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Editorial Commentary

A deeper understanding of the tumor microenvironment 
in pancreatic cancer: the key to developing effective 
immunotherapies
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Dismal statistics in pancreatic ductal 
adenocarcinoma (PDAC)

The number of pancreatic cancer related deaths is projected 
to increase while many other cancers fall (1). Pancreatic 
cancer is the third leading cause of cancer related death and 
projected to overtake second by 2020 (1). Despite intense 
research efforts over many years, five-year survival after 
diagnosis with pancreatic cancer remains grim at around 
8% (2). Only 20% of patients present with surgically 
resectable disease, and even for those, five-year survival is 
a mere 24.6% (3). For those with more advanced disease, 
median survival is just 4.2 months (3). Of the small 
minority of patients who present with resectable disease, 
standard of care includes surgical resection followed by a 
limited number of chemotherapeutic options which yield 
a 19-month median survival (3). Response to available 
chemotherapeutic regimens varies between patients and 
the reasons behind these varied responses are unclear. 
This leave clinicians with a strategy of administering a 
chemotherapy and abandoning it in lieu of another after 
disease progression. Regardless of therapeutic approach, 
and particularly in metastatic disease, the prognosis remains 
poor (4). There has been little improvement in these dismal 
statistics despite decades of research. 

Immunotherapy in cancer treatment

Immunotherapy for cancer treatment has gained much 
interest in recent years. Outside the classic treatment 
with surgery, chemotherapy, and radiation therapy, 
immunotherapy offers another mechanism for fighting 
cancer. The National Cancer Institute (NCI) defines 
immunotherapy as “A type of therapy that uses substances 
to stimulate or suppress the immune system to help the 
body fight cancer, infection, and other diseases.” This 
can include monoclonal antibodies, vaccines, checkpoint 
inhibitors, and adoptive cell transfer. The past decade has 
seen fervent investigation into the relationship between 
the immune system and cancer. Targeting these pathways 
provides novel mechanisms for cancer therapies. The 2018 
Nobel Prize in Physiology or Medicine was jointly awarded 
to James P. Allison and Tasuku Honjo for their efforts in 
checkpoint inhibition. The year of 2018 alone saw Food and 
Drug Administration (FDA) approval of immunotherapy 
in hepatocellular carcinoma, small cell lung cancer, 
colorectal cancer, lymphoma, and cervical cancer. Some of 
these efforts have yielded stunning outcomes with long-
term survival in patients with previously poor prognoses. 
The results of a phase 1 trial on the use of recombinant 
poliovirus in the treatment of recurrent glioblastoma was 
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well publicized in the mainstream media and demonstrated 
an increase from 4% to 21% in three-year survival in those 
treated with the recombinant poliovirus (5). While these 
results are promising, the typical treatment response of the 
FDA approved immunotherapies is subtler and leave much 
work to be done.

Current efforts in pancreatic cancer 
immunotherapy

The only FDA approved immunotherapy for patients 
diagnosed with pancreatic cancer is pembrolizumab, a 
programmed cell death protein 1 (PD-1) inhibitor. It is only 
available to patients with a mismatch repair deficiency, which 
represents less than 1% of patients with PDAC (6). Other 
available immunotherapies have been tested and failed to 
demonstrate any appreciable improvement in outcomes. A 
phase I trial of an anti-programmed death-ligand 1 (anti-
PD-L1) antibody in multiple advanced cancers failed to 
demonstrate a benefit in pancreatic cancer (7). A phase II trial 
of ipilimumab, a monoclonal antibody that targets cytotoxic 
T-lymphocyte–associated antigen 4 (CTLA-4) and is used in 
the treatment of melanoma, demonstrated it is ineffective in 
pancreatic cancer (8).

Other immunotherapies have been explored and also 
failed to provide meaningful benefit. GVAX is a cancer 
vaccine composed of granulocyte-macrophage colony 
stimulating factor (GM-CSF) secreting whole tumor cells. 
A phase II trial of GVAX demonstrated no benefit over 
historical controls (9). Combination therapies have gained 
enthusiasm in pancreatic cancer. Attacking multiple defense 
strategies of pancreatic cancer simultaneously may prove to 
be the most efficacious. GVAX and checkpoint inhibitors 
in combination have shown early promise in preclinical 
models but further investigation is needed (10). The lack 
of effective immunotherapies demand investigation of 
novel pathways within the unique pancreatic cancer tumor 
microenvironment.

PDAC and the tumor microenvironment

The mechanisms behind the poor response of PDAC to 
conventionally used immunotherapies are not well understood. 
PDAC is known to be a poorly immunogenic tumor. This is 
thought to be, in part, due to the lower neoantigenic profile of 
pancreatic cancer cells and immunosuppressive nature of the 
tumor microenvironment. The complex relationship between 
pancreatic cancer cells and the surrounding desmoplastic 

stroma is the subject of considerable investigation. This 
tumor-associated stroma (TAS) is composed of fibroblasts, 
extracellular matrix, and immune cells and represents as much 
as 80% of tumor volume in PDAC (11). It is thought to 
provide a protective barrier to cancer cells and contribute to 
cell growth and chemoresistance (12). Depletion of the TAS 
should then contribute to improved ability of the immune 
system to recognize and fight neoantigens. Contradictory 
to this, depletion of the stroma accelerates pancreatic cancer 
growth and is associated with worse survival (13). While it has 
become clear that the relationship between cells in the PDAC 
tumor microenvironment is quite complex, efforts are focused 
on understanding this relationship. The CAFs and pancreatic 
cancer cells use a variety of mechanisms to communicate and 
evade immune defenses. A number of mechanisms under 
current investigation are summarized in Table 1.

βig-h3 as a potential target for immunotherapy

In their recent paper in Gut, Goehrig et al. describe the impact of 
the stromal protein βig-h3 in pancreatic cancer (23). They make 
a compelling case for the importance of βig-h3 in immune 
tolerance to pancreatic cancer in a murine model and in 
culture. First, they demonstrate that βig-h3 is strongly 
expressed in Cre;KrasG12D;Ink4a/Arffl/fl (KIC) and pdx1-
Cre;KrasG12D;p53R172H (KPC) mice compared to control, as 
well as human pancreatic cancer biopsies. βig-h3 is secreted 
primarily by the cancer-associated fibroblasts (CAF). The 
effects of βig-h3 within the tumor microenvironment 
highlight its potential as a target for future therapies. βig-h3 
suppresses proliferation of antitumoral CD8+ T cells in vivo 
and in vitro, controls activation of macrophages and CD8+ 
T cells, and promotes M2 macrophage differentiation. 
Depletion of βig-h3 in vivo led to a decrease in neoplastic 
cells and reduced tumor volume. Further analysis of the 
tumors from Big-h3 depleted mice demonstrated more 
infiltrating CD8+ T cells with a less exhausted phenotype. 
The summation of these findings suggests that βig-h3 
is a critical protein secreted by CAFs and involved in 
tumorigenesis as well as promoting an immunosuppressive 
tumor microenvironment through modulation of both the 
adaptive and innate immune systems.

βig-h3 represents an important target for future 
immunotherapies and the authors should be commended 
for their work. Blocking βig-h3 may help improve immune 
clearance of neoplastic cells in future therapies. A deeper 
understanding of the mechanisms through which this 
protein acts to promote an immunosuppressed tumor 
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microenvironment may identify other biologic targets of 
similar importance. 

Conclusions

PDAC presents many unique challenges for development 
of effective immunotherapies when compared to other 
more immunogenic cancers. Investigators have described 
many mechanisms of immune evasion by PDAC and our 
understanding of this phenomenon continues to grow. 
Continued work to identify and attack these mechanisms 
of immune evasion and tumor progression may provide the 
breakthrough needed to help the immune system fight this 
deadly malignancy. 
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