, the reader is encouraged to see part 1 of 
this review.

The first work demonstrating a role for lactate in 
tumor metabolism was generated by the Cori’s and 
Warburg in the 1920s. The latter demonstrated increased 
venous lactate levels in tumor-bearing limbs of rats (11) 
as compared to control limb, as well as increased lactate 
production by tumor cells cultured in the presence of 

glucose (12). Incorporating contemporaneous research, 
lactate was suggested to be a metabolic waste product 
attributable to anaerobic cellular respiration within tumor 
cells, demonstrating a selective preference for anaerobic 
metabolism (5). Subsequent studies also reported increased 
glycolysis within cancer cells, which led to the formalized 
description of the Warburg effect as a key part of tumor 
metabolism in the 1970s by Racker (9,13). 

Research by Sonveaux et al. intimated that the increased 
lactate production might occur in the hypoxic tumor regions 
and then get shuttled to normoxic regions for utilization 
as a metabolic fuel (14). This shuttling of lactate between 
tumor cells was in line with work in muscle physiology, 
where numerous cell-to-cell lactate shuttles had been 
described by Brooks and others (15). Work to determine 
which tumors cells produce lactate, and which tumor cells 
use lactate is ongoing and dependent on numerous dynamic 
factors (see part 1).

More recently, tumor cells have been demonstrated to 
preferentially express lactate dehydrogenase type A (LDHA 
or LDH-5) (13), an isoform thought to more efficiently 
convert pyruvate to lactate in the presence of high pyruvate 
levels as may be seen in Warburg-type cancer cells (5). 
Consistent with this, both LDHA knockdown (16,17) and 
administration of LDH inhibitors seem to hinder the growth 
of tumor cells in vitro (18-20) suggesting lactate metabolism 
to be an essential component of carcinogenesis (13).  
Specifically, lactate has been implicated in the role LDH 
plays in promoting tumor aggressiveness and metastatic 
disease. Tumor aggressiveness has been described as the 
ability to grow or spread quickly, forming metastatic foci 
throughout the body. Three main steps characterize this 
process of progressive tumor invasion: (I) angiogenesis, (II) 
immune system evasion, and (III) extracellular matrix (ECM) 
degradation and tumor cell migration. The role of lactate in 
each of these will be discussed in turn (Figure 1).

Angiogenesis

Angiogenesis is an essential component of bone tumor 
growth and the formation of metastases (21), especially 
metastases to the vertebral column, which are commonly 
attributed to retrograde migration through Batson’s plexus 
(22,23). In support of this, it has been demonstrated that 
increases in the density of tumor microvessel formation are 
directly correlated to the risk of metastasis (24). 

The mechanisms by which lactate mitigates angiogenesis 
are largely derived from investigations into the mechanisms 
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of wound healing (25). Local increases in extracellular lactate 
diffuse down their concentration gradient into the cell via 
monocarboxylate transporters (MCTs). Once intracellular, the 
law of mass action drives lactate to form pyruvate, catalyzed 
by LDH (26). Pyruvate accumulation inhibits the formation 
of α-ketoglutarate (2-oxoglutarate). In the canonical 
view of angiogenesis, oxygen-rich environments prevent 
accumulation of pyruvate and consequently α-ketoglutarate 
levels are high. Alpha-ketoglutarate then binds to prolyl 
hydroxylases, resulting in hydroxylation and subsequent 
degradation of hypoxia-inducible factor 1α (HIF1α) (27,28). 
As α-ketoglutarate is depleted though, prolyl hydroxylase 
activity drops, decreasing HIF1α degradation (5). HIF1α 

then migrates to the nucleus and upregulates pro-angiogenic 
genes, including vascular endothelial growth factor (VEGF). 
HIF1α upregulation can additionally feedback to shift tumor 
cell metabolism towards glycolysis by inactivating pyruvate 
dehydrogenase, resulting in additional lactate production (13).  
This is further compounded by HIF-1α-mediated 
upregulation of LDH type A (LDHA) (29) and MCT4 (30), 
leading to increased lactate efflux from tumor cells (31).

HIF1α upregulation increases VEGF expression by 
tumor cells. High VEGF levels promote vascular pericyte 
detachment, degradation of the surrounding basement 
membrane, and blood vessel dilatation (32). This fenestrates 
the vessel, allowing plasma proteins to extravasate and lay 

Figure 1 Lactate contributes to local tumor invasiveness and the formation of metastatic disease. 1: Warburg-type cancer cells, commonly 
thought to be enriched in the hypoxic regions, upregulate proteins essential for the production (LDHA/LDH5) and export (MCT4) of 
lactate. By contrast, reverse Warburg cells—thought to be more enriched in normoxic tumor regions—upregulate enzymes and transporters 
(e.g., MCT1) important for using lactate as a metabolic fuel, setting up a lactate shuttle within the tumor based upon the tumor’s oxygen 
gradient. 2: Increased lactate production and export creates a strong ion gradient and concurrent drop in extracellular pH. This acidification 
leads to inhibition of immunosurveillance by impairing recognition of phenotypically abnormal cells by T-cells and NK cells, by impairing 
NK cell generation, and by decreasing monocyte motility. 3: Additionally, extracellular acidification disrupts the binding of cell surface 
integrins to the surrounding ECM, which in conjunction with downregulation of surface cadherins allows tumor cells to fragment from the 
central mass, leading to local invasion. This is further compounded by increases in the activity of tumor “invadopodia”, increasing tumor 
cell motility. 4: Further facilitating tumor cell invasiveness is upregulation of matrix metalloproteinases, which digest the local ECM, and 
CD44, enabling tumor cells to bind and migrate along hyaluronan-based proteoglycans. By inhibiting the citric acid cycle, lactate indirectly 
results in upregulation of vascular endothelial growth factor (VEGF), which drives angiogenesis and vascularization of the tumor mass. 5:  
A secondary function of VEGF is to promote the detachment of pericytes from local blood vessels, creating fenestrations in the vessel wall 
that facilitate tumor cell diapedesis and subsequent dissemination to distant sites, including the bones of the vertebral column through the 
veins of Batson’s plexus (6) (credit Z Pennington).
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down ECM into which endothelial cells migrate, creating 
new vessels that feed the tumor. Inhibition of VEGF 
signaling has proven to offer selective survival benefits in 
patients with advanced disease (32), though it remains to be 
seen whether such benefits are associated with changes in 
lactate metabolism.

Immune system evasion

At baseline, the intrinsic immune system, chiefly natural 
killer cells, regularly monitors the body’s tissues for 
alterations in cell phenotype, such as those that characterize 
neoplastic cells (33). When said cells are encountered, 
they are targeted for death through either the expression 
of Fas/Fas ligand or release of granzymes/perforin, 
both of which activate the apoptotic machinery (34). 
Successful downregulation of these pathways through 
loss of heterozygosity or hypermethylation, along with 
upregulation of anti-apoptotic proteins, allows tumor cells 
to escape immune system-mediated death (35). Similarly, 
downregulation of the highly immunogenic antigens, the 
instigating entity in the extrinsic cell death pathway, allows 
for immune evasion.

Alternatively, tumor cells may escape immune surveillance 
by creating a microenvironment that silences cells of the 
immune system (anergy) (36). This can occur through 
upregulation of immune cell inhibitory molecules—PD1 (37) 
or CTLA-4 (38)—or alterations in the extracellular milieu 
(e.g., through acidification of the extracellular space) (9).  
Changes in extracellular lactate, a key player in this 
acidification, have been demonstrated to affect cells of 
both the lymphoid and myeloid lineages. Within myeloid-
derived cells, monocytes demonstrate decreased motility 
in the presence of high extracellular lactate concentrations 
(contrasted with the increased motility seen in many 
cancer cells) (39). Lactate also biases tumor-associated 
macrophages towards a “tumor-friendly” M2 phenotype (40)  
and downregulates expression of both TNFα and IL-6,  
both of which help to mediate tumor cell immune escape (39).  
Similarly, high lactate levels impair IFNγ-producing T 
cells and NK cells of the lymphoid lineage by decreasing 
recognition of phenotypically abnormal cells and thus 
immunosurveillance within tumors (41). The acidic 
microenvironment created by lactate build-up compounds 
this issue by impairing the generation of natural killer cells 
responsible for tumor immunosurveillance (42).

Lactate specifically also impairs proper presentation of 
tumor cell antigens to members of the adaptive immune 

system by preventing normal differentiation of monocytes into 
dendritic cells (43). Similarly, high lactate levels inhibit proper 
function of CD8⁺ T cells and promote T cell anergy (44)  
by impairing lactate exportation (45). Generation of lactate 
by tumor cells can also deplete extracellular glucose stores 
to the point of becoming insufficient to sustain the effector 
functions of local immune cells, such as tumor cell killing (9).

ECM degradation, local invasion, and metastatic potential

As tumor cells proliferate, they must generate new regions 
for expansion, which involves degradation of the ECM 
and invasion of local tissues. Decreased extracellular pH 
promotes de novo actin filament production, essential 
for cellular migration (46). It may also alter the binding 
properties of tumor cell surface integrins, improving 
the ability of tumor cells to bind ECM components and 
migrate along them (46). Furthermore, acidification of the 
extracellular space increases the number and size of tumor 
cell “invadopodia”, themselves responsible for the amoeboid 
movements that underlie tumor cell migration (47). This 
relationship of pH to tumor growth has been demonstrated 
both directly in vitro and indirectly in vivo (48). Additionally, 
alkalization of the tumor environment in vitro directly 
inhibits tumor invasion, suggesting that acidification of 
the local tumor microenvironment is necessary for local 
invasion.

Decreased extracellular pH also activates proteinases released 
by tumor cells, such as matrix metalloproteinases-9 (49),  
cathepsin B, and hyaluronidase-2 (50). These enzymes 
degrade surrounding matrix, promoting tumor cell invasion, 
and their inhibition significantly impairs tumor cell invasion 
in preclinical studies, though clinical trials have been 
unsuccessful (51). ECM lysis by secreted proteinases may also 
free growth factors embedded in the matrix, including VEGF, 
transforming growth factor-β (TGFβ), and fibroblast growth 
factor-2 (FGF2), which can further promote tumor growth 
and angiogenesis (52). Acidification of the extracellular 
milieu in vitro leads to increased expression of hyaluronan 
and increased expression of tumor-specific varieties of CD44, 
which is responsible for binding hyaluronan and allowing 
tumor cell invasion (53,54). 

To date, multiple in vitro experiments have implicated 
lactate or lactate metabolites either directly or indirectly 
in almost all of the above processes. Additionally, evidence 
suggests that lactate may help mitigate several of the key 
steps in the formation of metastatic disease, such as invasion 
of neighboring vessels (55,56). It is known that lactate 
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formation contributes to the strong ion difference (SID)  
in vivo, and consequently to acidification of the local tumor 
environment (5). This in turn both decreases the binding 
avidity of cell integrins to elements of the surrounding 
ECM (46) and downregulates the expression of E-cadherins 
on tumor cells, helping to free them from neighboring 
cells (57,58). Acidification of the tumor stroma also results 
in activation of the extracellular proteinases that degrade 
ECM, such as the matrix metalloproteinases (50), and 
increases the density and length of “invadopodia”—the foot 
processes used by migrating cells (47). Lactate specifically 
appears to upregulate cathepsin B (59) and matrix 
metalloproteinase-9 (60), the latter of which has been 
correlated with both survival and the formation of distant 
metastases in multiple pathologies, including breast (61),  
ovarian (62), and prostate cancer (63). To that end, direct 
inhibition of matrix metalloproteinases has prevented 
metastasis formation in vivo (64). Unfortunately, none of 
the early-stage clinical trials examining MMP inhibitor use 
have reported significant survival benefits (65). 

Additionally,  lactate has been demonstrated to 
increase the expression of CD44 (53), perhaps due to 
the colocalization of the lactate transporters MCT1 and 
MCT4 with CD44 in cultured cells (66). As stated above, 
CD44 is commonly upregulated in tumor cells (67)  
and has been associated with both tumor burden and  
metastasis (68). More importantly, CD44 upregulation has been 
demonstrated in vitro to potentiate the adherence of metastatic 
breast and prostate cells to bone marrow endothelium, 
a key step in the formation of bony metastases (69).  
CD44 may also underlie the increase in tumor migratory 
capacity that has been correlated with lactate and lactate 
metabolites (39,70,71).

Evidence from in vivo experiments has suggested that 
tumor microenvironment acidification and increased 
lactate concentrations are necessary for several of the key 
steps in the formation of tumor metastases. Rizwan et al. 
demonstrated in a murine model that both LDHA expression 
levels and overall lactate production correlated with disease 
severity. Knockdown of LDHA resulted in increased 
time to first metastasis and longer overall survival (72).  
Concomitantly, Robey et al. reported that use of alkalinized 
drinking water decreased matrix proteinase activity in a 
murine model of breast adenocarcinoma (73). Alkalinization 
of the tumor microenvironment through this mechanism 
also decreased the rate of spontaneous metastasis (74) and 
increased overall survival (73). However, the authors did not 
report whether the therapeutic benefits were also associated 

with decreases in lactate concentration. Most recently, Zhao 
et al. provided evidence suggesting that LDHA/LDH5 
overexpression may mediate the epithelial-mesenchymal 
transition that characterizes metastatic disease (75).

Several clinical studies have also been published over 
the past two decades correlating tumor sample lactate 
concentration with the incidence of metastatic disease (Table 1).  
An early study by Schwickert et al. examined a cohort of 
patients with cervical cancer and reported significantly higher 
lactate levels in primary tumor samples harvested from 
patients with metastatic disease as compared to non-metastatic 
disease (76). A follow-up study by the same group also 
reported higher lactate concentrations to be correlated with 
poorer overall survival and poorer disease-free survival (78).  
Similar findings have been reported in patients with gastric 
cancer (81), head and neck cancer (77,79), and colorectal 
adenocarcinoma (80). These results are similar to in vitro 
findings which have demonstrated cells with higher lactate 
production to have greater propensity to metastasize (82).

Bone pain and osteolytic bone metastases

One of the chief concerns of metastatic spine disease to 
the spinal oncology surgeon is mechanical instability of the 
vertebral column. Progressive destruction of the anterior 
and middle columns steadily reduces the strength of the 
vertebral body, and can ultimately result in an incompetent 
body that is incapable of fully supporting the torso’s mass 
(83-87). At said point the body begins to fracture and 
undergo height loss. Regardless of the extent of disease or 
collapse, 70% of patients will suffer from cancer-associated 
bone pain (88). Those with the most severe and concerning 
disease will also experience mechanical, or movement-
related pain, which is commonly used as a clinical indicator 
of potential mechanical instability (89).

The role of lactate in osteolytic bone tumors can then be 
considered from two perspectives—in terms of its contribution 
to progressive osteolysis and mechanical instability, and 
in terms of its contribution to cancer-related bone pain 
(Figure 2). The latter is far more common and is thought 
to stem from a combination of acidification of the tumor 
microenvironment and stretching of the periosteum, which 
can occur with large or eccentrically-located tumors (88).  
Lactate is thought to be a major contributor to acidosis of 
the tumor extracellular microenvironment as lactate export 
can decrease extracellular pH to the 5.5–7.0 range (13). 
This low pH is sufficient to activate TRPV1 and ASIC3 
ionotropic receptors found on the CGRP⁺, SP⁺ small, 
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unmyelinated nociceptive afferents that innervate the bone 
marrow and periosteum (90-93). Proton release by activated 
osteoclasts may additionally contribute to activation of 
these fibers (88). Evidence for this latter mechanism of bone 
pain is equivocal at best though, as randomized controlled 
trials of bisphosphonates—inorganic molecules that inhibit 
osteoclast activity—have provided only weak evidence 
suggesting that they are effective at relieving oncologic 
bone pain (94). 

CGRP⁺ sensory neurons innervating the bone also 
appear to play a role in the neuropathic pain experienced by 
many patients with metastatic disease, possibly through the 
formation of neuromas at the sensory tips of neurons. These 
neuromas are thought to underlie the breakthrough pain 

experienced by many patients with metastatic disease (88),  
which is notoriously difficult to treat (95). Tumors may 
also directly injure nociceptive fibers, in part explaining 
the relative intractability of bone pain to conventional 
analgesics (95). Along these lines, experiments in a murine 
model of breast cancer have demonstrated upregulation of 
acid-sensing receptors—ASIC1a and ASIC1b—in sensory 
neurons innervating compromised bone, as compared to 
those innervating unaffected bone (96). These changes have 
previously been linked to hyperalgesia and allodynia (97).  
Phenotypic changes are also noted in the machinery of 
the dorsal horn with increased expression of immediate 
early genes (96) previously tied to the development of 
neuropathic pain (98).

Figure 2 Increased lactate production contributes to progressive osteolysis, bone pain, and mechanical instability in the spine. 1: Circulating 
tumor cells can move retrogradely through lumbar intersegmental veins and into the vertebral venous plexus (of Batson). From there they 
progress through basilar veins to seed the vertebral body. Once the tumor cells have instantiated themselves in the local bone, they begin 
to proliferate. 2: The actively proliferating cells release lactate into the local microenvironment, which can be taken up and used as fuel 
by osteoclasts. Increased osteoclastic activity results in greater destruction of local bone through acidification and the release of proteases 
such as cathepsin K. The increased acidity of the bone milieu is thought to activate acid-sensitive receptors, such as ASIC1a and ASIC 1b,  
on CGRP⁺ nociceptive afferents that innervate the bone, creating the oncologic pain seen in many patients with bony metastases. 3: 
Additionally, as the tumor continue to grow, it may compromise the cortical bone and displace the overlying periosteum. The latter is 
richly innervated by nociceptive afferents, giving rise to mechanical pain. 4: As the lesions continue to increase in size (top to bottom), 
the structural integrity of the vertebral body is compromised, leading to wedging and eventual vertebral body collapse. This mechanical 
instability may require surgical intervention and reconstruction (credit Z Pennington).
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Bone remodeling is normally characterized by the balanced 
activities of osteoblast and osteoclasts, which lay down and 
resorb bone matrix, respectively (99). In cases of metastatic 
disease to the spine, these activities can become unbalanced 
resulting in either net bony deposition, or more commonly, 
bony destruction, visualized radiographically as osteoblastic 
and osteolytic lesions, respectively. As the tumor progresses 
in size and net bone mineral density of the vertebral body 
decreases, loading of the spine can result in a series of 
microfractures (88). These destabilizing fractures have two 
effects: (I) progressive vertebral height loss and potential 
deformity, and (II) distortion of the overlying periosteum 
with application of load to the vertebral column (100).  
Periosteal distortion stretches and activates the nociceptive 
neurons,  creating oncologic pain,  which is  often 
excruciating owing to the high density of neuronal input to 
the periosteum (88).

In vitro experimentation has suggested that lactate may 
also play a key role in generating this mechanical instability-
related pain. Using a human-derived breast adenocarcinoma 
line, Lemma and colleagues demonstrated that lactate 
produced by the tumor cells feeds and consequently 
activates local osteoclasts (82). High lactate production was 
associated with upregulation of MCT4s and downregulation 
of MCT1s in tumor cells, consistent with the conclusion 
that the high extracellular lactate levels results from net 
lactate export (82). By contrast, osteoclasts demonstrated 
phenotypic changes more consistent with increased uptake 
of lactate. Inhibition of MCT1 led to significant decreases 
in osteoclast-dependent collagen 1 degradation where 
lactate-feeding increased degradation, suggesting that 
neoplasm-derived lactate feeds osteoclasts to promote 
osteolysis (101).

Proposed therapeutic targets

Drugs with the potential to block or alter lactate 
metabolism in such a way as to halt tumor progression, 
radiosensitize the tumor, or decrease vertebral column 
osteolysis may have clinical utility. In their recent 
review, Muir and Vander Heiden note that much of our 
understanding of the tumor microenvironment is limited 
by experimental models though (102). For example, cell 
cultures replicate neither the exact milieu that makes up the 
tumor microenvironment, nor do they recreate the three-
dimensional relationship a tumor takes on in the in vivo  
environment. Nonetheless, therapies targeting various 
“metabolic checkpoints” are currently being explored. 

Dichloroacetate, monocarboxylate inhibitors, and LDH 
inhibitors 

To date several interventions directed at addressing lactate 
metabolism have been implemented with varying degrees of 
success. Pyruvate dehydrogenase kinase (PDK) inhibitors, 
originally employed for patients with lactic acidosis, have 
been tested for their ability to remove inhibition of the 
pyruvate dehydrogenase complex and allow pyruvate to be 
shuttled away from LDH and into the citric acid cycle (17).  
These drugs, notably dichloroacetate (DCA), have been 
demonstrated to inhibit tumor growth both in vitro and 
in vivo (103) as well as decrease metastatic progression  
in vivo (104). A recent phase II clinical trial investigating the 
use of DCA in refractory breast and non-small cell cancer 
found adverse effects to be unacceptably high though, 
leading to early termination (NCT01029925). By contrast, 
a subsequent phase 1 study in glioblastoma found it to 
be reasonably well tolerated (105). Other phase 1 studies 
in head and neck cancer (NCT01163487), squamous 
cell cancer (NCT01386632) and metastatic solid tumors 
(NCT00566410) have been conducted but have failed to 
report therapeutic benefit.

LDHA/LDH5 and lactate transporters (e.g., the MCT 
family) have also been targeted. In vitro experiments have 
demonstrated that LDHA knockdown impairs tumor growth 
(16,106) and in vivo experiments have confirmed that animals 
injected with LDHA-deficient tumors have significantly 
improved survival relative to control animals (16).  
Small molecule inhibition of LDHA was similarly effective 
at inhibiting tumor progression in vitro (18,107-112) and  
in vivo (20). As of yet, none of the small molecule inhibitors 
has progressed to the point of being a clinically viable 
treatment and no clinical trials have been registered (113), 
possibly due to the bidirectional, near equilibrium nature of 
LDH, regardless of isoform.

MCT inhibitors have demonstrated somewhat greater 
success. MCT1 inhibitors (e.g., AZD3965) have shown 
anti-tumor activity in vitro, significantly impairing lactate 
production and leading to massive tumor cell die off (14). 
Recently, in vitro and in vivo results of the inhibitor AR-
C155858 have demonstrated mixed results with regard to its 
effects on tumor growth (114,115). Curiously, AR-C155858 
demonstrates higher MCT1 affinity than AZD3965 
(116,117), though it is the latter which has demonstrated 
more success in vivo (118,119) and is currently being tested 
in a phase 1 trial (NCT01791595). This contradictory 
result may be secondary to tumor adaptation as has been 
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demonstrated with other MCT1 inhibitors. In these 
studies MCT1 inhibition led to MCT4 upregulation and 
“tumor escape,” which may prove problematic as MCT 
inhibitors continue to be moved along the pathway to 
clinical utilization (120). Our personal experience with 
several MCT inhibitors in mice demonstrated them to be 
ineffective at tumor control, and in some cases toxic, as 
some older inhibitors [e.g., α-cyano-4-hydroxycinnamate 
(CHC)] had low target specificity and multiple off-target 
effects, including inhibition of pyruvate transporters 
(personal communication with Andrew Halestrap, 
University of Bristol, 2013). 

Although drugs that seek to lower lactate are promising, 
care must be taken to consider the model used and the 
various roles lactate has in normal metabolism. For example, 
pertinent to the spine, oligodendrocytes rely heavily on 
lactate as fuel (121) and as a precursor for making lipids. 
Murine and human oligodendrocytes highly express MCT1, 
the inhibition of which results in significant axonal damage 
in vitro and in vivo (122). Additionally, reduction of MCT1 
expression is seen in both patients with amyotrophic lateral 
sclerosis (ALS) and animal models of ALS, suggesting a 
critical role for lactate in neuronal function. Therapies 
that non-specifically block lactate flux may therefore have 
profound deleterious effects on central nervous system 
white matter (123).

Finally, it should be emphasized that both LDH and 
MCTs readily operate in both directions. MCTs function 
via diffusion, while lactate-pyruvate interconversion is a 
near-equilibrium reaction regardless of LDH subtype (124). 
Although traditional thinking teaches that MCT1s favor 
import and MCT4s favor export, in actuality, both isotypes 
perform both activities (5). To this end, MCT1s may appear 
to favor import as they are commonly upregulated in tissues 
that consume lactate, as compared to MCT4s, which are 
preferentially upregulated in lactate-exporting tissues (5). 
Newsholme has similarly pointed out that LDH subtype is 
likely of minimal importance given that it does not alter the net 
free energy change of lactate-pyruvate interconversion (125).  
In summary, while LDH and MCT inhibitors offer 
tremendous potential, care should be used in experimental 
trials in light of their bidirectional nature.

Radioresistance 

Several groups, including those of Quennet et al. (126) and 
Sattler et al. (127) have demonstrated that in vivo lactate 

concentrations directly correlate with tumor response to 
fractionated irradiation. Lactate is proposed to confer this 
radioresistance indirectly by means of pyruvate generation (127).  
Pyruvate is a potent free radical scavenger and so may 
prevent accumulation of these species, which mediates 
DNA damage and cell death (128). Along these lines, use 
of inhibitors that decrease pyruvate levels should increase 
lesion radiosensitivity. This has been demonstrated  
in vivo using MCT1 inhibitors in murine models of small  
cell (129) and non-small cell lung cancer (14). Most 
recently, Corbet et al. published the results of an experiment 
examining the effects of a mitochondrial pyruvate 
transporter on radiosensitivity in a murine model of cervical 
carcinoma (130). Blockage of this transporter decreased 
tumor cell lactate uptake and resulted in cell killing as 
opposed to cell senescence, which was seen with application 
of an MCT1 inhibitor (AR-C155858). Further evidence is 
required to evaluate the utility of this new clinical target.

Conclusions 

Though held as a metabolic waste product for the better 
part of a century, lactate has steadily come to be appreciated 
as an essential component of tumor carcinogenesis. Both 
in vitro and in vivo work has demonstrated it to play key 
roles in tumor growth, angiogenesis, the epithelial-to-
mesenchymal transition, and the formation of painful 
osteolytic metastases. Due to its relatively late appearance 
in the cancer literature, clinical interventions aimed at 
addressing dysregulated lactate metabolism are currently 
undergoing preclinical and early clinical investigation. Early 
preclinical results have been promising and suggest that 
restoration of normal lactate homeostasis may inhibit the 
formation of bony metastasis, a potential boon for the spinal 
oncologist. Additionally, blockage of lactate exportation 
may increase tumor radiosensitivity and thereby provide 
potential interventions for patients with mechanically 
stable metastatic spine disease who are too frail to undergo 
surgical intervention. Much additional research is necessary 
before any changes in clinical standard of care can occur. 
But success in these endeavors may present spinal surgeons 
with an option for prophylaxis against progressive spinal 
instability—an intervention which is currently unavailable.
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