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Abstract: Pompe disease (PD) is an autosomal recessive lysosomal disorder caused by the deficient activity 
of acid alpha-glucosidase (GAA) enzyme due to mutations in the GAA gene. The enzymatic deficiency leads 
to the accumulation of glycogen within the lysosomes. Clinically, the disease has been classically classified 
in infantile and childhood/adult forms. The GAA gene has been localized to chromosome 17q25.2-q25.3 
and to date, 582 mutations distributed throughout the whole gene have been reported (HGMD: http://
www.hgmd.cf.ac.uk/ac/). All types of mutations have been described; missense variants are the most frequent 
type followed by small deletions. Most GAA mutations are private or found in a small number of families. 
However, an exception is represented by the c.-32-13T>G splice mutation that is very common in patients 
of Caucasian origin affected by the childhood/adult form of the disease, with an allelic frequency ranging 
from 40% to 70%. In this article, we review the spectrum of GAA mutations, their distribution in different 
populations, and their classification according to their impact on GAA splicing process, protein expression 
and activity. In addition, whenever possible, we discuss the phenotype/genotype correlation. The information 
collected in this review provides an overview of the molecular genetics of PD and can be used to facilitate 
diagnosis and genetic counseling of families affected by this disorder.
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Introduction

Pompe disease (PD-MIM# 232300), is an autosomal 
recessive lysosomal storage disorder due to mutations in 
the acid alpha-glucosidase (GAA) gene (MIM#606800) 
encoding the lysosomal GAA enzyme. This genetic defect 
leads to the deficient activity of GAA resulting in impaired 
glycogen degradation and accumulation within the 
lysosomes (1).

Clinically, PD encompasses a highly variable range of 
phenotypes that differ in the age of onset, extent of organ 
involvement, and rate of progression (2). Patients with the 
classic infantile onset form, the most severe and rapidly 
progressive phenotype, die within the first year of life from 
cardiorespiratory insufficiency if untreated (3,4). Patients 

with onset in childhood or adulthood are characterized 
by the presence of progressive limb-girdle myopathy and 
respiratory dysfunction. These patients become wheel 
chair and/or ventilator dependent, and the respiratory 
insufficiency is the leading cause of death (5-7).

The GAA gene is localized to chromosome 17q25.2- 
q25.3 (8) and it was cloned and sequenced in 1991 (9). Since 
then, significant advances have been made in understanding 
the molecular bases of this disorder, and to date almost 
600 mutations have been reported (HGMD: http://www.
hgmd.cf.ac.uk/ac/). However, the pathological mechanism 
by which a mutant enzyme leads to the wide range of 
phenotypes in patients affected by this disease remains 
elusive. 

The GAA gene is approximately 28 kb long and encompasses 
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20 exons. The first exon contains the 5' untranslated  
sequences and is separated from the second one by a large 
intron of approximately 2.7 kb. The first ATG is located 
in exon 2, 32 nt downstream from the beginning of the 
exon. The second and the last exons are quite big (578 and  
607 bp, respectively), while the remaining exons length 
ranges from 85 to 187 bp (9). 

The promoter sequence, located upstream of the first 
GAA exon, has been characterized and, as expected, has the 
characteristics of housekeeping gene promoters (10).

The GAA cDNA is 3.6 kb long (8) and encodes a 
precursor peptide of 952 amino acids with a predicted 
molecular weight of 105 kD. The precursor has an amino-
terminal signal peptide for co-translational transport 
into the lumen of the endoplasmic reticulum, where it 
is N-glycosylated resulting in a glycosylated precursor 
with an apparent molecular mass of 110 kDa (11). Seven 
glycosylation sites at residues 140, 233, 390, 470, 652, 882 
and 925 have been predicted (12).

The enzyme is then transferred to the Golgi complex 
where high-mannose type oligosaccharide side chains are 
phosphorylated (13-15) and subsequently targeted to the 
lysosome via the mannose-6-phosphate receptor. Within 
the late endosomal/lysosomal compartment the enzyme 
undergoes a series of proteolytic and N-glycan processing 
events: the 110-kDa precursor is proteolytically processed 

at the amino terminus, resulting in a 95-kDa intermediate 
with a sequence beginning at amino acid 122; the 95-kDa  
intermediate is processed at the carboxy terminal to a  
76-kDa form, which is then proteolytically cleaved at the 
amino terminus to a 70-kDa mature form (13-16). In 2005, 
Moreland and colleagues demonstrated that the lysosomal 
human GAA is composed of four different peptides of 70, 
19.4, 10.3, and 3.9 kDa, the latter two being disulfide-
bonded (17). Recently, the structure of recombinant human 
GAA (rhGAA) has been solved by X-ray crystallography, 
using Myozyme® as the source of protein (18). Interestingly, 
four disordered surface loops have been identified—notably, 
the same that were absent in the protein complex studied by 
Moreland et al.—that hampered the formation of productive 
protein crystals, and a high-resolution diffraction model 
was obtained only after their proteolytic removal (PDB 
entry: 5NN3). Scanning the entire length of GAA protein 
from N-terminus to C-terminus, a trefoil Type-P domain is 
separated from the catalytic GH31 (β/α)8 barrel domain by 
a β-sheet domain. A proximal and a distal β-sheet domains 
constitute the C-terminal end of GAA. Two unstructured 
inserts arising from the catalytic domain and a loop bearing 
from the N-terminal β-sheet domain delimit the active 
site, in which the conserved residues R600 and D282 play 
a pivotal role in the substrate recognition and stabilization, 
and residues D518 and D616 are essential for the catalysis. 
A second substrate-binding pocket, shaped within the 
N-terminal trefoil Type-P domain, has been identified and 
could potentially boost the enzyme processivity (18). Finally, 
of the seven glycosylation sites originally predicted (17), only 
five of them, namely N140, N233, N390, N470 and N 652, 
have been experimentally validated to bind M6P glycans 
(18,19).

The GAA mutations

The mutational spectrum of GAA gene is very heterogeneous. 
To date 582 mutations distributed throughout the whole 
gene have been listed at HGMD-http://www.hgmd.
cf.ac.uk/ac/. All types of mutations have been described. 
Missense mutations are most frequent followed by small 
deletions. Indeed, as shown in Figure 1, 297 (51.0%) of 
reported mutations are missense, 87 (14.9%) are small 
deletions, 16 of which are in frame, 74 (12.7%) are splicing 
variants, 51 (8.8%) are nonsense, 35 (6.0%) are small 
insertions/duplications, 19 (3.3%) are gross insertions/
deletions, 13 (2.2%) are small indels, 5 (0.9%) are complex 
rearrangements. Only one variant in the regulatory region 

Figure 1 Frequency of GAA mutant alleles reported in the 
HGMD-http://www.hgmd.cf.ac.uk/ac/ classified by mutation type. 
GAA, acid alpha-glucosidase. 
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has been described so far. 
PD is considered a pan-ethnic disease. However, there 

are some countries in which the prevalence of the disease 
is very low. This is the case, for instance, of Finland where 
only one Pompe patient was definitively diagnosed (20,21). 

A number of studies have been conducted aimed at 
depicting the mutational profile of the GAA gene on a 
national basis, often distinguishing between the classic 
severe infantile and the late onset childhood/adult cohorts.

Even though most GAA mutations are private or found 
in a small number of families, the c.-32-13T>G splice 
mutation is an exception, since it is very common in patients 
of Caucasian origin affected by the childhood/adult form of 
the disease, with an allelic frequency ranging from 40% to 
70% in different populations (6,22-36).

The presence of this intronic mutation results in the 
exclusion of exon 2 from a variable proportion of the 
expressed GAA mRNA. In other words, by affecting the 
overall splicing efficiency, it changes the balance between 
the GAA splicing isoforms towards the non-functional, 
exon 2-skipped species, yet not completely preventing the 
expression of the normal transcript that can be translated 
into an enzymatically active GAA protein. Therefore, the 
resulting variable levels of GAA residual activity may explain 
the delay of the phenotypic manifestation of the disease in 
those who carry the c.-32-13T>G mutation (37-40).

Apart from the common intronic c.-32-13T>G mutation, 
few variants are overrepresented in particular populations. 
Perhaps the best examples are the c.525delT and the 
c.2481+102_2646+31del mutations, the so called “Dutch 
mutations” due to their high recurrence in Dutch 
population (41-43). Both variants have been classified as 
severe mutations. Indeed, the deletion of a single nucleotide 
(c.525delT) or the entire exon 18 (c.2481+102_2646+31del) 
cause in both cases a shifting of the open reading frame 
leading to the generation of a premature stop codon. No 
transcript from the c.525delT allele is detected in patient’s 
cells, probably due to the synthesis of an unstable mRNA 
which would be rapidly degraded (44). As expected, these 
variants are associated with the infantile-onset form of PD 
and occur in a cohort of infantile Dutch patients with an 
allelic frequency of 35% and 31%, respectively (41). The 
allelic frequencies of both mutations are much lower in Dutch 
patients with the childhood/adult phenotype, representing only 
15% and 8% of the alleles, respectively (41). By comparison, 
the allelic frequency of the c.525delT in a similar cohort of 
Italian infantile patients is 13.8% (45). 

Geographical differences in the allelic frequency of 

GAA mutations within the same country have been noted. 
For instance, the most frequent pathogenic mutation 
encountered in the infantile subset of patients in the North 
of China is the c.2662G>T (p.Glu888*) mutation, accounting 
for 23.1% of total mutant alleles (46). By contrast, the most 
frequent mutation in a cohort of patients from Southern 
China is the c.1935C>A (p.Asp645Glu) accounting for 
the 20–25% of total mutant alleles (46,47). Notably, such 
a geographical partition is not evident in childhood/adult 
patients from mainland China in which the most frequent 
pathogenic GAA mutation is the c.2238G>C (p.W746C) 
accounting for 27.1% of total mutant alleles (48). Also, 
in Taiwan the c.1935C>A mutation seems to be the most 
recurrent mutation in patients affected by the infantile 
onset form of PD, accounting for 12.2% of total mutant 
variants. This could be explained by the Chinese origin of 
the Taiwanese population (49). The importance of historical 
migratory fluxes in the determination of the mutational 
profile of specific populations is evidenced by some studies 
carried out in countries that had experienced a marked 
immigration in their history, such as Argentina, Brazil, 
Colombia or Canada. Indeed, a very heterogeneous profile 
of GAA mutations has been reported in these countries  
(50-53). However, the severe mutation c.2560C>T (p.R854*) 
was found to be overrepresented (allele frequency of 16.7%) 
in a Brazilian cohort of infantile patients (54). This is not an 
unexpected finding considering the massive migratory flux 
coming from North Africa, where a high frequency of this 
mutation is very well documented (55). Not surprisingly, 
the same c.2560C>T mutation is the most common defect 
in African-Americans with PD (55).

Recently, Fukuhara and colleagues demonstrated that 
the mutation c.546G>T occurs with high allelic frequency 
(22.9%) in patients affected by the childhood/adult 
phenotype in Japan (56).

Mutations associated with GAA pseudodeficiency

Two sequence variants, c.1726G>A (p.Gly576Ser) and 
c.2065G>A (p.Glu689Lys), often present in cis on the same 
allele, are associated with a pseudodeficiency of GAA. The 
first one, effectively reduces both the amount of expressed 
GAA protein and its catalytic activity (57-59), while the 
second one has little effect on GAA functionality (60). 
Therefore, individuals who are homozygous for this allele 
have very low GAA enzymatic activity but do not develop 
PD (49,59,61,62).

This complex allele is quite frequent among people 
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of Asian descent. Indeed, about 4% of subjects in Asian 
populations carry this allele in homozygosity (62).

The functional impact of GAA mutations

While the possible impact of a nonsense mutation or a 
deletion/insertion leading to a frameshift on the synthesis 
and function of the GAA enzyme could be foreseeable, 
it is much more difficult to predict the effect of missense 
mutations or variants affecting sequences involved in 
the splicing process. Indeed, sequence variations leading 
to the generation of premature stop codons (nonsense 
of frameshift mutations) would necessarily result in 
the synthesis of truncated non-functional proteins. 
Furthermore, in many cases transcripts carrying premature 
stop codons are quite unstable and degraded via nonsense 
mediated decay (NMD) with the consequent loss of GAA 
synthesis. Therefore, in general these types of mutations 
could be considered as severe ones. 

Several in silico prediction tools have been developed 
to analyze the impact of genetic variants on the mRNA 
splicing processes. However, although in silico analysis 
became increasingly promising and trustable in predicting 
the likely pathogenic effect of most of the analyzed 
variants (63), this tool cannot substitute functional analysis. 
Indeed, minigene splicing assays or, even better, direct 
mRNA analysis should be required for linking variants to 
a putative splicing defect. Furthermore, functional analysis 
remains the only reliable tool to determine the severity of 
a given mutation since in many cases the mutation may 
not completely abrogate the expression of normally spliced 
transcript leading to the protein expression and retention of 
some residual activity (64). The best example of this type of 
variant is the common c.-32-13T>G mutation (see below). 

Similarly, several programs have been developed to 
predict the potential effect of missense mutations. However, 
analysis of protein expression and activity in patients’ cells 
and/or by in vitro expression studies of the mutated proteins 
remain the gold standard to determine their pathogenetic 
nature and to gain insights on their severity. 

It is worth noting that in vitro expression studies are very 
useful to test the effect of a given variant when mutations 
are found in compound heterozygous individuals.

A classification of GAA mutations based on a severity 
rating system organized in six classes has been proposed by 
Kroos et al. (58). The severity of a particular mutation is 
defined based on the results of a transient transfection of an 
expression construct carrying wild-type or mutated GAA 

cDNA; each sequence variation is compared to the wild-
type GAA in terms of quantity and quality of processed and 
unprocessed GAA protein, and residual enzymatic activity 
in cells and media (58).

The six severity classes are identified by letters, whereby 
A stands for “very severe”, B for “potentially less severe”, C 
for “less severe”, D for “potentially mild”, E for “presumably 
nonpathogenic”, and finally, F for “nonpathogenic” (58). 

Class A mutations are Cross Reactive Immunologic 
Material (CRIM)-negative, since no molecular forms of 
GAA can be detected by immunoblotting, and no residual 
enzymatic activity can be measured. Even though classes 
B, C and D mutations are CRIM-positive, the levels of 
processed and unprocessed forms of GAA are lower than 
normal ones, leading to a residual enzymatic activity 
ranging from 0 to 30%. Finally, both classes E and F 
mutations present quantitatively and qualitatively normal 
levels of GAA forms, but they differ in residual enzymatic 
activity, which is higher than 30% in class E and higher 
than 60% in class F (58,65).

The Pompe Disease Mutation Database, available at 
http://www.pompecenter.nl has been created with the aim of 
providing a list of GAA variants and to describe their effect 
in order to facilitate the diagnosis and genetic counseling. 

The database, last updated in May 2016 reports  
558 GAA sequence variations: class A and B mutations 
are the most represented groups with 183 and 139 hits, 
respectively. Thirty mutations are labeled as “less severe”, 
22 as “potentially mild”, and only 6 as “presumably 
nonpathogenic”. Class F is the third largest group, 
including 93 sequence variations, and finally, the severity of 
85 mutations still remains unknown (Figure 2). 

Besides being useful for the interpretation of genetic data 
obtained in PD patients, the knowledge of the functional 
consequences of a mutant variant might be useful to select 
patients that could benefit from experimental therapies, such 
as the use of antisense oligonucleotides able to rescue splicing 
defects (66,67) or molecular chaperons to improve GAA 
activity by promoting folding, processing and trafficking to 
the lysosome of mutated but partially active variants (68).

The common c.-32-13T>G mutation

The c.-32-13T>G variant is the most frequent GAA 
mutation associated with the childhood/adult phenotype. 
Indeed, almost 90% of patients affected by this phenotype 
carry this mutation on at least one allele. This mutation, 
first described by Huie et al. in a patient affected by the 
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adult onset form of PD (37), is located 13 nucleotides 
upstream of the canonical acceptor splice site of GAA 
intron 1 (Figure 3). As supported by studies performed 
in fibroblasts derived from patients carrying the c.-32-
13T>G base change, the main functional consequence of 
this mutation is the synthesis of different aberrant splicing 
variants in which the exon 2 is completely or partially 
spliced out and a limited amount of normally spliced GAA 
mRNA. Interestingly, the same non-functional splicing 
isoforms were detected, although in low quantities, in 
cells from normal subjects (38). These data were then 
further confirmed in vitro by Raben and colleagues using 
a minigene assay (39). Therefore, from a clinical point 
of view, these data strongly support the concept that the 
production of a certain amount of “normally spliced” wild-
type mRNA may represent a general mechanism underlying 
the delayed symptomatic expression in patients bearing the 
c.-32-13T>G mutation (39,40).

From the functional point of view, it has been shown 
that the mutation interferes with the binding of the splicing 
factor U2AF65 to the GAA pre-mRNA, almost completely 
abrogating its interaction with the polypyrimidine tract of 
exon 2 leading to the general inefficiency of the splicing 
process (Figure 3). Moreover, it has been demonstrated that 
the overexpression of specific mRNA binding proteins can 
modulate the expression of normally spliced GAA mRNA 
from the c.-32-13T>G mutated allele (40). 

Recently, very promising results have been obtained  

in vitro by targeting a specific silencer located within  
exon 2 with a combination of antisense oligonucleotides. 
Indeed, treatment of myotubes of patients carrying the 
c.-32-13T>G mutation resulted in a significant increase 
of exon 2 inclusion and GAA activity, and a decrease in 
lysosomal glycogen accumulation (67). A similar approach 
supports the possibility of promoting exon 2 inclusion and 
GAA enzyme activity by targeting inhibitory sequences 
within intron 1 of GAA (68).

Phenotype-genotype correlation

As for most genetic diseases, a strict correlation between the 
phenotype and the genotype cannot be established in PD. 
However, some general conclusions can be drawn from the 
data obtained in hundreds PD patients. 

In general, patients affected by the severe and rapidly 
progressive infantile form of PD harbour mutations that 
completely abolish the expression of all forms of GAA protein 
or lead to a low expression of unprocessed or processed GAA 
(classified as A or B mutations). In all cases these mutants 
do not retain significant amount of residual GAA activity 
(45,69,70). Conversely, the presence of a potentially mild 
mutation in one allele seems to prevent the occurrence of the 
severe classic infantile phenotype (22-26,28,30).

Apart from these general considerations, it is difficult to 
establish a strict correlation between a particular mutation 
and the clinical presentation and progression of the disease 
since most GAA mutations are private and found in 
compound heterozygosity. As mentioned above, the only 
exception so far is the frequent c.-32-13T>G mutation, which 
is also often found in compound heterozygosity in patients 
affected by the childhood/adult phenotype. Therefore, several 
authors have analyzed the phenotype of patients carrying 
this mutation in association with a severe “null” variant that 
is not contributed to GAA activity. Besides the fact that all 
described patients presented with the childhood/adult form 
of PD, they demonstrated a wide variability in residual 
activity, age at onset, and disease progression (21,33,71-73). 
Furthermore, different phenotypic expression has also been 
reported in siblings carrying this genotype (74). Considering 
these observations, it is very likely that secondary factors, 
genetic and non-genetic, would act as modifiers of the PD 
phenotype. This hypothesis is further supported by the data 
collected in patients carrying the c.-32-13T>G mutation in 
homozygosity who, unexpectedly, presented with the full 
spectrum of adult PD phenotype (29,75). 

In an attempt to explain this wide phenotypic variability, 

Figure 2 Frequency of GAA mutant alleles reported in the 
Pompe Disease Mutation Database, available at http://www.
pompecenter.nl classified according to their functional impact 
on GAA. GAA, acid alpha-glucosidase. 
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the c.-32-13G>T haplotype was studied in a cohort of 98 
compound heterozygous patients carrying the c.-32-13T>G 
mutation in combination with a null variant. This study 
failed to demonstrate a correlation between the c.-32-13T>G 
haplotype and the phenotype. In addition, several authors 
have explored the possible modifying effect of an angiotensin 
I-converting enzyme (ACE) polymorphism (76-80).  
However, the results of these studies do not concur and the 
role of this polymorphism in the phenotypic expression of 
PD remains controversial. 

Very recently, the c.510C>T variant has been identified 
as a genetic modifier of the disease onset in compound 
heterozygous or homozygous for the common c.-32-13T>G 

variant. Indeed, the c.510C>T when present in cis with the 
c.-32-13T>G mutation, modulates the splicing pattern of 
the mutated transcript further reducing the relative amount 
of correctly spliced mRNA which in turn, resulted in 
reduced residual GAA activity (81). 
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Figure 3 GAA mRNA splicing isoforms expressed in cultured fibroblasts. (A) Schematic representation of the 5' region of the GAA gene 
(exons 1 to 3). The position of the c.-32-13T>G mutation is highlighted in red. The cryptic splice sites, located 35 nt downstream from the 
normal donor splice site of exon 1 and at 60 nt upstream from the donor site of exon 2, are shown as c1 and c2, respectively. The presence 
of the c.-32-13T>G mutation abrogates the binding of the U2AF65 splicing factor. (B) Schematic list of the GAA mRNA species expressed 
in human fibroblasts. Normal spliced GAA mRNA (N) and splicing species SV2 and SV3 are detected both in fibroblasts from patients 
carrying the c.-32-13T>G variant and healthy controls. In patients vs. controls samples, however, the relative abundance of the various 
splicing isoforms is different. While N is the main mRNA species expressed in normal cells, SV2 and SV3 are the main species detected in 
cells from patients bearing the c.-32-13T>G variant. GAA, acid alpha-glucosidase. 
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