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MiR-195 restrains lung adenocarcinoma by regulating CD4+ T cell 
activation via the CCDC88C/Wnt signaling pathway: a study based 
on the Cancer Genome Atlas (TCGA), Gene Expression Omnibus 
(GEO) and bioinformatic analysis
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Background: To systematically identity microRNA signatures, as well as miRNA-gene axes, for lung 
adenocarcinoma (LUAD) and to explore the potential biomarkers and mechanisms associated with the 
LUAD immune responses.
Methods: LUAD-related data were obtained from the Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA), and these data were then used to identify the differentially expressed miRNAs 
that were downregulated in tumor tissues. Summary receiver operating characteristic curve analysis, 
survival analysis and meta-analysis were applied to evaluate the clinical significance and diagnostic value of 
the identified miRNAs. The presumed targets of the integrated-signature miRNAs were identified via 3 
different target prediction algorithms: TargetScan, miRDB and DIANA-TarBase. Immunologic signature 
gene sets were enriched by gene set enrichment analysis (GSEA). Tumor-infiltrating lymphocytes were 
profiled by the Tumor IMmune Estimation Resource (TIMER). After pathway enrichment analysis using the 
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, pathway-gene networks were 
constructed using Cytoscape software.
Results: After integrated analysis of 4 GEO data sets (GSE48414, GSE51853, GSE63805 and GSE74190) 
and TCGA databases, miR-195 was identified as a potential clinical diagnostic marker. A total of 287 miR-
195 target genes were screened, and 3 functional gene sets (GSE13485, GSE21379 and GSE29164) were 
enriched. GSE21379 was associated with the upregulation of CD4+ T cells in tumors, and the core genes 
were validated via the TIMER database. The CCDC88C expression level was significantly correlated with 
CD4+ T cell activation (partial.cor =0.437, P<0.001). Enrichment analysis revealed that CCDC88C was 
significantly enriched in the Wnt signaling pathway.
Conclusions: MiR-195, as a suppressor of lung adenocarcinoma, regulates CD4+ T cell activation via 
CCDC88C.
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Introduction 

Non-small cell lung cancer (NSCLC), which accounts for 
85% of all lung cancer cases, is one of the leading causes 
of cancer-related deaths worldwide (1,2). More specifically, 
lung adenocarcinoma (LUAD) is the most common 
subtype of NSCLC. Despite improvements in early disease 
detection and the development of chemotherapeutic and 
targeted treatments, the overall survival rate of LUAD 
patients remains poor (2). In recent years, immunotherapy 
has attracted increasing attention from oncologists. T 
cells are important mediators of tumor immunity, and in 
most types of solid tumors, T cell infiltration is a favorable 
prognostic marker (3,4). Immunotherapy to boost T cell 
functionality in tumors is rapidly becoming established as 
a standard treatment (5), and the immunotherapy focus has 
been on recruiting tumor infiltrating T cells (6). CD4+ T 
cells secrete a variety of cytokines that have direct effector 
functions and activate other immune cells (such as B cells, 
dendritic cells and even CD8 T Cells) (7,8). In lung cancer, 
tumor-infiltrating CD4+ T cells plays an essential role 
in the immune response (9). CD4+ T cells affect tumors 
by allowing CD8+ T cells entry to tumor sites (10) and 
infected mucosa (11); furthermore, they are also required 
for the inhibition of angiogenesis at tumor sites (12).

MicroRNAs (miRNAs) are small noncoding RNAs 
that regulate gene expression by degrading or inhibiting 
translation of their target transcripts, thereby affecting 
processes such as cell proliferation, differentiation and 
apoptosis (13). Changes in miRNA expression were 
reported as biomarkers for LUAD risk and prognosis (14), 
and miRNA-based biomarkers with prognostic or predictive 
potential for tumor responsiveness to immunocheckpoint 
inhibitors were recently described (15). Cell-specific 
miRNA expression patterns and the roles of miRNAs 
in the LUAD microenvironment have not been fully 
elucidated. Patients with similar clinical features often have 
different outcomes, suggesting an underlying relationship 
between LUAD development and genetic variations. The 
identification of new specific biomarkers that can be used 
to monitor tumor progression and treatment sensitivity, as 
well as to predict patient survival, will help overcome these 
challenges and improve outcomes in LUAD patients (16,17). 

Gene expression profiling has become a new and effective 
method to identify prognostic markers and molecular 
targets for therapies (18). Dysregulated miRNAs in LUAD 
can be identified using miRNA expression profiling. The 
aim of our study was to use bioinformatic analysis of a 

large clinical dataset to systematically identity microRNA 
signatures, as well as miRNA-gene axes, related to LUAD 
and to explore potential biomarkers and mechanisms 
associated with LUAD immune responses. 

Methods

Microarray profiles from the Gene Expression Omnibus 
(GEO) database

LUAD-related microarray profiles (up to November 
2018) were obtained from the GEO database (http://www.
ncbi.nlm.nih.gov/geo/). The search criterion of GEO 
Databases was shown in Table S1. Microarrays that met the 
following criteria were collected: (I) studies including at 
least 60 samples and (II) examination of miRNA expression 
in both cancerous tissue and adjacent noncancerous 
tissue from LUAD patients. Microarrays without useful 
data for analysis were excluded. Differentially expressed 
miRNAs (DEMs) between LUAD cancerous tissue and 
adjacent noncancerous tissue samples in each GEO dataset 
were ranked by the Robust Multi-Array Average and 
Linear Models for Microarray package and annotated by 
converting the different probe IDs to gene IDs.

Integrated analysis of miRNA expression datasets

The RobustRankAggreg (RRA) package was used to 
identify DEMs between LUAD cancerous tissue and 
adjacent noncancerous tissue samples. The adjusted 
P value and Log2-fold change (FC) were specified as  
0.05 and 1, respectively. One-sided test was applied to 
classify the downregulated DEMs. We selected the top  
10 significantly downregulated DEMs for further studies.

miRNA-seq data from The Cancer Genome Atlas (TCGA) 
database 

Publicly available miRNA-seq data on miRNA levels in 
LUAD cancer tissue and adjacent noncancerous tissue 
samples were directly downloaded from the TCGA data 
portal (http://cancergenome.nih.gov/). We obtained the 
miRNA profiles of 209 LUAD cancer tissue samples and 
45 adjacent noncancerous tissue samples together with the 
clinical information (level 3) of the corresponding patients. 
DEMs between the LUAD samples with pathological stages 
of I–IV and adjacent noncancerous tissue samples were 
identified by calculating the FC (|log2(FC)| >2 and adjusted 

http://cancergenome.nih.gov/
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P value <0.05) with the R package edgeR.

Integrated analysis the GEO profiles and the TCGA 
miRNA-seq data

The top 10 DEMs identified as significantly downregulated 
in the GEO database were entered into the TCGA database 
for further verification. DEMs that showed consistent 
expression in GEO were selected for statistical analysis. 
Independent Student’s t-tests were performed to calculate 
the differences in the miRNA levels between LUAD 
cancerous tissue and adjacent noncancerous tissue. P<0.05 
was considered statistically significant. 

Diagnosis and prognosis analysis

A receiver operating characteristic (ROC) curve built 
on a univariate classification model based on the DEM 
expression profiles across independent TCGA datasets were 
used to predict LUAD. Kaplan-Meier plots of the overall 
survival for a discriminatory median DEM expression 
profile based on TCGA sequencing data were used to assess 
prognostic accuracy. P values were calculated using the log-
rank test.

MiRNAs meeting the above diagnostic and prognostic 
criteria were introduced into multiple linear regression 
models for further analysis. The relative miRNA levels 
were treated as an independent variable, and the diagnosis 
results were treated as a dependent variable. A linear 
regression equation was constructed to identify miRNAs 
with independent diagnostic value. 

Pairwise meta-analysis and diagnostic meta-analysis

A comprehensive meta-analysis was performed using Stata 
14.0 software (Stata Corporation, College Station, TX), 
combining the TCGA data and GEO datasets. The pooled 
data in the meta-analysis were assessed by the standard 
mean difference (SMD) with a 95% confidential interval 
(CI). Heterogeneity among the eligible microarrays 
was evaluated by chi-squared and I-squared tests. The 
effect model was then determined according to the 
heterogeneity. Specifically, a fixed effects model was 
conducted for the meta-analysis when the heterogeneity 
was low (I2≤50% and P>0.1), and a random effects model 
was selected if apparent heterogeneity existed (I2>50% 
or P≤0.1). A bivariate-mixed model was used to estimate 
the ROC curve, and the area under curve (AUC) was also 

estimated to optimize cut-off points.

Target prediction and functional analysis of miRNA

The presumed targets of the integrated-signature miRNAs 
were identified by 3 different target prediction algorithms: 
TargetScan, miRDB and DIANA-TarBase. Unique genes 
with target sites in 3 ' UTR sequences were included. 
To assess the possible functions, we searched the Gene 
Ontology (GO) database, the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database and the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID). A P value less than 0.01 was defined as the cutoff 
criterion for KEGG pathways enriched in the target gene set.

Gene set enrichment analysis (GSEA) 

The enrichment analyses for immunologic signature gene 
sets were conducted with GSEA v3.0 for the target genes. 
The enriched pathways were arranged in the order of their 
normalized enrichment scores (NESs). 

Immunocyte infiltration in the tumor microenvironment

The core enriched genes have been packaged into the web-
accessible resource TIMER (Tumor IMmune Estimation 
Resource; https://cistrome.shinyapps.io/timer/), to enable 
further exploration of the impacts of the core enriched genes 
on immunocyte infiltration in tumor microenvironments.

Results

Collection of microarray datasets from GEO

The flow chart for the study selection for this integrated 
analysis is shown in Figure 1. We searched the GEO 
database, and the GEO microarrays can be regarded as a 
training dataset to screen for DEMs in LUAD. Finally, 4 
GEO datasets (accession numbers GSE48414, GSE51853, 
GSE63805 and GSE74190) were included in the present 
study, and the characteristics of the studies based on the 
GEO dataset are presented Table 1.

Due to the heterogeneity in the sample types in the GSE 
microarrays, the common DEMs were examined separately 
(Figure 2). The downregulated DEMs in each GSE are 
presented in http://fp.amegroups.cn/cms/atm.2019.05.54-1.
pdf. Tables S2-S4. There were inconsistencies in the DEMs 
obtained from each GSE microarray. Therefore, the RRA 
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Figure 1 The flowchart of the integrated analysis and functional validation.
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package was used to perform an integrated analysis of the 
4 GSE microarrays to identify co-downregulated DEMs. 
There were 27 significantly downregulated miRNAs. The 
hierarchical clustering of the top 10 miRNAs is shown in 
Figure 3.

Integrated-signature miRNAs showed clinical prognostic 
significance in LUAD patients

We further validated the top 10 downregulated DEMs 
in TCGA-LUAD samples (209 LUAD cancerous tissue 
samples and 45 adjacent noncancerous tissue samples, 
http://fp.amegroups.cn/cms/atm.2019.05.54-2 .pdf). 
Only miR-195, miR-451, miR-144, miR-218, miR-
133b, miR-145, miR-143 and miR-497 were significantly 
downregulated in LUAD tumors (Figure 4). The diagnostic 
efficiency and prognostic value of each of these miRNAs 
were estimated via ROC curve analysis and Kaplan-Meier 
survival analysis, respectively. Ultimately, we selected 3 
miRNAs (miR-143, miR-195 and miR-218) with high 
diagnostic efficiency (AUC >0.8, P<0.05) and prognostic 
value (logrank P<0.05) (Figure 5). We next optimized the 
accuracy by using a linear regression model built on a 
panel of the combined miRNAs. By constructing the linear 
regression equation LUAD risk score = −0.0.02267miR-
143-0.1115miR-195-0.04098miR-218+2.3699, miR-195 
was identified as the most significant independent variable 
(P=0.0006, Table 2). 

Combining the TCGA data and GEO datasets, 
the results of pairwise meta-analyses indicated that 

miR-195 was overexpressed in adjacent noncancerous 
tissue samples (SMD =−1.69, 95% CI: −1.92 to −1.46,  
Figure 6). Furthermore, the results of a diagnostic meta-
analysis suggested that miR-195 offers high diagnostic 
efficiency (AUC =0.9180, Figure 7A; the pooled sensitivity 
=0.97, 95% CI: 0.95–0.99, Figure 7B; the pooled specificity 
=0.65, 95% CI: 0.57–0.72, Figure 7C).

Target gene prediction coupled with pathway analysis

To explore the biological mechanisms of miR-195 in 
LUAD, we performed target gene prediction coupled 
with pathway analysis. A total of 287 target genes (http://
fp.amegroups.cn/cms/atm.2019.05.54-3.pdf) were identified 
via TargetScan, miRDB and DIANA-TarBase, and these 
genes were then subjected to GO and KEGG analyses. 
The results of the GO term analysis included the biological 
process (BP), cellular component (CC) and molecular 
function (MF) groups. The target genes were mainly 
enriched in protein binding, beta-catenin binding, ubiquitin 
protein ligase activity and activin binding in the MF 
group; nucleoplasm, cytoplasm, cytosol and nucleus in the 
CC group; and protein phosphorylation and Wnt signaling 
pathway in the BP group (Table S5 and Figure 8). The results 
of the GO and KEGG analysis indicated that the most 
significantly enriched terms were “protein binding” and 
“cell cycle”. The top 50 genes with significant differences in 
their expression levels are shown along with their functions 
in Figure 8B. All of the target genes were analyzed using the 
KEGG pathway website and the clusterProfiler package of 

Table 1 Datasets used in finally quantitative synthesis and integrated analysis

No. Author
Publication 
year

Country Assay type
Tumor 
site 

No. of 
samples 
(Pairs)

Sample size 
(normal/tumor)

Platform
Source 
accession

PMID

1 Bjaanæs 2014 Norway Agilent-031181 
Unrestricted_Human_
miRNA

LUAD 20 174 (154/20) GPL16770 GSE48414 24599520

2 Tai 2015 Japan Agilent-015508 Human 
miRNA Microarray

NSCLC 5 131 (126/5) GPL7341 GSE51853 26483346

3 Robles 2016 USA NanoString nCounter 
Human miRNA assay

LUAD 31 62 (31/31) GPL18410 GSE63805 26134223

4 Lu 2015 (last 
update date)

China Agilent-019118 Human 
miRNA Microarray

SCLC, 
LUAD, 
LUSC

44 126 (82/44) GPL19622 GSE74190 –

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SCLC, small cell lung carcinoma; NSCLC, non-small cell lung cancer; 
Pairs, tumor tissues and paired adjacent noncancerous tissues from the same patient. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bjaan&%23x000e6;s MM[Author]&cauthor=true&cauthor_uid=24599520
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16770
https://www.ncbi.nlm.nih.gov/pubmed/24599520
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL7341
https://www.ncbi.nlm.nih.gov/pubmed/?term=Robles AI[Author]&cauthor=true&cauthor_uid=26134223
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL18410
https://www.ncbi.nlm.nih.gov/pubmed/26134223
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL19622


Yuan et al. MiR-195 restrains LUAD by regulating CD4+ T cell activation

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(12):263 | http://dx.doi.org/10.21037/atm.2019.05.54

Page 6 of 16

Volcanoplot

Volcanoplot

Volcanoplot

Volcanoplot

hsa-miR-144 hsa-miR-183

hsa-miR-135b

hsa-miR-133a

hsa-miR-133b

hsa-miR-4328

hsa-miR-144

hsa-miR-486

hsa-miR-451

hsa-miR-451

hsa-miR-126

hsa-miR-135b

hsa-miR-196a
hsa-miR-1246

hsa-miR-183hsa-miR-144

hsa-miR-520e
hsa-miR-30a

hsa-miR-21

hsa-miR-96

hsa-miR-31
hsa-miR-9

hsa-miR-183

hsa-miR-96

hsa-miR-328
hsa-miR-233*

hsa-miR-187*
hsa-miR-183*

hsa-miR-9*

hsa-miR-195*
hsa-miR-204
hsa-miR-144

hsa-miR-451
hsa-miR-486-5p

-l
og

10
 (q

-v
al

ue
)

-l
og

10
 (q

-v
al

ue
)

-l
og

10
 (q

-v
al

ue
)

-l
og

10
 (q

-v
al

ue
)

log2 (fold change)

log2 (fold change)

log2 (fold change)

log2 (fold change)

–4                   –2                     0                      2

Significant

Significant

Significant

Significant

14
12
10
8
6
4
2

20

10

0

20

15

10

5

0

15

10

5

0

30

20

10

0

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

NA

10
5
0
–5
–10

15

10

5

0

5

0

–5

–5.0             –2.5              0.0              2.5               5.0

–4               –2               0                2 

–3            –2             –1             0              1              2

A B

E

G H

F

DC

Figure 2 Clustering of the genes in LUAD cancerous tissue samples vs. adjacent noncancerous tissue samples across each independent 
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Figure 5 Diagnostic analysis and survival analysis. The ROC curve was built on a univariate classification model based on miRNA 
expression levels across independent TCGA datasets to predict LUAD. Kaplan-Meier plots of overall survival for a discriminatory 
median DEM expression profile, based on TCGA sequencing data, to assess prognostic accuracy. The P values were calculated using the  
log-rank test.
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the R software, and only genes with P values less than 0.01 
were included. The largest number genes were enriched 
in the PI3K-Akt signaling pathway (Figure 9). The specific 
links between each gene and its function are shown in 
Figure 9C.

GSEA in immunologic signature gene sets

To characterize the potential mechanisms of immunologic 
function associated with the miR-195 target genes, GSEA 
was used to obtain the biological processes enriched in 
immunologic signature gene sets. Then, 3 functional gene 
sets were enriched (GSE13485, GSE21379 and GSE29164, 
Figure 10), and they were all upregulated in the tumor tissue 
samples. The core genes of the 3 immunologic signature 

gene sets are shown in Tables S6-S8.
GSE21379 was associated with upregulation of CD4+ 

T cells in tumors, and the core enrichment genes were 
validated via the TIMER database. The correlations 
between the expression levels of 14 genes (OSBPL3, 
IVNS1ABP ,  USP42 ,  VEGFA ,  BAG4 ,  GGA3 ,  BTRC , 
CCDC88C, NOTCH2, MAFK, CAMSAP1, PRKAR2A, 
MOB4, DDX3Y and FRYL) and CD4+ T cell infiltration 
were examined. The expression levels of CCDC88C were 
significantly correlated with CD4+ T cell activation (partial.
cor =0.437, P<0.001, Figure S1).

Discussion

The present study, based on GEO and TCGA analysis, 

Table 2 LUAD risk score was built using a linear regression model

Independent variables Coefficient Std. Error t P

miR-143 −0.02267 0.02111 −1.074 0.2840

miR-195 −0.1115 0.03192 −3.491 0.0006

miR-218 −0.04098 0.02263 −1.811 0.0714

LUAD, lung adenocarcinoma. Linear regression equation: Y =−0.02267miR-143 −0.1115miR-195 −0.04098miR-218 +2.3699.

Study

ID
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Figure 6 Forest plots summarizing miR-195 downregulation in the 5 datasets in the integrated analysis. Each row represents a study with 
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revealed that miR-195 was overexpressed in adjacent 
noncancerous tissue samples, and that it had high diagnostic 
efficiency. These results are consistent with those of a 
previous study (19) that showed that miR-195 suppressed 
tumor cell growth, migration and invasion and was 
associated with better survival outcomes in LUAD patients.

Nevertheless, most previous basic studies focused on 
one miRNA-195 target gene, i.e., CHEK1 (19), IRS1 (20), 
or MMP14 (21). Our KEGG pathway analysis found that 

the largest number genes were enriched in the PI3K-Akt 
signaling pathway, including the following genes: CCNE1, 
FGF2, PIK3R1, AKT3, RPS6KB1, PHLPP2, ITGA2, 
YWHAQ, YWHAH, CCND1, PRKAA1, MYB, RAF1, 
INSR, VEGFA, LAMC1 and CHUK. Because miRNAs 
are mainly negative regulators of their target genes, these 
upregulated genes (CCNE1, RPS6KB1, ITGA2, YWHAQ, 
PRKAA1, INSR, VEGFA, LAMC1 and CHUK) should be 
given attention in future studies of LUAD. The PI3K-

Figure 7 Diagnostic meta-analysis. (A) SROC curves for miR-195 in LUAD diagnosis. (B) The sensitivity of miR-195 (pooled sensitivity 
=0.97, 95% CI: 0.95–0.99). (C) The specificity of miR-195 (pooled specificity =0.65, 95% CI: 0.57–0.72).
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Akt signaling pathway is essential for maintaining cell 
growth, survival, death and metabolism, and it is commonly 
activated during cancer initiation and progression (22). In 
addition, the PI3K-Akt signaling pathway can regulate 
the proliferation, migration, invasion, apoptosis and 
angiogenesis of lung cancer cells (23), and activation of the 
PI3K-Akt signaling pathway may be a therapeutic molecular 
target for lung cancer (24). In addition to the relationship 
between VEGFA and the PI3K-Akt signaling pathway in 
lung cancer (25), the biological behaviors of lung cancer 
involving the PI3K-Akt signaling pathway remain to be 
investigated.

The GSEA-based identification of an immunologic 

signature gene set was an important objective of this study. 
GSE13485 was mainly related to a vaccine response, 
and GSE29164 was based on data collected during 
immunotherapy for melanoma. Therefore, we focused on 
the relationship between the genes and immune processes 
contained in GSE21379. As shown in Table S7, 15 core 
genes (OSBPL3, IVNS1ABP, USP42, VEGFA, BAG4, 
GGA3, BTRC, CCDC88C, NOTCH2, MAFK, CAMSAP1, 
PRKAR2A, MOB4, DDX3Y and FRYL) were involved in 
the upregulation of CD4+ T cells in tumor tissue. Previous 
studies (26,27) showed that CD4+ T cells induced cytotoxic 
programming of CD8+ T cells, which then suppress 
tumor growth via IFN-γ secretion or direct killing of the 

Figure 8 Gene Ontology terms of 287 overlapping miR-195 target genes. (A) Each point represents a gene, and the colors represent the 
expression level (red indicates upregulated expression and blue indicates downregulated expression). (B) The top 50 genes identified via 
functional enrichment with their Log FC values. (C) Significantly enriched GO terms of the miR-195 target genes based on their functions.
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Figure 9 Significant signaling pathway analysis of miR-195 target genes performed with the KEGG pathway website and R software 
packages. (A and B) Representative dot plots of the pathway enrichment analysis of the miR-195 target genes. Gene ratio = count/set size. (C) 
The relationship between the genes and KEGG pathways. The red, green and blue circles denote upregulated genes, downregulated genes 
and the KEGG pathway ID, respectively.
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tumor cells (28,29). However, the effects of CD4+ T cell 
infiltration on the biological behaviors of tumors are not 
consistent. The presence of CD4+ T cells in the tumor 
microenvironment was linked to poor outcomes in prostate 
cancer patients (30) as well as in patients with renal cell 
carcinoma (31). CD4+ T cells recruited in mammary 
cancer enhanced metastasis (32). Among the immunologic 
signature gene sets in GSE13485, NOTCH2 (33-35) 
and VEGFA (36) had significant effects on CD4+ T cells. 
However, the immune regulatory mechanisms of the other 
genes in tumors and lung cancer are not fully elucidated. 
Therefore, our study provides a clue for studying the 
genetic regulation of CD4+ T cells and lung cancer 

immunity.
Our results also demonstrated that the CCDC88C 

expression level was significantly correlated with CD4+ T 
cell activation. Enomoto et al. (37) found that CCDC88C 
(coiled-coil domain containing 88C) encodes a member 
of the hook-related proteins involved in the regulation of 
the Wnt signaling pathway. These results are consistent 
with our enrichment analysis. Furthermore, the Wnt 
signaling pathway controls inflammatory responses 
induced by multiple factors, such as pathogenic bacteria 
via Toll-like receptors (38,39), and it might be involved 
in the impaired T-cell homeostasis present in a variety of 
immune system diseases, such as rheumatoid arthritis and 

Figure 10 Gene set enrichment analysis (GSEA) of TCGA dataset immunologic signature gene sets. 
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systemic lupus erythematosus (40). Inhibition of the Wnt 
signaling pathway enhanced CD4+ T cell infiltration into 
the central nervous system by increasing the expression 
of vascular cell adhesion molecule-1 and the transcytosis 
protein Caveolin-1, as well as by promoting endothelial  
transcytosis (41). A previous study (42) showed that both 
Wnt3a and β-catenin were overexpressed by tumor-
infiltrating and nontumor-infiltrating CD4+ or CD8+ T 
cells. Wnt3a blockade inhibited the differentiation 
of naive T cells but could not rescue the dysfunction 
of differentiated T cells in the tumor environment. 
The canonical Wnt signaling pathway blocks T cell 
differentiation and plays an important role in phenotypic 
maintenance of naive T cells and stem cell-like memory T 
cells in human peripheral blood (43); however, its effects on 
tumor-infiltrating lymphocytes in non-small cell lung cancer 
are still unclear. Based on the results of our bioinformatic 
analysis and previous literature reports, we conclude that 
CCDC88C might regulate CD4+ T cell activation via the 
Wnt signaling pathway.

However, this conclusion should be treated with caution. 
The GO enrichment analysis showed that CCDC88 was 
enriched in the Wnt signaling pathway, but this pathway 
was not significantly enriched in the KEGG results. In 
general, the biological process results from the GO analysis 
have many similar functions to those identified via the 
KEGG pathway analysis. Since the two types of enrichment 
analysis are based on different databases, there may be some 
inconsistencies in the results. However, this inconsistency 
could represent a cross-complement that provides 
verification of the two methods.

The tumor microenvironment, with its individual 
immune cells, may play key roles in tumor progression. 
Cancer development is driven by the accumulation of 
random mutations that lead to increased dysregulation of 
several key pathways. Therefore, it is very important to use 
bioinformatics approaches to identify key genes that shape 
tumor immune microenvironments.
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Supplementary

Table S1 Search criterion of GEO Databases

Search No. Search criterion of GEO Databases （up to December 28, 2018） Items found

#1 (((((Lung Neoplasms[MeSH Terms]) OR Carcinoma, Non-Small-Cell Lung[MeSH Terms]) OR 
Adenocarcinoma of Lung[MeSH Terms]) OR NSCLC) OR lung Adenocarcinoma) OR LUAD

35,294

#2 ((("micrornas"[MeSH Terms] OR mirna[All Fields]) OR ("micrornas"[MeSH Terms] OR microrna[All 
Fields]) OR ("micrornas"[MeSH Terms] OR mirnas[All Fields]) OR ("micrornas"[MeSH Terms] OR 
micrornas[All Fields]))

61,229

#3 (profile[All Fields] OR profiles[All Fields] OR profiling[All Fields] OR pattern[All Fields]) 116,098

#4 "Homo sapiens"[porgn] 1,577,257

#5 #1 AND #2 AND #3 AND #4 804

Table S2 The down-regulated DEMs in GSE51853

Gene adj.P.Val P.Value t B logFC

hsa-miR-144 5.28E-27 1.12E-29 −17.59234 56.946 −5.418055

hsa-miR-486 4.58E-17 1.95E-19 −11.81435 33.799 −4.432312

hsa-miR-451 3.46E-11 2.21E-13 −8.7426 20.045 −5.15291

hsa-miR-126 1.69E-05 2.16E-07 −5.65619 6.504 −2.175387

hsa-miR-30a-5p 3.91E-05 6.65E-07 −5.38563 5.41 −2.105199

hsa-miR-101 6.84E-05 1.31E-06 −5.21951 4.751 −1.602091

hsa-miR-140 9.57E-05 2.04E-06 −5.11034 4.324 −1.203233

hsa-miR-185 1.30E-04 3.18E-06 −4.9987 3.892 −0.932981

hsa-miR-133b 3.43E-04 1.06E-05 −4.69054 2.726 −2.249404

hsa-miR-218 3.43E-04 1.10E-05 −4.68321 2.699 −2.024709

hsa-miR-565 3.43E-04 1.02E-05 −4.70235 2.77 −1.887203

hsa-miR-133a 5.43E-04 1.96E-05 −4.53051 2.137 −1.87426

hsa-miR-557 6.05E-04 2.32E-05 −4.48689 1.979 −1.484434

hsa-miR-30a-3p 8.74E-04 3.72E-05 −4.36026 1.525 −2.301978

hsa-miR-139 9.36E-04 4.27E-05 −4.32292 1.392 −2.906636

hsa-miR-145 9.36E-04 4.38E-05 −4.31593 1.368 −1.641525

hsa-miR-143 1.05E-03 5.13E-05 −4.27304 1.216 −1.482877

hsa-miR-523 2.76E-03 1.41E-04 −3.9927 0.253 −1.825452

hsa-miR-16 2.85E-03 1.52E-04 −3.97165 0.183 −1.031358

hsa-miR-373* 7.39E-03 4.40E-04 −3.66185 −0.826 −1.480641

hsa-miR-338 8.44E-03 5.21E-04 −3.61174 −0.984 −2.256666

hsa-miR-497 8.68E-03 5.54E-04 −3.59313 −1.042 −1.45217

hsa-miR-659 9.81E-03 6.47E-04 −3.54613 −1.188 −1.554404

hsa-miR-498 1.28E-02 8.72E-04 −3.45468 −1.468 −1.043826

hsa-miR-195 1.60E-02 1.16E-03 −3.36634 −1.733 −1.354666

hsa-miR-516-3p 2.43E-02 1.97E-03 −3.19723 −2.226 −1.069751

hsa-miR-378 3.64E-02 3.09E-03 −3.04791 −2.644 −1.319273

hsa-miR-638 4.37E-02 3.81E-03 −2.9774 −2.836 −1.030528



Table S3 The down-regulated DEMs in GSE63805

Gene adj.P.Val P.Value t B logFC

hsa-miR-451 2.43E-13 6.62E-16 −10.4946 25.8539 −2.9249

hsa-miR-126 5.66E-11 2.31E-13 −9.07384 20.1336 −1.746

hsa-miR-30a 1.04E-10 5.66E-13 −8.85938 19.2579 −1.60025

hsa-miR-520e 1.53E-09 1.25E-11 −8.12161 16.2338 −2.3309

hsa-miR-30d 1.21E-07 1.31E-09 −7.0094 11.6836 −1.26736

hsa-miR-144 2.36E-07 2.89E-09 −6.81965 10.9147 −1.75169

hsa-miR-30b 2.87E-07 4.01E-09 −6.74053 10.5952 −1.14825

hsa-miR-145 9.59E-06 1.70E-07 −5.82196 6.9507 −1.27152

hsa-miR-218 1.18E-05 2.70E-07 −5.70542 6.4995 −1.22811

hsa-miR-223 1.18E-05 2.38E-07 −5.73764 6.624 −1.10043

hsa-miR-497 2.76E-04 9.01E-06 −4.79815 3.1126 −0.82562

hsa-miR-135a 2.98E-04 1.06E-05 −4.75562 2.9603 −1.1259

hsa-miR-195 3.48E-04 1.37E-05 −4.68458 2.7075 −0.75577

hsa-miR-16 3.85E-04 1.68E-05 −4.63018 2.5152 −0.6351

hsa-miR-30c 5.95E-04 3.00E-05 −4.47107 1.9595 −0.68193

hsa-miR-143 1.50E-03 8.38E-05 −4.18252 0.9793 −0.83223

hsa-miR-99a 4.57E-03 2.68E-04 −3.84362 −0.1218 −0.72796

ebv-miR-BART9 4.95E-03 3.03E-04 −3.80685 −0.2377 −0.84051

hsa-miR-140-5p 6.15E-03 3.94E-04 −3.72758 −0.4852 −0.5014

hsa-miR-302e 9.09E-03 6.44E-04 −3.57649 −0.9474 −0.58935

hsa-miR-302f 1.62E-02 1.28E-03 −3.35862 −1.5905 −0.61706

hsa-let-7b 1.65E-02 1.33E-03 −3.34684 −1.6245 −0.44182

hsa-miR-23a 2.16E-02 1.88E-03 −3.23388 −1.9458 −0.57929

hsa-miR-26a 2.40E-02 2.17E-03 −3.18665 −2.0777 −0.42085

hsa-let-7d 3.42E-02 3.31E-03 −3.04369 −2.4683 −0.36884

hsa-miR-125b 4.74E-02 5.24E-03 −2.88447 −2.8871 −0.53226

hsa-miR-335 4.93E-02 5.67E-03 −2.85642 −2.9591 −0.50533



Table S4 The down-regulated DEMs in GSE74190

Gene adj.P.Val P.Value t B logFC

hsa-miR-126 2.51E-25 3.05E-28 −16.97988 53.87438 −2.606823

hsa-miR-144 4.12E-21 1.00E-23 −14.29145 43.57032 −4.144946

hsa-miR-126* 8.40E-21 3.07E-23 −14.01579 42.46067 −2.39406

hsa-miR-218 4.23E-19 2.58E-21 −12.94572 38.06224 −2.302513

hsa-miR-451 2.56E-18 2.18E-20 −12.44139 35.94098 −4.1685

hsa-miR-486-5p 3.19E-18 3.11E-20 −12.3584 35.58912 −3.417527

hsa-miR-140-3p 2.83E-17 3.10E-19 −11.8239 33.30445 −1.32449

hsa-miR-30a 9.21E-17 1.28E-18 −11.49705 31.89247 −2.039716

hsa-miR-139-5p 3.51E-16 5.55E-18 −11.16276 30.43748 −2.283491

hsa-miR-144* 3.30E-12 6.82E-14 −9.05712 21.08639 −2.372553

hsa-miR-30a* 6.81E-12 1.49E-13 −8.8839 20.30921 −2.226259

hsa-miR-223 1.35E-11 3.11E-13 −8.72153 19.58067 −1.375561

hsa-miR-133b 2.77E-11 6.74E-13 −8.55086 18.81514 −1.724604

hsa-miR-498 9.59E-11 2.92E-12 −8.22664 17.36267 −1.626849

hsa-miR-145 2.62E-10 8.29E-12 −7.99557 16.33003 −1.498766

hsa-miR-338-3p 2.66E-10 8.75E-12 −7.9835 16.27615 −2.341491

hsa-miR-187* 3.38E-10 1.15E-11 −7.92251 16.00411 −1.756869

hsa-miR-497 5.83E-10 2.06E-11 −7.79354 15.42967 −1.173224

hsa-miR-195 2.93E-09 1.11E-10 −7.4183 13.76591 −1.213904

hsa-miR-30c-2* 3.81E-09 1.48E-10 −7.35278 13.47683 −1.157946

hsa-miR-101 2.82E-08 1.20E-09 −6.88137 11.41267 −1.192292

hsa-miR-130a 3.10E-08 1.40E-09 −6.84717 11.26416 −0.910084

hsa-miR-143 3.56E-08 1.65E-09 −6.80954 11.10094 −1.357178

hsa-miR-145* 1.50E-07 7.86E-09 −6.45194 9.56274 −1.493834

hsa-miR-638 3.53E-07 1.89E-08 −6.24868 8.69977 −1.459486

hsa-miR-134 4.20E-07 2.30E-08 −6.2029 8.50672 −1.344233

hsa-miR-1225-5p 1.11E-06 6.47E-08 −5.96045 7.4926 −1.074196

hsa-miR-373* 1.75E-06 1.07E-07 −5.84219 7.00352 −0.792895

hsa-miR-140-5p 1.79E-06 1.11E-07 −5.83253 6.96371 −0.959252

hsa-miR-1 2.68E-06 1.73E-07 −5.72638 6.52833 −1.710784

hsa-miR-557 3.12E-06 2.05E-07 −5.68569 6.36231 −1.208886

hcmv-miR-UL70-3p 3.65E-06 2.44E-07 −5.64371 6.19157 −1.558056

hsa-miR-150* 4.03E-06 2.75E-07 −5.6152 6.07592 −0.934027

hsa-miR-99a 9.35E-06 6.83E-07 −5.39385 5.18677 −0.869441

hsa-miR-1224-5p 9.36E-06 6.96E-07 −5.38952 5.16951 −0.759061

hsa-miR-30c 1.05E-05 7.94E-07 −5.3571 5.04074 −0.595558

hsa-miR-30b 1.28E-05 9.81E-07 −5.3049 4.83411 −1.063555

hsa-miR-328 1.48E-05 1.17E-06 −5.26169 4.66376 −0.915212

hsa-miR-572 4.99E-05 4.20E-06 −4.94081 3.42087 −1.352622

hsa-miR-143* 9.37E-05 8.10E-06 −4.77178 2.78276 −0.606271

hsv1-miR-LAT 1.18E-04 1.03E-05 −4.70915 2.54942 −1.172914

hsa-miR-100 2.31E-04 2.13E-05 −4.51769 1.84711 −0.871147

hsa-miR-30d 2.40E-04 2.28E-05 −4.49993 1.78283 −0.719427

kshv-miR-K12-3 2.60E-04 2.50E-05 −4.47566 1.69523 −0.925876

hsa-miR-27a 3.83E-04 3.92E-05 −4.35454 1.2623 −0.492615

hsa-miR-940 4.01E-04 4.15E-05 −4.33896 1.20712 −0.690085

hsa-miR-34b 4.52E-04 4.79E-05 −4.29959 1.06828 −1.530313

hsa-miR-874 8.69E-04 9.43E-05 −4.11264 0.4199 −0.649814

hsa-miR-142-5p 1.32E-03 1.48E-04 −3.98467 −0.01312 −0.983926

hsa-miR-551b 1.94E-03 2.20E-04 −3.87121 −0.38936 −1.196408

hsa-miR-197 2.83E-03 3.35E-04 −3.74868 −0.7873 −0.552384

hsa-let-7d* 2.99E-03 3.57E-04 −3.72965 −0.84832 −0.743634

hsa-miR-150 3.41E-03 4.12E-04 −3.68732 −0.98323 −0.744552

hsa-miR-335 3.94E-03 4.89E-04 −3.63569 −1.1463 −0.855696

hsa-miR-630 4.56E-03 5.72E-04 −3.58841 −1.29421 −0.92997

hsa-miR-34c-5p 6.41E-03 8.35E-04 −3.47238 −1.65119 −1.682751

hsa-miR-125b-2* 7.58E-03 1.03E-03 −3.40859 −1.84376 −0.71629

hsa-miR-636 7.75E-03 1.08E-03 −3.39336 −1.88935 −0.677055

hsa-miR-1226* 9.92E-03 1.40E-03 −3.31004 −2.13604 −0.685631

hsa-miR-188-5p 1.18E-02 1.72E-03 −3.24472 −2.32617 −0.539625

hsa-miR-125b 1.29E-02 1.94E-03 −3.20596 −2.43762 −0.506143

hsa-miR-877 1.37E-02 2.08E-03 −3.18318 −2.50263 −0.562507

hsa-miR-203 1.42E-02 2.21E-03 −3.16338 −2.55886 −0.790212

hsa-miR-601 1.51E-02 2.37E-03 −3.13944 −2.62647 −0.679305

hsa-miR-149* 2.16E-02 3.64E-03 −2.99634 −3.02219 −0.533993

hsa-miR-936 2.22E-02 3.81E-03 −2.98072 −3.0645 −0.368881

hsa-miR-139-3p 2.36E-02 4.10E-03 −2.95532 −3.1329 −0.721107

hsa-miR-671-5p 2.50E-02 4.47E-03 −2.92589 −3.21161 −0.475478

hsa-miR-342-3p 2.94E-02 5.52E-03 −2.85223 −3.40574 −0.266087

hsa-miR-564 2.96E-02 5.58E-03 −2.8487 −3.41496 −0.530209

hsa-miR-125a-3p 3.26E-02 6.30E-03 −2.80559 −3.52659 −0.725482

hsa-miR-517c 3.56E-02 6.94E-03 −2.77146 −3.61399 −0.213062

hsa-miR-939 3.72E-02 7.30E-03 −2.75326 −3.66025 −0.512994

hsa-miR-29c 4.58E-02 9.20E-03 −2.66924 −3.87046 −0.455756

*, refers to the minor product of the 2 miRNAs derived from the same miRNA hairpin. Usually, its concentration is lower than the major one 
in the cell.



Table S5 The results of GO term analysis included the BP, CC and MF group

Category ID Term Genes adj_pval

MF GO:0005515 Protein binding AMOTL1, VPS33B, CD2AP, ZNRF3, CUL2, PSKH1, TRAK1, RAB23, VPS4A, TLK1, 
OGT, EIF2B2, BCL7A, CDCA4, TBPL1, RECK, PTPRJ, PIM1, PRDM4, SERBP1, 
VEGFA, MTFR1L, RAD23B, MOB4, CHEK1, BCL2L2, HSPA1B, CALU, ARIH1, 
STX17, NUP50, HOXA10, TRAM1, CDC37L1, ZNF622, KIF3B, OSBPL3, TAOK1, 
SMAD7, SREK1, YTHDC1, SMAD3, SKI, CDC27, NOTCH2, SUPT16H, TGFBR3, 
SMURF1, RBPJ, CREBRF, CCNT2, CLSPN, ZBTB33, CPEB3, ZMAT3, CCNT1, 
SHOC2, PDIA6, BAG4, CCNE1, TMEM100, MYB, SIK1, USP15, FGF2, TLE4, 
RBBP6, CARD10, PDIK1L, RAB11FIP2, CCND1, ALOX12, PPP6C, ZBTB10, ATG14, 
FKBP1A, NUFIP2, MTMR3, FASN, AGO1, CSDE1, PRKAA1, PCMT1, PEX13, 
AGO4, PEX12, KIF21A, MLLT6, MTMR4, SSRP1, PPP1R11, AFF4, STRADB, 
RAPH1, ITPR1, RPS6KA3, PHF19, YWHAH, RASSF2, YWHAQ, ZBTB5, KATNAL1, 
WNT7A, USP42, RNMT, STK38, BTRC, CBX4, CASK, CBX2, RPS6KB1, FLCN, 
VCL, PRKAR2A, SPRED1, INSR, ZNF449, RET, SPTLC1, ATG9A, GABPA, WEE1, 
RNF138, NAPG, LITAF, CACUL1, PPIL1, SNRPB2, UBE2V1, NR2C2, AMER1, 
HOXA3, DDX3X, ELK4, AXIN2, ENTPD1, ARHGDIA, GABARAPL1, YIPF6, ITGA2, 
MAFK, WIPI2, CYB561A3, C2ORF42, LAMP2, CDC42SE2, SALL1, CPNE1, ABL2, 
TBC1D20, GPATCH8, PLEKHA1, KIF23, CDK17, SEC24A, FOXK1, E2F7, CBFA2T3, 
PHC3, CDC42, PLRG1, LRRFIP2, CHUK, AKT3, ARL2, TBL1XR1, SYNRG, 
RUNX1T1, STXBP3, PURA, RFWD2, ACVR2A, TARBP2, ARHGAP32, CRKL, 
BTG2, CPSF7, KPNA1, PHLPP2, PPM1A, CEP55, N4BP1, ETNK1, PAFAH1B1, 
PAFAH1B2, TNRC6B, PIK3R1, PTPRD, UBE4A, HMBOX1, SIRT4, RAF1, UBE2Q1, 
TAB3, CDC25A, LSM11, IRF4, GGA3, RNF41

5.23E-11

CC GO:0005654 Nucleoplasm CREBRF, KIF23, CCNT2, ACOX1, CLSPN, ZBTB33, RNMT, ZBTB34, EZH1, 
BTRC, E2F7, CCNT1, CBX4, SHOC2, CBX2, RPS6KB1, PNISR, CBFA2T3, PHC3, 
CUL2, CCNE1, PLRG1, SPRED1, RARB, OGT, AKT3, CHUK, TBL1XR1, GABPA, 
RUNX1T1, TLE4, UBN2, RBBP6, WEE1, RFWD2, PDIK1L, CCND1, RAB11FIP2, 
ASH1L, CPSF7, KPNA1, RAD23B, LITAF, ZBTB10, SNRPB2, PPM1A, CHEK1, 
HSPA1B, IVNS1ABP, NR2C2, MTMR3, HOXA3, ELK4, NUP50, AGO1, ETNK1, 
PRKAA1, AXIN2, SSRP1, JARID2, SMAD7, SREK1, SMAD3, SKI, MAFK, WIPI2, 
CDC27, CDC25A, TAB3, NOTCH2, RPS6KA3, PHF19, RPRD2, DMTF1, SALL1, 
SUPT16H, SH3BGRL2, LSM11, SMURF1, IRF4, RBPJ, IPPK, PLEKHA1

6.63E-07

CC GO:0005737 Cytoplasm STK38, BTRC, CASK, RPS6KB1, PNISR, AMOTL1, FLCN, VPS33B, CD2AP, 
ZNRF2, PRKAR2A, TRAK1, RAB23, VPS4A, RARB, SPRED1, EIF2B2, TBPL1, 
RET, PIM1, UBR3, WEE1, TRIM35, PRDM4, SERBP1, VEGFA, RAD23B, MOB4, 
LITAF, UBE2V1, LRIG2, HSPA1B, ARIH1, DDX3X, ELK4, STX17, NUP50, DDX3Y, 
HOXA10, AXIN2, CDC37L1, ARHGDIA, ZNF622, TAOK1, SMAD7, SMAD3, SKI, 
WIPI2, CDC27, HSPE1-MOB4, CDC42SE2, DMTF1, SALL1, PRICKLE2, CPNE1, 
TGFBR3, SMURF1, RBPJ, PLEKHA1, CREBRF, CLSPN, ZBTB33, CPEB2, CPEB3, 
SHOC2, CDC42, BZW1, ACTR2, CAMSAP1, SIK1, USP15, FGF2, CHUK, AKT3, 
SYNRG, RAP2C, CCDC88C, FBXL20, RUNX1T1, SRPRB, PURA, CARD10, 
RFWD2, ACVR2A, TARBP2, CCND1, ASH1L, KPNA1, ALOX12, MYO5A, PHLPP2, 
USP3, ATG14, FKBP1A, IVNS1ABP, NUFIP2, MTMR3, CYP26B1, CSDE1, AGO1, 
FASN, ETNK1, PCMT1, PRKAA1, AGO4, PAFAH1B2, KIF21A, PIK3R1, SSRP1, 
UBE4A, NUCKS1, HMBOX1, PPP1R11, RAF1, STRADB, RAPH1, CDC25A, TAB3, 
RPS6KA3, YWHAH, RASSF2, HSPA4L, SH3BGRL2, YWHAQ, IRF4, KATNAL1, 
PSAT1

9.09E-07

CC GO:0005829 Cytosol KIF23, SEC24A, BTRC, CAPZA2, CASK, RPS6KB1, AMOTL1, ZNRF2, VCL, 
ARHGAP12, CDC42, CUL2, ACTR2, BAG4, CCNE1, PRKAR2A, VPS4A, SPRED1, 
OGT, EIF2B2, CHUK, ARL2, RAP2C, STXBP3, RBBP6, RFWD2, TARBP2, CCND1, 
ARHGAP32, CRKL, BTG2, KPNA1, ALOX12, MYO5A, PPP6C, MOB4, PHLPP2, 
ATG14, PHKA1, SNX16, PPM1A, UBE2V1, FKBP1A, BCL2L2, CHEK1, HSPA1B, 
TPM2, ARIH1, MTMR3, AMER1, MTHFR, STX17, FASN, AGO1, ETNK1, PCMT1, 
PRKAA1, PAFAH1B1, AGO4, PAFAH1B2, TNRC6B, AXIN2, MTMR4, PIK3R1, 
ARHGDIA, GABARAPL1, KIF3B, OSBPL3, TAOK1, SMAD7, RAF1, SMAD3, 
STRADB, WIPI2, CDC27, UBE2Q1, CDC25A, TAB3, RPS6KA3, YWHAH, HSPA4L, 
YWHAQ, CPNE1, SMURF1, IRF4, IPPK, PSAT1, ABL2, RNF41

2.21E-05

BP GO:0006468 Protein 
phosphorylation

CCNT2, CDK17, RET, STK38, TAOK1, CCNT1, PHKA1, PIM1, RAF1, CASK, 
RPS6KB1, STRADB, PDIK1L, CCNE1, CCND1, RPS6KA3, PSKH1, RASSF2, TLK1, 
PRKAA1, SIK1, CHUK, PIK3R1, AKT3

0.002328

CC GO:0005634 Nucleus RNMT, STK38, BTRC, CBX4, CBX2, RPS6KB1, LUZP1, FLCN, TRAK1, VPS4A, 
TLK1, OGT, RARB, CDCA4, ZNF449, GABPA, PIM1, PISD, WEE1, TRIM35, PRDM4, 
SERBP1, RNF138, RAD23B, UBE2V1, DSCR3, CHEK1, NR2C2, AMER1, HOXA3, 
DDX3X, ELK4, DDX3Y, HOXA10, AXIN2, ARHGDIA, PLAG1, SMAD7, YTHDC1, 
SMAD3, ITGA2, SKI, MAFK, CDC27, NOTCH2, C2ORF42, ZFHX4, DMTF1, SALL1, 
SUPT16H, CPNE1, SMURF1, RBPJ, KIF23, CCNT2, ACOX1, ZBTB33, CPEB2, 
FOXK1, CPEB3, E2F7, CCNT1, SHOC2, CBFA2T3, PHC3, BAG4, CCNE1, PLRG1, 
MKX, SIK1, MYB, FGF2, USP15, ARL2, TBL1XR1, TLE4, UBN2, RBBP6, PURA, 
TARBP2, CCND1, ZNF691, ASH1L, CPSF7, KPNA1, IFT74, ZNF275, PHLPP2, 
USP3, ATG14, PPM1A, NUFIP2, ZNF704, AGO1, PRKAA1, AGO4, MLLT6, PIK3R1, 
USP31, ZNF267, SSRP1, UBE4A, NUCKS1, JARID2, HMBOX1, PPP1R11, RAF1, 
STRADB, UBE2Q1, CDC25A, RPS6KA3, RASSF2, HSPA4L, ZBTB5, LSM11, IRF4, 
KATNAL1, IPPK

0.004008

MF GO:0008013 Beta-catenin 
binding

PTPRJ, TBL1XR1, AMER1, SMAD7, BTRC, SALL1, SMAD3, AXIN2, CD2AP, VCL 0.008021

MF GO:0061630 Ubiquitin protein 
ligase activity

CACUL1, BTRC, UBR3, UBE2V1, RBBP6, ZNRF3, ZNRF2, RFWD2, CDC42, ARIH1, 
CUL2, RNF138, SMURF1, RNF41

0.012324

BP GO:0016055 Wnt signaling 
pathway

ZBTB33, CCDC88C, BTRC, PPM1A, TLE4, AMOTL1, CCNE1, AMER1, DDX3X, 
RNF138, LRRFIP2, PRKAA1, AXIN2, WNT7A

0.018071

MF GO:0048185 Activin binding ACVR2A, SMAD7, TGFBR3, FKBP1A, SMURF1 0.038549

BP, biological process; CC, cellular component; MF, molecular function.



Table S6 immunologic signatures gene sets in GSE13485

Name PROBE Rank in gene list Rank Metric Score RUNNING ES Core enrichment

row_0 CALU 10 0.757121444 0.103793696 Yes

row_1 RAD23B 44 0.474761099 0.0702462 Yes

row_2 VPS33B 49 0.431200683 0.13561504 Yes

row_3 ATG14 50 0.428349882 0.21521427 Yes

row_4 USP42 62 0.363170534 0.24211097 Yes

row_5 NAPG 71 0.336881727 0.2751926 Yes

row_6 ATG9A 76 0.323062837 0.32046643 Yes

row_7 ZBTB10 87 0.291141659 0.33766824 Yes

row_8 USP3 127 0.157543182 0.22303265 No

row_9 PAFAH1B2 137 0.130324796 0.21404028 No

row_10 PPM1A 175 -0.030661186 0.0832066 No

row_11 MTMR3 205 -0.182105184 0.010035696 No

row_12 SIK1 208 -0.207770154 0.04126505 No

row_13 ZBTB34 222 -0.288843781 0.04696972 No

row_14 SMAD7 274 -0.97839427 0.040590495 No

Table S7 Immunologic signatures gene sets in GSE21379

Name PROBE Rank in gene list Rank Metric Score RUNNING ES Core enrichment

row_0 OSBPL3 51 0.428294897 –0.042887516 Yes

row_1 IVNS1ABP 58 0.391723037 0.067869164 Yes

row_2 USP42 62 0.363170534 0.18000917 Yes

row_3 VEGFA 100 0.254309952 0.12975562 Yes

row_4 BAG4 118 0.193770424 0.13276401 Yes

row_5 GGA3 121 0.189701915 0.18974267 Yes

row_6 BTRC 130 0.147670254 0.21032134 Yes

row_7 CCDC88C 136 0.130609587 0.23618208 Yes

row_8 NOTCH2 144 0.102264941 0.24504647 Yes

row_9 MAFK 159 0.049663894 0.21023504 Yes

row_10 CAMSAP1 171 -0.011271492 0.17346863 Yes

row_11 PRKAR2A 188 -0.107315883 0.15083629 Yes

row_12 MOB4 189 -0.114678584 0.18974242 Yes

row_13 DDX3Y 209 -0.214066073 0.19225629 Yes

row_14 FRYL 217 -0.249059677 0.25092262 Yes



Table S8 Immunologic signatures gene sets in GSE29164

Name PROBE Rank in gene list Rank Metric Score RUNNING ES Core enrichment

row_0 ENTPD7 7 0.784201086 0.15258355 Yes

row_1 TLK1 20 0.619249582 0.24910028 Yes

row_2 OGT 53 0.418568671 0.2258615 Yes

row_3 NUP50 63 0.362397194 0.27502146 Yes

row_4 ATP13A3 69 0.342263281 0.33441314 Yes

row_5 UBN2 82 0.308478147 0.36018828 Yes

row_6 NUCKS1 85 0.298018843 0.42061958 Yes

row_7 JARID2 91 0.27646625 0.46503368 Yes

row_8 TAB3 116 0.201044887 0.4219091 No

row_9 FOXK1 135 0.132048801 0.38530102 No

row_10 RPS6KA3 146 0.097817853 0.3705305 No

row_11 TNRC6B 162 0.039751362 0.3240236 No

row_12 ZMAT3 167 -0.002394611 0.3097539 No

row_13 PRDM4 177 -0.038236551 0.28512442 No

row_14 RAF1 185 -0.066899218 0.27442694 No

row_15 VCL 238 -0.405213803 0.17407407 No



Figure S1 The correlation between CD4+ T cell infiltration and genes as profiled by TIMER. A total of 14 genes (OSBPL3, IVNS1ABP, 
USP42, VEGFA, BAG4, GGA3, BTRC, CCDC88C, NOTCH2, MAFK, CAMSAP1, PRKAR2A, MOB4, DDX3Y and FRYL) were used 
to explore the correlation between gene expression changes and CD4 + T cell infiltration. The expression levels of CCDC88C were 
significantly correlated with CD4+ T cell activation.
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