
Page 1 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(7):152atm.amegroups.com

Big-data Clinical Trial Column

Predictive analytics with gradient boosting in clinical medicine

Zhongheng Zhang1#, Yiming Zhao1#, Aran Canes2, Dan Steinberg3, Olga Lyashevska4; written on behalf of
AME Big-Data Clinical Trial Collaborative Group

1Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; 2Cigna, 701

Corporate Circle Drive, Raleigh, NC 27607, USA; 3Salford Systems, Minitab, San Diego, CA, USA; 4Galway Mayo Institute of Technology, Galway,

Ireland
#These authors contributed equally to this work.

Correspondence to: Zhongheng Zhang. No. 3, East Qingchun Road, Hangzhou 310016, China. Email: zh_zhang1984@zju.edu.cn.

Abstract: Predictive analytics play an important role in clinical research. An accurate predictive model can
help clinicians stratify risk thereby allowing the identification of a target population which might benefit
from a certain intervention. Conventionally, predictive analytics is performed using parametric modeling
which comes with a number of assumptions. For example, generalized linear regression models require
linearity and additivity to hold for the underlying data. However, these assumptions may not hold in practice.
Especially in the era of big data, a large number of covariates or features can be extracted from an electronic
database which might have complex interactions and higher-order terms among the covariates. Conventional
modeling methods have trouble capturing such high-dimensional relationships. However, some sophisticated
machine learning techniques have been invented to handle this situation. Gradient boosting is one of these
techniques which is able to recursively fit a weak learner to the residual so as to improve model performance
with a gradually increasing number of iterations. It can automatically discover complex data structure,
including nonlinearity and high-order interactions, even in the context of hundreds, thousands, or tens-
of-thousands of potential predictors. This paper aims to introduce how gradient boosting works. The
principles behind this learning machine are explained with a small example in a step-by-step manner. The
formal implementation of gradient tree boosting is then illustrated with the caret package. In the simulated
example complexity of data structure is created by generating certain interactions between the covariates.
This example shows that gradient boosting can better capture these complex relationships than a generalized
linear model-based approach.

Keywords: Gradient boosting; prediction; decision tree; clinical medicine

Submitted Jan 31, 2019. Accepted for publication Mar 11, 2019.

doi: 10.21037/atm.2019.03.29

View this article at: http://dx.doi.org/10.21037/atm.2019.03.29

Introduction

Predictive analytics play an important role in clinical
research. If a clinical condition or outcome can be
accurately predicted, interventions can be delivered to
the patient population who will benefit the most. Thus,
numerous data mining algorithms have been developed for
clinical prediction in nearly all subspecialties. However, the
most widely used method for making clinical predictions
is the generalized linear model (GLM). The shortcomings

of this method include, but are not limited to, linearity and
additivity assumptions. In a hypothesis-driven framework,
GLM methods are amiable to researchers because the
trained model is relatively easy to understand and interpret.

However, with the development of electronic healthcare
records, a large amount of healthcare data is readily
available to clinical investigators. These often have latent
complex relationships among particular variables which may
not even be considered hypothetically by the investigators

152

https://crossmark.crossref.org/dialog/?doi=10.21037/atm.2019.03.29

Zhang et al. Gradient boosting for clinical researches

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(7):152atm.amegroups.com

Page 2 of 7

developing their predictive models. Machine learning
methods can be used in this setting as we can rely on the
predictive algorithm to discover the nonlinearity and
interaction structure in the data instead of hoping that the
investigators will be wise enough to include such structure
explicitly in their models.

Among the many machine learning techniques, gradient
boosting is a particularly attractive approach. It was first
introduced in 1999 by Stanford University Professor Jerome
H. Friedman (1) and has been further developed and refined
in several open source packages such as Scikit-Learn, and
R. Major software developers such as SAS and IBM have
developed their own implementations and Friedman’s
original gradient boosting machine (with refinements) has
been part of the Salford Systems SPM product since 2001.
As of early 2019, Google scholar reports about 10,000
citations in the scientific literature to Friedman’s two papers
introducing gradient boosting and applications can be found
in almost all fields of scientific investigation.

In the clinical l iterature, gradient boosting has
been successfully used to predict, among other things,
cardiovascular events (2), development of sepsis (3),
delirium (4) and hospital readmissions following lumbar
laminectomy (5). However, the methodology is not well
known among clinicians. Thus, this article aims to provide a
practical guide on how to perform gradient boosting using R.

How gradient boosting works

Before we talk about the concept of gradient boosting,
let’s look at a simple example that reveals the main idea of
formal gradient boosting.

Traditionally, modelers would try to find a function that
can accurately describe the data. However, the function can
only be an approximation of the data distribution and there
must be errors:

yi = F1 (Xi) + error1i [1]
where yi is the outcome variable and Xi is a vector of
predictors.

Suppose that the F1 (Xi) function is a weak learner and
the relationship between X and y is not fully described. In
this situation, the error or residual is not white noise but
has some correlation with y. We may want to train a second
model on the error term:

yi – F1 (Xi) = error1i = h1 (Xi) + error2i [2]
The updated model will look something like:

F2 (Xi) = F1 (Xi) + h1 (Xi) [3]
After performing this procedure iteratively we finally can

fit a model at the Mth step:
FM (Xi) = FM–1 (Xi) + hM–1 (Xi) [4]
Gradient boosting allows one to plug in any class of

weak learners hm (Xi) to improve predictive accuracy. In
other words, the hm (Xi) is a weak learner that can take
any functional form such as a GLM, a neural network or a
decision tree. Although there is no requirement for hM (Xi)
to be a specific function, it is usually a tree-based learner in
practice.

The residual or error can be expressed as the loss
function L [Y, FM (X)] in machine learning terminology and
our objective is to build a model that minimizes this loss.
More formally, the loss function is defined as the difference
between the predicted [FM (X)] and the observed value (Y).
The loss function can be the squared error for an ordinary
least squares regression model. For loss functions that
cannot be resolved with simple algebra, gradient descent is
commonly employed to estimate the optimal parameters.

Gradient descent is a first-order iterative optimization
algorithm for finding the minimum of a function (6).
Conventionally, the gradient is calculated with respect to
the model parameter. In gradient boosting, the gradient of
the loss function is calculated with respect to the predicted
value. That is, one takes the derivative of the loss function
with respect to the predicted value. The gradient can be
considered as pseudo-residual. More formally, gradient
boosting proceeds with the following steps (7):

(I) Initialize the model by solving the following
equation:

() ()0F arg min ,
1 i

n
x L y

iγ
γ=

=∑ ; then we get:

()0
1F

i

n
y

ix
n
==

∑
 [5]

(II) For m =1 to M
Compute the gradient with respect to predicted value,

()
()

1

1

,i m i
im

m i

L y F x
r

F x
−

−

 ∂    = − ∂  
, [6]

where i is the index for observations. Each
observation will have one gradient value. The
lowercase m is the number of boosting iterations
with m ∈ [1, M].

(III) Fit the weak learner hm (x) to the residuals by:

Annals of Translational Medicine, Vol 7, No 7 April 2019 Page 3 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(7):152atm.amegroups.com

Computing the γm to solve the optimization
problem:

() ()1arg min ,
1m i m i m i

n
L y F x F x

iγ
γ γ−= + ⋅  =∑
 [7]
By solving this equation we can get:

() ()

()

1

2

1

1

m i i m i

m

m i

n
h x y F x

i
n

h x
i

γ
−⋅ −  ==

=

∑

∑
 [8]

(IV) Update the Fm (x) = Fm–1 (x) + γm · hm (x)

An illustrative example

To make sure one really understands gradient boosting
approach, we’ve created an example which explains the
intuition behind the method.

Suppose we want to predict systolic blood pressure based
on one’s demographics including age, gender and obesity.
Ten subjects are observed as follows:

> library(rpart);

> library(rpart.plot);

> dd <- data.frame(BP=c(123,111,98,154,199,

101,91,133,116,121),

gender=c('m','f','f','m',

'm','f','m','f','f','m'),

age=c(54,66,23,59,76,33,35,54,21,26),

obesity=c(1,0,0,1,1,0,1,0,0,0))

> dd

BP Gender Age obesity

1 123 M 54 1

2 111 F 66 0

3 98 F 23 0

4 154 M 59 1

5 199 M 76 1

6 101 F 33 0

7 91 M 35 1

8 133 F 54 0

9 116 F 21 0

10 121 M 26 0

The initial value for the F function is the mean. The

squared error is used as the loss function, and the gradient
of the loss function can be calculated as follows:

()
()

()

()

() ()

()
()

1

1

2
1

1

2 2
1 1

1

1

,

1
2

1 2
2

for i = 1, 2, n.

i m i
im

m i

m i i

m i

m i i m i i

m i

i m i

L y F x
r

F x

F x y

F x

F x y F x y

F x

y F x

−

−

−

−

− −

−

−

 ∂    = − ∂  
 ∂ × −    = −

∂

  ∂ × + − × ⋅   = −
∂

= − 

 [9]

In the current iteration (m=1), the yi is the observed
blood pressure (BP) for each individual. The Fm-1 (xi) is a
vector of mean values of BP. The gradient (pseudo residual)
can be computed with the following R code.

> dd$F0 <- mean(dd$BP)

> dd$PseudoResid1 <- dd$BP-dd$F0

Note that the pseudo residual considers not only the
direction but also the magnitude of the difference between
the observed and predicted values. Next, we will fit a
regression tree to the pseudo residual:

> tree1 <- rpart(PseudoResid1 ~ age+gender+obesity,

data=dd, method='anova',

control = rpart.control(maxdepth=2,minsplit = 5))

> dd$h1 <- predict(tree1)

> dd$gamma1 <- rep(sum(dd$h1*(dd$BP-dd$F0))/

sum(dd$h1*dd$h1),10)

The maximum depth of the tree is set to two, making it
a weak leaner. Because there are only ten observations, the
minimum number of observations that must exist in a node
in order for a split to be attempted is five. The prediction
made by the regression tree is h1 which will be added to the
F0 (X) to update it to calculate F1 (X):

> dd$F1 <- dd$F0 + dd$gamma1*dd$h1

Then the above process is repeated and the F1 (X)

Zhang et al. Gradient boosting for clinical researches

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(7):152atm.amegroups.com

Page 4 of 7

The above output shows how gradient boosting
progresses from F0 to F2 and how the h0, pseudo residual,
and F values change with fitting a regression tree to the
gradient recursively. We can also visualize the regression
tree with a couple of lines:

> par(mfrow=c(1,2))

> rpart.plot(tree1)

> rpart.plot(tree2)

The terminal nodes of the left tree show the percentage and
mean values, which is consistent with that shown in the above
table (Figure 1). There are five subjects (3, 6, 7, 9 and 10) in
the leftmost node. These are individuals with age <45 years.
The prediction of BP with mean value of the overall
population is too high. Thus, the updated F1 prediction is F0
minus 19.3, which is much closer to the true value.

For gradient tree boosting, a slightly modified algorithm
is employed that uses a different γm for each leaf node,
denoted as γjm for leaf node j.

Hopefully, one now has an intuition as to how gradient
boosting works. Next, we will show you how to perform
gradient tree boosting in practice with a simulated dataset.

Working example

A simulated dataset was created for the purpose of
illustration. The following R code generate a dataset with
three categorical (Ncat =3) and four continuous (Ncont
=4) variables. The outcome variable Y is a binary variable
with levels of 0 and 1. Note that the linear predictor is
constructed with several interaction and quadratic terms.

> set.seed(123);

> sampleSize=1000;

> Ncat=3; Ncont=4

> ContMean=sample(1:10,Ncont)

> ContSD=sample(1:10,Ncont)

> CatProb=runif(Ncat,min = 0.3,max = 0.7)

> for (ii in 1:Ncont) {

assign(paste('Xcont',ii,sep = '.'),

rnorm(sampleSize,mean = ContMean[ii],

sd = ContSD[ii]));

}

> for (ii in 1:Ncat) {

assign(paste('Xcat',ii,sep = '.'),

sample(c(0,1),size = sampleSize,

prob = c(1-CatProb[ii],CatProb[ii]),

replace = T));

}

> linpred <- 5*Xcat.1*Xcont.1-6*Xcat.2*Xcont.2-

Xcont.3*2-Xcont.4*5*Xcat.3;

function can be updated to calculate F2 (X).
> dd$PseudoResid2 <- dd$BP - dd$F1

> tree2 <- rpart(PseudoResid2 ~ age+gender+obesity,

data=dd,method='anova',

control = rpart.control(maxdepth=2,minsplit = 5))

> dd$h2 <- predict(tree2)

> dd$gamma2<- rep(sum(dd$h2*(dd$BP-dd$F1))/sum(dd$h2*dd$h2),10);

> dd$F2 <- dd$F1+dd$gamma2*dd$h2

> dd$PseudoResid3 <- dd$BP - dd$F2

> round(dd[,c(1,5:14)],1)

BP F0 PseudoResid1 h1 gamma1 F1 PseudoResid2 h2 gamma2 F2 PseudoResid3

1 123 124.7 -1.7 3.3 1 128.0 -5.0 -1.3 1 126.7 -3.7

2 111 124.7 -13.7 30.0 1 154.7 -43.7 -19.3 1 135.3 -24.3

3 98 124.7 -26.7 -19.3 1 105.4 -7.4 -0.4 1 105.0 -7.0

4 154 124.7 29.3 30.0 1 154.7 -0.7 21.8 1 176.5 -22.5

5 199 124.7 74.3 30.0 1 154.7 44.3 21.8 1 176.5 22.5

6 101 124.7 -23.7 -19.3 1 105.4 -4.4 -0.4 1 105.0 -4.0

7 91 124.7 -33.7 -19.3 1 105.4 -14.4 -1.3 1 104.1 -13.1

8 133 124.7 8.3 3.3 1 128.0 5.0 -19.3 1 108.7 24.3

9 116 124.7 -8.7 -19.3 1 105.4 10.6 -0.4 1 105.0 11.0

10 121 124.7 -3.7 -19.3 1 105.4 15.6 -1.3 1 104.1 16.9

Annals of Translational Medicine, Vol 7, No 7 April 2019 Page 5 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(7):152atm.amegroups.com

> prob <- exp(linpred)/(1 + exp(linpred))

> runis <- runif(sampleSize,0,1)

> ytest <- ifelse(runis < prob,1,0)

> df <- data.frame(Xcat.1=Xcat.1,Xcat.2=Xcat.2,

Xcat.3=Xcat.3,Xcont.1=Xcont.1,

Xcont.2=Xcont.2,Xcont.3=Xcont.3,

Xcont.4=Xcont.4,Y=as.factor(ytest))

> rm(list=setdiff(ls(), "df"))

Split the sample into training and testing
subsamples

Throughout the rest of this paper, the caret package (v6.0-81)
will be used for training gradient tree boosting (8).

> library(caret)

> set.seed(123)

> index <- createDataPartition(df$Y, p=0.75, list=FALSE)

> trainSet <- df[index,]

> testSet <- df[-index,]

The createDataPartition() function is used to split the
dataset into training and testing subsamples. The first
argument of the function is the outcome variable. Random
sampling is done within the levels of Y in an attempt to

balance the class distributions within the splits. The p
argument specifies the percentage of data which goes into
the training set. The function returns a matrix of row
position integers corresponding to the training data.

Logistic regression model

A logistic regression model is first fit to the data to see
whether the gradient boosting model is able to improve
predictive performance when there are arbitrary interactions
and non-linear terms among the covariates.

> xnam <- c(paste("Xcat", 1:3,sep='.'),paste("Xcont", 1:4,sep='.'))

> Logitformula <- as.formula(paste("Y ~ ", paste(xnam,

collapse= "+")))

> LogitMod <- glm(Logitformula,trainSet,family = 'binomial')

> logitPred <- predict(LogitMod,newdata = testSet,type =

'response')

> library(pROC)

> LogitROC <- roc(testSet$Y,logitPred)

> auc(LogitROC)

Area under the curve: 0.9218

> ci.auc(LogitROC)

95% CI: 0.8748-0.9687 (DeLong)

The output shows that the area under the receiver

Figure 1 The predictions with h1 and h2 on the pseudo residuals. The h1 tree is split by age and there are three terminal leaf nodes. The
numbers in the nodes indicate the mean value and the percentage. The h2 tree is split on age and gender resulting in 4 leaf nodes.

−2.8e−15
100%

−13
70%

−19
50%

3.3
20%

30
30%

−19
20%

−0.4
30%

−1.3
30%

22
20%

−8
50%

8
50%

Yes YesNo Noage < 57

age < 45
age >= 44

age < 57

gender = f

0
100%

h1 h2

Zhang et al. Gradient boosting for clinical researches

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(7):152atm.amegroups.com

Page 6 of 7

operating characteristic curve (AUROC) of the logistic
regression model is 0.92 (95% CI: 0.87–0.97).

Gradient tree boosting

> fitControl <- trainControl(## 10-fold CV

method = "repeatedcv",

number = 10, ## repeated ten times

repeats = 10)

The trainControl() function controls many computational
nuances of the train() function. In the example, ten-fold
cross validation is carried out. Specifically, the whole data
sample is randomly divided into ten blocks of roughly
equal size. Each of the blocks is left out in turn and the
other nine blocks are used to train the model. The held-out
block is predicted on and these predictions are summarized
into some type of performance measure such as accuracy
for classification, and sum of squared error for regression.
The above procedure is repeated ten times, resulting in
10×10=100 estimates of performance. These are then
averaged to get the overall resampled estimate.

> gbmGrid <- expand.grid(interaction.depth = c(1,3,5,7),

n.trees = (1:30)*10,

shrinkage = 0.1,

n.minobsinnode = 50)

The expand.grid() function creates a data frame for all
combinations of the supplied vectors or factors. Here we
need to introduce a new term called a hyperparameter.
The hyperparameters define how our model is actually
structured. They are different from model parameters and
cannot be trained from the data. Grid search is arguably
the most basic hyperparameter tuning method. With
this scheme, we simply build a model for each possible
combination of all of the hyperparameter values provided,
evaluate each model and select the architecture which
produces the best results. The hyperparameters of decision
tree modeling include the maximum depth of each tree
(interaction.depth), number of trees (n.trees), learning rate
(shrinkage) and the minimum number of observations in the
terminal nodes of the trees (n.minobsinnode).

> gbmMod <- train(Logitformula,

trainSet, method='gbm', verbose = FALSE,

trControl = fitControl,

tuneGrid = gbmGrid)

Finally, the model can be trained with the train()
function. The training process can be viewed with the
generic plot() function.

> trellis.par.set(caretTheme())

> plot(gbmMod);

Figure 2 shows the training process with one grid
searching strategy. The results indicate that the accuracy
increases rapidly from iteration number 1 to 100, but then
levels off after 100 iterations. A tree depth of more than
three will not continue to improve predictive accuracy.

> gbmPred <- predict(gbmMod,newdata=testSet,

type='prob')

> gbmROC <- roc(testSet[,'Y'],gbmPred[,2])

> auc(gbmROC)

Area under the curve: 0.9842

> ci.auc(gbmROC)

95% CI: 0.9715-0.9969 (DeLong)

> roc.test(gbmROC, LogitROC)

DeLong's test for two correlated ROC

Figure 2 The gradient boosting training process. The horizontal
axis shows the number of boosting iterations (number of trees).
The vertical axis shows the accuracy. The maximum tree depth
takes a value of 1, 3, 5 or 7.

Boosting iterations
100 150 200 250 3000 50

0.94

0.92

0.90

0.88

0.86

0.84

A
cc

ur
ac

y
(re

pe
at

ed
 c

ro
ss

−
va

lid
at

io
n)

Max tree depth
1 3 5 7

Annals of Translational Medicine, Vol 7, No 7 April 2019 Page 7 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2019;7(7):152atm.amegroups.com

Curves

data: gbmROC and LogitROC

Z = 2.6603, p-value = 0.007807

alternative hypothesis: true difference in AUC is not equal to 0

sample estimates:

AUC of roc1 AUC of roc2

0.9841951 0.9217656

The result shows that AUROC of the gradient boosting
model (0.98; 95% CI: 0.972–0.997) is significantly higher
than the logistic regression model (with a P value of 0.008
using DeLong’s test).

Conclusions

Traditional statistical modeling has long been plagued by
the assumption that the particular functional form of the
relationship between the outcome and predictor variables
has been accurately captured by the modeler. New data
mining techniques, such as gradient boosting, allow
algorithms to detect potentially latent variables such as
interaction and higher order terms which are difficult to
explicitly model.

This paper has illustrated a step-by-step approach to
gradient boosting and shown that it can lead to higher
predictive power in a simulated dataset than logistic
regression. The authors hope that this paper will be useful
to clinicians and other health care researchers who want
to apply gradient boosting to their own data sets with the
expectation of an increase in predictive power.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

References

1. Friedman JH. Greedy function approximation: A
gradient boosting machine. The Annals of Statistics
2001;29:1189-232.

2. Zhao J, Feng Q, Wu P, et al. Learning from Longitudinal
Data in Electronic Health Record and Genetic Data
to Improve Cardiovascular Event Prediction. Sci Rep
2019;9:717.

3. Delahanty RJ, Alvarez J, Flynn LM, et al. Development
and Evaluation of a Machine Learning Model for the Early
Identification of Patients at Risk for Sepsis. Ann Emerg
Med 2019;73:334-44.

4. Wong A, Young AT, Liang AS, et al. Development
and Validation of an Electronic Health Record-
Based Machine Learning Model to Estimate Delirium
Risk in Newly Hospitalized Patients Without
Known Cognitive Impairment. JAMA Netw Open
2018;1:e181018.

5. Kalagara S, Eltorai AEM, Durand WM, et al. Machine
learning modeling for predicting hospital readmission
following lumbar laminectomy. J Neurosurg Spine
2018;30:344-52.

6. Ruder S. An overview of gradient descent optimization
algorithms. Vol. cs.LG, arXiv.org. 2016.

7. Friedman JH, Meulman JJ. Multiple additive regression
trees with application in epidemiology. Stat Med
2003;22:1365-81.

8. Kuhn M. caret: Classification and Regression Training.
Available online: https://CRAN.R-project.org/
package=caret. 2017.

Cite this article as: Zhang Z, Zhao Y, Canes A, Steinberg D,
Lyashevska O; written on behalf of AME Big-Data Clinical
Trial Collaborative Group. Predictive analytics with gradient
boosting in clinical medicine. Ann Transl Med 2019;7(7):152. doi:
10.21037/atm.2019.03.29

