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Abstract: Predictive analytics play an important role in clinical research. An accurate predictive model can 
help clinicians stratify risk thereby allowing the identification of a target population which might benefit 
from a certain intervention. Conventionally, predictive analytics is performed using parametric modeling 
which comes with a number of assumptions. For example, generalized linear regression models require 
linearity and additivity to hold for the underlying data. However, these assumptions may not hold in practice. 
Especially in the era of big data, a large number of covariates or features can be extracted from an electronic 
database which might have complex interactions and higher-order terms among the covariates. Conventional 
modeling methods have trouble capturing such high-dimensional relationships. However, some sophisticated 
machine learning techniques have been invented to handle this situation. Gradient boosting is one of these 
techniques which is able to recursively fit a weak learner to the residual so as to improve model performance 
with a gradually increasing number of iterations. It can automatically discover complex data structure, 
including nonlinearity and high-order interactions, even in the context of hundreds, thousands, or tens-
of-thousands of potential predictors. This paper aims to introduce how gradient boosting works. The 
principles behind this learning machine are explained with a small example in a step-by-step manner. The 
formal implementation of gradient tree boosting is then illustrated with the caret package. In the simulated 
example complexity of data structure is created by generating certain interactions between the covariates. 
This example shows that gradient boosting can better capture these complex relationships than a generalized 
linear model-based approach.

Keywords: Gradient boosting; prediction; decision tree; clinical medicine

Submitted Jan 31, 2019. Accepted for publication Mar 11, 2019.

doi: 10.21037/atm.2019.03.29

View this article at: http://dx.doi.org/10.21037/atm.2019.03.29

Introduction

Predictive analytics play an important role in clinical 
research. If a clinical condition or outcome can be 
accurately predicted, interventions can be delivered to 
the patient population who will benefit the most. Thus, 
numerous data mining algorithms have been developed for 
clinical prediction in nearly all subspecialties. However, the 
most widely used method for making clinical predictions 
is the generalized linear model (GLM). The shortcomings 

of this method include, but are not limited to, linearity and 
additivity assumptions. In a hypothesis-driven framework, 
GLM methods are amiable to researchers because the 
trained model is relatively easy to understand and interpret.

However, with the development of electronic healthcare 
records, a large amount of healthcare data is readily 
available to clinical investigators. These often have latent 
complex relationships among particular variables which may 
not even be considered hypothetically by the investigators 
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developing their predictive models. Machine learning 
methods can be used in this setting as we can rely on the 
predictive algorithm to discover the nonlinearity and 
interaction structure in the data instead of hoping that the 
investigators will be wise enough to include such structure 
explicitly in their models.

Among the many machine learning techniques, gradient 
boosting is a particularly attractive approach. It was first 
introduced in 1999 by Stanford University Professor Jerome 
H. Friedman (1) and has been further developed and refined 
in several open source packages such as Scikit-Learn, and 
R. Major software developers such as SAS and IBM have 
developed their own implementations and Friedman’s 
original gradient boosting machine (with refinements) has 
been part of the Salford Systems SPM product since 2001. 
As of early 2019, Google scholar reports about 10,000 
citations in the scientific literature to Friedman’s two papers 
introducing gradient boosting and applications can be found 
in almost all fields of scientific investigation.

In the clinical l iterature, gradient boosting has 
been successfully used to predict, among other things, 
cardiovascular events (2), development of sepsis (3),  
delirium (4) and hospital readmissions following lumbar 
laminectomy (5). However, the methodology is not well 
known among clinicians. Thus, this article aims to provide a 
practical guide on how to perform gradient boosting using R.

How gradient boosting works

Before we talk about the concept of gradient boosting, 
let’s look at a simple example that reveals the main idea of 
formal gradient boosting.

Traditionally, modelers would try to find a function that 
can accurately describe the data. However, the function can 
only be an approximation of the data distribution and there 
must be errors:

yi = F1 (Xi) + error1i [1]
where yi is the outcome variable and Xi is a vector of 
predictors.

Suppose that the F1 (Xi) function is a weak learner and 
the relationship between X and y is not fully described. In 
this situation, the error or residual is not white noise but 
has some correlation with y. We may want to train a second 
model on the error term:

yi – F1 (Xi) = error1i = h1 (Xi) + error2i [2]
The updated model will look something like:

F2 (Xi) = F1 (Xi) + h1 (Xi) [3]
After performing this procedure iteratively we finally can 

fit a model at the Mth step:
FM (Xi) = FM–1 (Xi) + hM–1 (Xi) [4]
Gradient boosting allows one to plug in any class of 

weak learners hm (Xi) to improve predictive accuracy. In 
other words, the hm (Xi) is a weak learner that can take 
any functional form such as a GLM, a neural network or a 
decision tree. Although there is no requirement for hM (Xi) 
to be a specific function, it is usually a tree-based learner in 
practice.

The residual or error can be expressed as the loss 
function L [Y, FM (X)] in machine learning terminology and 
our objective is to build a model that minimizes this loss. 
More formally, the loss function is defined as the difference 
between the predicted [FM (X)] and the observed value (Y). 
The loss function can be the squared error for an ordinary 
least squares regression model. For loss functions that 
cannot be resolved with simple algebra, gradient descent is 
commonly employed to estimate the optimal parameters.

Gradient descent is a first-order iterative optimization 
algorithm for finding the minimum of a function (6). 
Conventionally, the gradient is calculated with respect to 
the model parameter. In gradient boosting, the gradient of 
the loss function is calculated with respect to the predicted 
value. That is, one takes the derivative of the loss function 
with respect to the predicted value. The gradient can be 
considered as pseudo-residual. More formally, gradient 
boosting proceeds with the following steps (7):

(I) Initialize the model by solving the following 
equation:
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(II) For m =1 to M
Compute the gradient with respect to predicted value,
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, [6]

where i  is the index for observations. Each 
observation will have one gradient value. The 
lowercase m is the number of boosting iterations 
with m ∈ [1, M].

(III) Fit the weak learner hm (x) to the residuals by:
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Computing the γm to solve the optimization 
problem:

( ) ( )1arg min ,
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By solving this equation we can get:
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(IV) Update the Fm (x) = Fm–1 (x) + γm · hm (x)

An illustrative example

To make sure one really understands gradient boosting 
approach, we’ve created an example which explains the 
intuition behind the method.

Suppose we want to predict systolic blood pressure based 
on one’s demographics including age, gender and obesity. 
Ten subjects are observed as follows:

> library(rpart);

> library(rpart.plot);

> dd <- data.frame(BP=c(123,111,98,154,199,

101,91,133,116,121),

gender=c('m','f','f','m',

'm','f','m','f','f','m'),

age=c(54,66,23,59,76,33,35,54,21,26),

obesity=c(1,0,0,1,1,0,1,0,0,0))

> dd

BP Gender Age obesity

1 123 M 54 1

2 111 F 66 0

3 98 F 23 0

4 154 M 59 1

5 199 M 76 1

6 101 F 33 0

7 91 M 35 1

8 133 F 54 0

9 116 F 21 0

10 121 M 26 0

The initial value for the F function is the mean. The 

squared error is used as the loss function, and the gradient 
of the loss function can be calculated as follows:
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 [9]

In the current iteration (m=1), the yi is the observed 
blood pressure (BP) for each individual. The Fm-1 (xi) is a 
vector of mean values of BP. The gradient (pseudo residual) 
can be computed with the following R code.

> dd$F0 <- mean(dd$BP)

> dd$PseudoResid1 <- dd$BP-dd$F0

Note that the pseudo residual considers not only the 
direction but also the magnitude of the difference between 
the observed and predicted values. Next, we will fit a 
regression tree to the pseudo residual:

> tree1 <- rpart(PseudoResid1 ~ age+gender+obesity,

data=dd, method='anova',

control = rpart.control(maxdepth=2,minsplit = 5))

> dd$h1 <- predict(tree1)

> dd$gamma1 <- rep(sum(dd$h1*(dd$BP-dd$F0))/

sum(dd$h1*dd$h1),10)

The maximum depth of the tree is set to two, making it 
a weak leaner. Because there are only ten observations, the 
minimum number of observations that must exist in a node 
in order for a split to be attempted is five. The prediction 
made by the regression tree is h1 which will be added to the 
F0 (X) to update it to calculate F1 (X):

> dd$F1 <- dd$F0 + dd$gamma1*dd$h1

Then the above process is repeated and the F1 (X) 
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The above output shows how gradient boosting 
progresses from F0 to F2 and how the h0, pseudo residual, 
and F values change with fitting a regression tree to the 
gradient recursively. We can also visualize the regression 
tree with a couple of lines:

> par(mfrow=c(1,2))

> rpart.plot(tree1)

> rpart.plot(tree2)

The terminal nodes of the left tree show the percentage and 
mean values, which is consistent with that shown in the above 
table (Figure 1). There are five subjects (3, 6, 7, 9 and 10) in 
the leftmost node. These are individuals with age <45 years.  
The prediction of BP with mean value of the overall 
population is too high. Thus, the updated F1 prediction is F0 
minus 19.3, which is much closer to the true value.

For gradient tree boosting, a slightly modified algorithm 
is employed that uses a different γm for each leaf node, 
denoted as γjm for leaf node j.

Hopefully, one now has an intuition as to how gradient 
boosting works. Next, we will show you how to perform 
gradient tree boosting in practice with a simulated dataset.

Working example

A simulated dataset was created for the purpose of 
illustration. The following R code generate a dataset with 
three categorical (Ncat =3) and four continuous (Ncont 
=4) variables. The outcome variable Y is a binary variable 
with levels of 0 and 1. Note that the linear predictor is 
constructed with several interaction and quadratic terms.

> set.seed(123);

> sampleSize=1000;

> Ncat=3; Ncont=4

> ContMean=sample(1:10,Ncont)

> ContSD=sample(1:10,Ncont)

> CatProb=runif(Ncat,min = 0.3,max = 0.7)

> for (ii in 1:Ncont) {

assign(paste('Xcont',ii,sep = '.'),

rnorm(sampleSize,mean = ContMean[ii],

sd = ContSD[ii]));

}

> for (ii in 1:Ncat) {

assign(paste('Xcat',ii,sep = '.'),

sample(c(0,1),size = sampleSize,

prob = c(1-CatProb[ii],CatProb[ii]),

replace = T));

}

> linpred <- 5*Xcat.1*Xcont.1-6*Xcat.2*Xcont.2-

Xcont.3*2-Xcont.4*5*Xcat.3;

function can be updated to calculate F2 (X).
> dd$PseudoResid2 <- dd$BP - dd$F1

> tree2 <- rpart(PseudoResid2 ~ age+gender+obesity,

data=dd,method='anova',

control = rpart.control(maxdepth=2,minsplit = 5))

> dd$h2 <- predict(tree2)

> dd$gamma2<- rep(sum(dd$h2*(dd$BP-dd$F1))/sum(dd$h2*dd$h2),10);

> dd$F2 <- dd$F1+dd$gamma2*dd$h2

> dd$PseudoResid3 <- dd$BP - dd$F2

> round(dd[,c(1,5:14)],1)

BP F0 PseudoResid1 h1 gamma1 F1 PseudoResid2 h2 gamma2 F2 PseudoResid3

1 123 124.7 -1.7 3.3 1 128.0 -5.0 -1.3 1 126.7 -3.7

2 111 124.7 -13.7 30.0 1 154.7 -43.7 -19.3 1 135.3 -24.3

3 98 124.7 -26.7 -19.3 1 105.4 -7.4 -0.4 1 105.0 -7.0

4 154 124.7 29.3 30.0 1 154.7 -0.7 21.8 1 176.5 -22.5

5 199 124.7 74.3 30.0 1 154.7 44.3 21.8 1 176.5 22.5

6 101 124.7 -23.7 -19.3 1 105.4 -4.4 -0.4 1 105.0 -4.0

7 91 124.7 -33.7 -19.3 1 105.4 -14.4 -1.3 1 104.1 -13.1

8 133 124.7 8.3 3.3 1 128.0 5.0 -19.3 1 108.7 24.3

9 116 124.7 -8.7 -19.3 1 105.4 10.6 -0.4 1 105.0 11.0

10 121 124.7 -3.7 -19.3 1 105.4 15.6 -1.3 1 104.1 16.9
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> prob <- exp(linpred)/(1 + exp(linpred))

> runis <- runif(sampleSize,0,1)

> ytest <- ifelse(runis < prob,1,0)

> df <- data.frame(Xcat.1=Xcat.1,Xcat.2=Xcat.2,

Xcat.3=Xcat.3,Xcont.1=Xcont.1,

Xcont.2=Xcont.2,Xcont.3=Xcont.3,

Xcont.4=Xcont.4,Y=as.factor(ytest))

> rm(list=setdiff(ls(), "df"))

Split the sample into training and testing 
subsamples

Throughout the rest of this paper, the caret package (v6.0-81) 
will be used for training gradient tree boosting (8).

> library(caret)

> set.seed(123)

> index <- createDataPartition(df$Y, p=0.75, list=FALSE)

> trainSet <- df[ index,]

> testSet <- df[-index,]

The createDataPartition() function is used to split the 
dataset into training and testing subsamples. The first 
argument of the function is the outcome variable. Random 
sampling is done within the levels of Y in an attempt to 

balance the class distributions within the splits. The p 
argument specifies the percentage of data which goes into 
the training set. The function returns a matrix of row 
position integers corresponding to the training data.

Logistic regression model

A logistic regression model is first fit to the data to see 
whether the gradient boosting model is able to improve 
predictive performance when there are arbitrary interactions 
and non-linear terms among the covariates.

> xnam <- c(paste("Xcat", 1:3,sep='.'),paste("Xcont", 1:4,sep='.'))

> Logitformula <- as.formula(paste("Y ~ ", paste(xnam, 

collapse= "+")))

> LogitMod <- glm(Logitformula,trainSet,family = 'binomial')

> logitPred <- predict(LogitMod,newdata = testSet,type = 

'response')

> library(pROC)

> LogitROC <- roc(testSet$Y,logitPred)

> auc(LogitROC)

Area under the curve: 0.9218

> ci.auc(LogitROC)

95% CI: 0.8748-0.9687 (DeLong)

The output shows that the area under the receiver 

Figure 1 The predictions with h1 and h2 on the pseudo residuals. The h1 tree is split by age and there are three terminal leaf nodes. The 
numbers in the nodes indicate the mean value and the percentage. The h2 tree is split on age and gender resulting in 4 leaf nodes.
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operating characteristic curve (AUROC) of the logistic 
regression model is 0.92 (95% CI: 0.87–0.97).

Gradient tree boosting

> fitControl <- trainControl(## 10-fold CV

method = "repeatedcv",

number = 10, ## repeated ten times

repeats = 10)

The trainControl() function controls many computational 
nuances of the train() function. In the example, ten-fold 
cross validation is carried out. Specifically, the whole data 
sample is randomly divided into ten blocks of roughly 
equal size. Each of the blocks is left out in turn and the 
other nine blocks are used to train the model. The held-out 
block is predicted on and these predictions are summarized 
into some type of performance measure such as accuracy 
for classification, and sum of squared error for regression. 
The above procedure is repeated ten times, resulting in 
10×10=100 estimates of performance. These are then 
averaged to get the overall resampled estimate.

> gbmGrid <- expand.grid(interaction.depth = c(1,3,5,7),

n.trees = (1:30)*10,

shrinkage = 0.1,

n.minobsinnode = 50)

The expand.grid() function creates a data frame for all 
combinations of the supplied vectors or factors. Here we 
need to introduce a new term called a hyperparameter. 
The hyperparameters define how our model is actually 
structured. They are different from model parameters and 
cannot be trained from the data. Grid search is arguably 
the most basic hyperparameter tuning method. With 
this scheme, we simply build a model for each possible 
combination of all of the hyperparameter values provided, 
evaluate each model and select the architecture which 
produces the best results. The hyperparameters of decision 
tree modeling include the maximum depth of each tree 
(interaction.depth), number of trees (n.trees), learning rate 
(shrinkage) and the minimum number of observations in the 
terminal nodes of the trees (n.minobsinnode).

> gbmMod <- train(Logitformula,

trainSet, method='gbm', verbose = FALSE,

trControl = fitControl,

tuneGrid = gbmGrid)

Finally, the model can be trained with the train() 
function. The training process can be viewed with the 
generic plot() function.

> trellis.par.set(caretTheme())

> plot(gbmMod);

Figure 2 shows the training process with one grid 
searching strategy. The results indicate that the accuracy 
increases rapidly from iteration number 1 to 100, but then 
levels off after 100 iterations. A tree depth of more than 
three will not continue to improve predictive accuracy.

> gbmPred <- predict(gbmMod,newdata=testSet,

type='prob')

> gbmROC <- roc(testSet[,'Y'],gbmPred[,2])

> auc(gbmROC)

Area under the curve: 0.9842

> ci.auc(gbmROC)

95% CI: 0.9715-0.9969 (DeLong)

> roc.test(gbmROC, LogitROC)

DeLong's test for two correlated ROC

Figure 2 The gradient boosting training process. The horizontal 
axis shows the number of boosting iterations (number of trees). 
The vertical axis shows the accuracy. The maximum tree depth 
takes a value of 1, 3, 5 or 7.
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data: gbmROC and LogitROC

Z = 2.6603, p-value = 0.007807

alternative hypothesis: true difference in AUC is not equal to 0

sample estimates:

AUC of roc1 AUC of roc2

0.9841951 0.9217656

The result shows that AUROC of the gradient boosting 
model (0.98; 95% CI: 0.972–0.997) is significantly higher 
than the logistic regression model (with a P value of 0.008 
using DeLong’s test).

Conclusions

Traditional statistical modeling has long been plagued by 
the assumption that the particular functional form of the 
relationship between the outcome and predictor variables 
has been accurately captured by the modeler. New data 
mining techniques, such as gradient boosting, allow 
algorithms to detect potentially latent variables such as 
interaction and higher order terms which are difficult to 
explicitly model.

This paper has illustrated a step-by-step approach to 
gradient boosting and shown that it can lead to higher 
predictive power in a simulated dataset than logistic 
regression. The authors hope that this paper will be useful 
to clinicians and other health care researchers who want 
to apply gradient boosting to their own data sets with the 
expectation of an increase in predictive power.
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