
Page 1 of 9

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(7):137atm.amegroups.com

Original Article

Deep learning based classification of ultrasound images for 
thyroid nodules: a large scale of pilot study

Qing Guan1,2#, Yunjun Wang1,2#, Jiajun Du3, Yu Qin3, Hongtao Lu3, Jun Xiang1,2, Fen Wang2,4

1Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; 2Department of Oncology, Shanghai 

Medical College, Fudan University, Shanghai 200032, China; 3Department of Computer Science and Engineering, Shanghai Jiaotong University, 

Shanghai 200240, China; 4Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai 20032, China

Contributions: (I) Conception and design: J Xiang, F Wang; (II) Administrative support: H Lu; (III) Provision of study materials or patients: Q Guan; 

(IV) Collection and assembly of data: Y Wang; (V) Data analysis and interpretation: J Du, Y Qin; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Jun Xiang, MD, PhD. Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, 

Shanghai 200032, China. Email: junxiang82@163.com.

Background: To explore the ability of the deep learning network Inception-v3 to differentiate between 
papillary thyroid carcinomas (PTCs) and benign nodules in ultrasound images.
Methods: A total of 2,836 thyroid ultrasound images from 2,235 patients were divided into a training 
dataset and a test dataset. Inception-v3 was trained and tested to crop the margin of the images of nodules 
and provide a differential diagnosis. The sizes and sonographic features of nodules were further analysed to 
identify the factors that may influence diagnostic efficiency. Statistical analyses included χ2 and Fisher’s exact 
tests and univariate and multivariate analyses.
Results: There were 1,275 PTCs and 1,162 benign nodules in the training group and 209 PTCs and 
190 benign nodules in the test group. A margin size of 50 pixels and an input size of 384×384 showed 
the best outcome after training, and these parameters were selected for the test group. In the test group, 
the sensitivity and specificity for Inception-v3 were 93.3% (195/209) and 87.4% (166/190), respectively. 
Inception-v3 displayed the highest accuracy for 0.5–1.0 cm nodules. The accuracy differed according 
to the margin description (P=0.024). Taller nodules were more accurately diagnosed than were wider 
nodules (P=0.015). Microcalcification [odds ratio (OR) =0.254, 95% confidence interval (CI): 0.076–0.847, 
P=0.026] and taller shape (OR =0.243, 95% CI: 0.073–0.810, P=0.021) were negatively associated with 
misdiagnosis rate.
Conclusions: Inception-v3 can achieve an excellent diagnostic efficiency. Nodules that are 0.5–1.0 cm in 
size and have microcalcification and a taller shape can be more accurately diagnosed by Inception-v3.
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Introduction

Epidemiologic studies show that thyroid cancer is the 
fifth most common cancer in women, and its incidence 
has increased rapidly in recent years (1). Papillary 
thyroid carcinoma (PTC) is the predominant pathologic 
subtype of thyroid cancer. According to the Surveillance, 

Epidemiology, and End Results (SEER) cancer registry, 
the incidence of PTC has increased 3.7-fold, from 3.4 to  
12.5 per 100,000 individuals, from 1975 to 2009; meanwhile, 
the proportion of thyroid cancer nodules that are less than 
a centimetre in size has increased from 23% [1983] to 
36% [2009] (2). Ultrasound (US) is widely accepted as the 
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primary diagnostic tool for screening thyroid nodules and 
preoperatively evaluating PTCs (3). Sonographic features 
such as microcalcification, solid composition, taller shape 
and irregular margin are considered typical for PTC. 
The biggest limitation of US is operator dependence, as 
the accuracy of diagnosis varies among radiologists with 
different levels of experiences. Usually, an inexperienced 
radiologist needs a superior to double-check the images 
to reduce the misdiagnosis rate, especially for cases with a 
Thyroid Imaging Reporting and Data System (TI-RADS) 
score of 4. This strategy is practiced at our institution, 
but not every healthcare facility has the most experienced 
radiologist for thyroid malignancies, and thus, an unbiased 
and consistent method to provide valuable second opinion 
and assist inexperienced radiologists is required.

Computer-aided diagnosis has been rapidly developing. 
Most recently, machine learning (ML) has been introduced 
in US imaging-mediated diagnosis. ML is defined as a 
set of methods that automatically detect patterns in data 
and then utilize the patterns to predict future data or 
enable decision-making under uncertain conditions (4). 
Deep learning is a part of ML and is a special type of 
artificial neural network that resembles the multilayered 
human cognition system. Deep learning algorithms 
such as convolutional neural network (CNN) and Keras 
neural network are currently utilized in multiple aspects 
of healthcare, especially in imaging-based diagnosis and 
prognostic analysis in cancer (5-7).

In this study, we employed the deep learning algorithm 
Inception-v3 to distinguish PTCs from benign thyroid 
nodules using images captured by US. Inception-v3 employs 
inception modules composed of several small convolutional 
layers. The inception modules increase the layer depth with 
relatively few parameters; thus, Inception-v3 displays better 
performance during image classification tasks than do other 
deep learning algorithms.

Methods

Patients and US images

This study was approved by the Ethical Committee 
of Fudan University Cancer Center. Oral and written 
informed consent was obtained from all patients after 
the nature of the procedures had been fully explained. 
The study patients were selected from January 2014 
to December 2016. In total, 1,795 nodules in 1,359 
consecutive patients (mean age, 41.7±15.6 years; age 

range, 17–72 years) were histopathologically confirmed 
to be PTC, 341 of which were excluded due to the lack of 
qualified US images. Simultaneously, 1,363 benign thyroid 
nodules in 1,090 patients (mean age, 42.6±13.4 years; 
age range, 15–72 years) were selected. Benign thyroid 
nodules were diagnosed based on the following criteria: (I) 
surgical specimen confirmed by pathology; (II) fine-needle 
aspiration (FNA) specimen confirmed by cytology; or 
(III) US findings of very low suspicion (spongiform, pure 
cystic or partially cystic without any suspicious pattern 
in the solid portion) according to the American Thyroid 
Association (ATA) guidelines (3).

Every image was rated by three experienced radiologists 
using the TI-RADS (8). TI-RADS scores of 2, 3, 4a, 4b 
and 4c were denoted as not suspicious, probably benign, 
one suspicious feature, two suspicious features, and three or 
more suspicious features, respectively. Sonographic features 
and measurements, including composition, echogenicity, 
calcification, margin, and shape, were also determined by 
the three radiologists based on the TI-RADS proposed by 
Kwak et al. (8). Composition was categorized as solid, cystic 
or spongiform. Spongiform composition indicated that tiny 
cystic spaces occupied most of the nodule. Echogenicity 
was categorized as hyperechoic, isoechoic, hypoechoic or 
markedly hypoechoic by comparing nodules to normal 
thyroid tissues. A nodule was considered to have marked 
hypoechogenicity if the echogenicity was lower than that of 
the surrounding strap muscle. Microcalcification was defined 
as punctate or “dot-like” foci without posterior acoustic 
artefacts <1 mm in diameter. Otherwise, calcification 
was categorized into macrocalcification or triangular 
reverberation artefacts with a decreasing width of deeper 
echoes referred to as comet-tail artefacts. The margin 
was categorized as being smooth, irregular, lobulated, ill-
defined, or halo or showing extrathyroidal extension (ETE). 
The shape was categorized as wider or taller. The accuracy 
was then compared across the categories for each feature. 
PTC displays some typical features on US images such 
as microcalcification, solid composition, taller shape and 
irregular margin. Univariate and multivariate analyses were 
utilized to determine the relationship between each feature 
and the misdiagnosis rate.

Data distribution

There were 2,836 images in total, among which 1,484 
were of PTCs, and 1,352 were of benign thyroid nodules, 
including multinodular disease and adenomas. The majority 
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of images including 1,275 PTCs and 1,162 benign nodules 
were assigned to the training group, and the remaining 
images including 209 PTCs and 190 benign nodules were 
assigned to the test group. The images were randomly 
assigned, provided the distribution of size and TI-RADS 
scores was similar between the two groups. The images 
were further divided into three groups based on the size: 
<0.5, 0.5–1.0, and >1.0 cm. The distribution of TI-RADS 
scores was uniform among groups based on size (Figure 1).

Image preparation and cropping

The annotated rectangular box only covered the nodule, 
while visual diagnosis depended on information from 
both the nodule and surrounding tissue. Therefore, we 
cropped the original images with margins, which denoted 
the distances between the left and right boundaries of the 
cropped image. The lesion boundary is shown in Figure 2. As 

clearly shown in both Figure 2A,B, the boundary denoted the 
distance between the left edge of the larger green rectangle 
and the left edge of the smaller red rectangle. The sizes of 
different lesions varied because of differences between their 
real size and observed size. Therefore, we chose random 
margins from 0 to 100 pixels for each image in every training 
iteration. We then cropped the image as a square by setting 
the height equal to the width and resized the image into 
384×384 to match the input size of the network. In this study, 
we employed bilinear interpolation algorithms to resize the 
image. We chose a square box rather than a rectangular box 
as the cropping shape because the nodule shape is important 
for diagnosis. The input shape of the network is square, 
indicating that the cropped image should also be a square. 
The two cropping shapes are clearly shown in Figure 2, 
and the corresponding resized images are shown in Figure 
3. The original shape of the nodule was an ellipse. Figure 3 
shows that the resized result of a square (Figure 3A) cropping 
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Figure 1 Distribution of size and TI-RADS score in two groups. (A) Training group; (B) test group. TI-RADS, Thyroid Imaging Reporting 
and Data System.

Figure 2 Different shape for cropping with 50 pixel margin. (A) Square; (B) rectangle.
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Figure 3 Resized results of different cropping shape. (A) Square; (B) rectangle.

window maintained length-width ratio of the original image 
of the nodule but that the rectangular (Figure 3B) cropping 
window changed the shape of the nodule in the image to 
a circle. Therefore, we chose square as the cropping shape 
because it maintained the shape features of the nodule across 
the scaling process. The input size of the network was fixed, 
while the size of nodules differed. Thus, the real input sizes of 
the nodules depended on their margin. A margin of 50-pixels 
displayed the highest performance based on nonparametric 
receiver operating characteristic (ROC) analysis. Therefore, 
we set the default margin size at 50 pixels.

Network construction

We chose Inception-v3, which was pre-trained on ImageNet 
database, and fine-tuned the network for our analysed 
thyroid nodules. The size of the input layer was adjusted to 
384×384 based on the validation results. The corresponding 
size of fully connected layers was modified according to 
the input layer. Finally, as there were only 2 categories of 
nodules, benign and malignant, we reduced the output 
dimension to 2. The network structure of Inception-v3 is 
shown in Figure 4. Inception-v3 is composed of 3 kinds of 
Inception modules, namely, A, B and C. Figure 4A,B,C show 
the corresponding structures of Inception modules A, B and 
C. The Inception modules are all composed of several small 
convolutional layers and pooling layers.

Statistical analysis

ROC analysis was performed to calculate the best cutoff value 

for the best margin size. The areas under ROC curves were 
used to measure the relative predicted accuracy based on the 
margin size. Categorical data were summarized as frequencies 
and percentages. χ2 and Fisher’s exact tests were used for 
categorical variables. Moreover, univariate and multivariate 
analyses were performed to determine the predictive value 
of sonographic features using logistic regression represented 
by odds ratios (ORs) and 95% confidence intervals (CIs). A 
P value less than 0.05 was considered significant. Statistical 
analyses were performed using SPSS 19.0 for Windows (SPSS 
Inc., Chicago, IL, USA).

Margin size and input size

We modified the cropping margin size and the network 
input size to obtain the best performance, which was 
evaluated by accuracy, sensitivity, specificity and Az 
value. The optimal margin was selected between 0 and 
100 pixels, and the network input size was adjusted 
with a fixed cropping margin. Then, these two hyper-
parameters were applied to the training process. We 
present performances based on margin sizes of 0, 25, 50, 
75 and100 pixels in Table 1, and a margin size of 50 pixels 
showed the greatest advantage across all four evaluation 
terms. The corresponding ROC curves are shown in 
Figure 5. According to the performance, we finally fixed 
the margin size to 50 pixels. The network input size was 
adjusted from 224×224 to 480×480, with a fixed margin of 
50 pixels. Preliminary data proved that the input size of 
384×384 leads to the best result. Thus, we set the input size 
to384×384.
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Figure 4 (A) The structure of Inception-v3. Inception-v3 is composed of 3 kinds of Inception modules, namely, A, B and C; (B) inception 
module A; (C) inception module B; and (D) inception module C. The Inception modules are all composed of several small convolutional 
layers and pooling layers.

Table 1 Validation of performance based on different margin sizes

Margin size 
(pixel)

Accuracy (%) Sensitivity (%) Specificity (%) AZ value

0 84.2 88.0 80.0 0.921

25 87.7 90.9 84.2 0.947

50 90.5 93.3 87.4 0.956

75 89.0 90.9 86.8 0.954

100 88.5 90.9 85.8 0.944
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Figure 5 ROC curves for margin sizes of 0, 25, 50, 75, and  
100 pixels. ROC, receiver operating characteristic.
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Table 2 Sonographic features associated with the diagnostic efficiency of Inception-v3

Sonographic feature
PTC Benign nodules

No. True (%) False (%) P No. True (%) False (%) P

Total 209 195 14 190 166 24

Composition 0.788 0.200

Solid 208 194 (93.3) 14 (6.7) 128 108 (84.4) 20 (15.6)

Cystic 0 0 0 1 1 (100.0) 0

Spongiform 1 1 0 61 57 (93.4) 4 (6.6)

Echogenicity 0.099 0.814

Hyperechoic 0 0 0 3 3 (100.0) 0

Isoechoic 15 12 (80.0) 3 (20.0) 97 86 (88.7) 11 (11.3)

Hypoechoic 193 182 (94.3) 11 (5.7) 81 69 (85.2) 12 (14.8)

Markedly hypoechoic 1 1 (100.0) 0 9 8 (88.9) 1 (11.1)

Calcification 0.260 0.659

Micro 92 89 (96.7) 3 (3.3) 1 1 (100.0) 0

Macro 11 10 (90.9) 1 (9.1) 2 2 (100.0) 0

Comet-tail 6 6 (100.0) 0 3 2 (66.7) 1 (33.3)

None 100 90 (90.0) 10 (10.0) 184 166 (87.4) 24 (12.6)

Margin 0.024 0.383

Smooth 17 13 (76.5) 4 (23.5) 124 111 (89.5) 13 (10.5)

Irregular 24 24 (100.0) 0 1 1 (100.0) 0

Lobulated 6 6 (100.0) 0 9 7 (77.8) 2 (22.2)

Ill-defined 109 104 (95.4) 5 (4.6) 54 46 (85.2) 8 (14.8)

Halo 4 3 (75.0) 1 (25.0) 2 1 (50.0) 1 (50.0)

ETE 49 45 (91.8) 4 (8.2) 0 0 0

Shape 0.015 0.110

Wider 114 102 (89.5) 12 (10.5) 188 165 (87.8) 23 (12.2)

Taller 95 93 (97.9) 2 (2.1) 2 1 (50.0) 1 (50.0)

PTC, papillary thyroid carcinoma.

Nodule size

The hyper-parameters described above were modified in the 
subgroup data based on nodule size and were then applied to 
train the network. The optimal parameters of the network 
were used to classify the thyroid nodules into three size 
groups, namely, <0.5, 0.5–1 and >1 cm. The 0.5–1 cm size 
group showed the best results among the three groups, with 
a specificity of 93.9%, a sensitivity of 94.4%, and an Az value 
of 0.971. The <0.5 and >1 cm size groups demonstrated 

sensitivities, specificities and Az values of 100%, 81.4% and 
0.962 and 88.8%, 87.7% and 0.943, respectively.

Sonographic features

We next investigated which sonographic features affected 
the diagnostic ability of Inception-v3. The results are shown 
in Table 2. There was no significant difference among the 
images of benign nodules; however, for the images of PTCs, 
the accuracy differed according to the margin description. 
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Nodules with an irregular, lobulated, ill-defined, or ETE 
margin were more accurately diagnosed than were nodules 
with a smooth or halo margin (P=0.024). Additionally, 
taller nodules were more easily diagnosed by Inception-
v3than were wider nodules (P=0.015). Furthermore, as 
shown in Table 3, the typical features of PTCs including 
solid composition, hypoechogenicity, the presence of 
microcalcification, nonsmooth margin and taller shape were 
analysed to identify their association with the misdiagnosis 
rate of Inception-v3. Microcalcification (OR =0.254, 95% 
CI: 0.076–0.847, P=0.026) and taller shape (OR =0.243, 
95% CI: 0.073–0.810, P=0.021) were negatively associated 
with misdiagnosis rate in both univariate and multivariate 
analyses.

Discussion

A number of studies have attempted to develop deep leaning 
networks for the differentiation of thyroid nodules using 
US images; however, obtaining a large number of images 
from one facility is not easy. Fudan University Cancer 
Center is a tertiary referral hospital treating thousands of 
thyroid cancer patients each year and has thus enabled us 
to obtain a very large dataset including 2,836 images from 
2,235 patients. Most importantly, all the PTC nodules were 
surgically removed and confirmed by pathology. Based 
on this dataset, this study has provided solid evidence to 
show that Inception-v3 has a similar accuracy to that of 

experienced radiologists in differentiating PTCs from 
benign nodules, confirming the potential of Inception-v3 to 
provide a second opinion, especially when radiologists are 
inexperienced.

To optimize this system, we further investigated the 
parameters that could affect the accuracy of this system. 
Training experiments demonstrated that a margin size 
of 50 pixels and input size of 384×384 led to the best 
diagnostic efficiency; therefore, these parameters were 
selected for the test group. The test group had 399 images, 
and the sensitivity and specificity for Inception-v3 were 
93.3% (195/209) and 87.4% (166/190), respectively. For 
comparison, the sensitivity and specificity for radiologists 
were 84.7% (177/209) and 97.9% (186/190), respectively. 
Although the overall sensitivity and specificity were close, 
Inception-v3 was more accurate in diagnosing PTCs but 
less accurate in diagnosing benign nodules than were 
experienced radiologists, indicating that the features of 
PTC were more easily delineated by Inception-v3.

Since the learning process of Inception-v3 has not 
been elucidated, we analysed the features of the images to 
determine the learning process. Nodule size was our first 
concern. The images were divided into three groups based 
on nodule size, and the 0.5–1 cm size group showed the 
best specificity (93.9%) and Az value (0.9712), while the 
<0.5 cm size group showed the best sensitivity (100%). 
These results indicated that Inception-v3 was advantageous 
for diagnosing PTC nodules <1 cm, which are also known 

Table 3 Typical sonographic features of PTCs associated with the misdiagnosis rate of Inception-v3

Variable
Univariate Multivariate

P value OR 95% CI for OR P value OR 95% CI for OR

Composition (solid) 0.374 1.627 0.556–4.760

Hypoechoic 0.254 0.666 0.331–1.338

Calcification

Micro 0.026 0.254 0.076–0.847 0.050 0.296 0.088–0.998

Macro 0.720 0.761 0.170–3.403 0.788 0.813 0.180–3.679

Margin

ETE 0.457 0.648 0.207–2.030

Ill-defined 0.361 0.710 0.341–1.479

Irregular 0.998 0 0

Lobular 0.886 1.122 0.233–5.408

Shape (taller) 0.021 0.243 0.073–0.810 0.040 0.282 0.084–0.944

PTC, papillary thyroid carcinoma; OR, odds ratio; CI, confidence interval.
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as papillary thyroid microcarcinomas (PTMCs). Since the 
incidence of PTMC is rapidly increasing, and the 2015 ATA 
management guidelines have endorsed active surveillance 
for low-risk PTMC using US (3), the application of 
Inception-v3 could be promising in this area. Previous 
studies using deep learning for differential diagnosis have 
placed more emphasis on the diagnostic efficiency, feature 
extraction process and optimization of the models (9,10). 
One study compared the diagnostic performance and 
agreement of US characteristics between an experienced 
radiologist and a deep learning model (11); however, very 
few studies have investigated the correlation between the 
image features and diagnostic efficiency of deep learning 
networks. In this study, our analysis of sonographic features 
showed that nodules with an irregular, lobulated, ill-defined, 
or ETE margin were more accurately diagnosed than were 
nodules with a smooth or halo margin, which indicated 
that nodules with smooth margins may appear as benign 
nodules to Inception-v3; in other words, the diagnosis of 
PTC by Inception-v3 considerably relies on the margin. 
Furthermore, microcalcification and taller shape were 
proven to be negatively associated with the misdiagnosis 
rate of Inception-v3 in both univariate and multivariate 
analyses. Microcalcification is a well-known risk factor 
for PTC, with an OR of 11.6 (12). Mussa et al. suggested 
that in the mere presence of microcalcifications, an FNA 
biopsy is warranted (13). A taller-than-wide shape is also 
considered a feature suggestive of malignancy (14-16). Both 
microcalcification and taller shape are typical sonographic 
features of PTC, and the fact that these features influenced 
the diagnostic accuracy of Inception-v3 suggested that 
Inception-v3 had successfully recognized PTC images by 
these special properties. One of the limitations of this study 
is that we did not include the Doppler images which reflect 
the vascularity of the nodule, future study design should 
take this into consideration.

Conclusions

In summary, we propose that the deep learning network 
Inception-v3 can be applied to facilitate the differentiation 
of PTCs in the clinic. After being trained on a large 
dataset, the deep learning framework Inception-v3 
could achieve an excellent diagnostic efficiency. We have 
demonstrated that thyroid nodules of a 0.5–1.0 cm size that 
have microcalcification and a taller shape could be more 
accurately diagnosed by Inception-v3.
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