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Whole exome sequencing identifies a rare variant in DAAM2 as a 
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Background: Diffuse pulmonary ossification (DPO) is a rare disease characterized by bone tissue 
formation in the lung. DPO can be classified into idiopathic pulmonary ossification (IPO) and secondary 
pulmonary ossification. Cases with no identified etiology are classified as IPO. Variants of dishevelled 
associated activator of morphogenesis 2 (DAAM2) have been reported to be involved in the bone-resorption 
of osteoclasts.
Methods: Whole exome sequencing (WES) was used on samples from a patient with IPO and his healthy 
parents. The effects of all variants were determined using functional predictors (PolyPhen-2, SIFT, 
FATHMM and MutationTaster); variants existing only in the patient were further screened compared with 
his healthy parents. 
Results: Forty deleterious variants, including 25 single nucleotide variants (SNVs) and 15 insertions and 
deletions (indels), were identified by WES. Finally, DAAM2 (c.G2960T:p.R987L) was screened by pathway 
analysis. 
Conclusions: We identified a novel variant of DAAM2 (c.G2960T:p.R987L) that might participate in the 
disease process of IPO. 
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Introduction

First described in 1864, diffuse pulmonary ossification 
(DPO) is characterized by unusual widespread bony 
metaplastic formation in the lung. In general, DPO is 
found in elderly men over the age of over 70 years, and the 
estimated incidence rate of DPO is in the range of 0.16–
0.5% (1,2). Pulmonary ossification is not found exclusively 
in humans: it has also been described in animals such as 
dogs (3). In general, idiopathic pulmonary ossification (IPO) 

is an uncommon and asymptomatic disorder with unknown 
etiology, while secondary pulmonary ossification may be 
observed in cases of chronic bronchitis, interstitial lung 
disease, tuberculosis, and lung cancer (4-7). In addition, 
from a histological point of view, DPO has two distinct 
forms: dendriform pulmonary ossification and nodular 
pulmonary ossification. The former is less common and 
is characterized by branching along terminal airways with 
occasional islands of marrow, whereas nodular pulmonary 
ossification tends to be more circumscribed and situated in 
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the alveolar spaces (8). However, this classification method 
may be of little use in determining etiology.

IPO usually presents an indolent and chronic course 
accompanied by slightly restrictive pulmonary ventilation 
dysfunction. IPO is so rare that it may be poorly diagnosed, 
and most cases have been diagnosed during autopsy (9). 
Laboratory investigations, including serum calcium and 
phosphorus levels, were within normal in the identified 
cases (9,10). No effective treatment for IPO has been found. 
Some studies have reported that low-calcium diets, calcium 
binding drugs, steroids, and bisphosphonates failed to show 
the expected results in terms of inhibiting ossification (11).

Whole exome sequencing (WES), or next-generation 
sequencing, has been successfully applied to detect 
potential variants in the exome for Mendelian diseases and 
orphan diseases. Because of WES, great advancements in 
understanding the etiology and improving the treatment of 
rare diseases have been made (12).

Approximately 20 IPO cases have previously been 
reported (13-29). Among these cases, interestingly, two 
familial clusters of cases were proposed, which strongly 
suggested a genetic influence in the pathogenesis of IPO 
(15,22). However, due to the low morbidity and low rate 
of diagnosis of IPO, genetic findings regarding this rare 
disease are still non-existent.

BMP/Smads, Wnt/β-catenin and OPG/RANKL/
RANK signalling pathways have been well studied in bone 
metabolism. According to a previous study, the dishevelled 
associated activator of morphogenesis 2 (DAAM2), an 
effector of the Wnt signalling pathway, was reported to 
promote osteoclastic bone-resorbing (30). Variants of 
DAAM2 might lead to abnormal bone build-up. 

IPO may be a multifactorial disease: it is unclear whether 
a genetic influence is involved in the pathogenesis of IPO, 
and the inheritance pattern has not been determined. 
According to the previous literature and the characteristics 
of our patient, IPO may be likely caused by de novo variants 
or an autosomal recessive genetic disease. Therefore, WES 
was conducted on a patient with IPO to explore potential 
causative variants of this rare disease and to provide genetic 
insights into its etiology and treatment.

Methods

Patient’s clinical information

A 28-year-old male patient who was a non-smoker 
presented to our respiratory unit with dyspnea on exertion. 

He had no cough, hemoptysis, chest pain, fever or weight 
loss. He had no significant environmental or occupational 
exposure, epidemiological history, or family history of 
respiratory diseases. He once suffered from childhood 
pneumonia. Chest radiography from 2 years prior 
reportedly showed diffuse shadows. Crepitation could not 
be heard during a physical examination. Laboratory findings 
showed that according to a routine blood examination, 
levels of rheumatoid factors, antineutrophil cytoplasmic 
antibodies (ANCA) and anti-extractable nuclear antigen 
antibodies (ENA) were within normal ranges. A high-
resolution computed tomography (HRCT) scan showed 
pulmonary interstitial lesions (Figure 1A,B). Pulmonary 
function testing showed mildly restrictive pulmonary 
ventilation dysfunction, small airway dysfunction disorders 
and reduced diffusion (Table S1). Thereafter, the patient 
received no treatment for 2 years; later CT scans (Figure 1C,D) 
did not show significant changes, while other tests revealed 
slightly worsened pulmonary function (Table S1). The 
proband’s parents had normal lung function, X-ray findings 
and clinical examinations.

WES and variant prioritization

Whole blood samples were obtained from the patient and 
his healthy parents. WES was performed using an Illumina 
HiSeq X-ten system by the HaploX Genomics Centre. 
Burrows-Wheeler Aligner (BWA) was used to generate 
alignment with the human genome reference sequence  
(hg 19). Subsequently, variants, including single nucleotide 
variants (SNVs) and small insertions and deletions (indels), 
were identified by the Genome Analysis Toolkit (GATK). 
Circos was used to describe the SNV/indel information. 
Variant annotation was performed by ANNOVAR  
[2015-03-22]. ESP6500siv2 (mutation frequency <0.01) and 
the 1000 Genomes database (mutation frequency <0.01) 
were used to filter low frequency variants. Functional 
predictors of variants were tested by PolyPhen-2 
(Polyphen2_pred =“D” or “P”; “D” means probably 
damaging, “P” means possibly damaging), the Stanford 
Information Filtering Tool (SIFT_score <0.05, indicting 
a variant is deleterious), FATHMM (FATHMM_pred 
=“D”; “D” means disease_causing) and MutationTaster 
(Mutationtaster_pred =“A” or “D”; “A” means disease_
causing_automatic, “D” means disease_causing); SNVs 
with deleterious predictions by SIFT, PolyPhen-2 and 
MutationTaster were considered for the next step (31-33); 
for indels, FATHMM and MutationTaster were used (33,34). 
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On one hand, to screen the variants that were homozygous 
in the proband but heterozygous in the patients. On the 
other hand, we sought to identify the variants that were 
present in the proband but not in his healthy parents  
(Figure S1).

Results

Diagnosis of IPO 

IPO is an uncommon and asymptomatic disorder that 
may be poorly diagnosed. The key to its diagnosis is the 
presence of heterotic bone tissue formation in the lung 
and the exclusion of underlying secondary etiologies. 
Histopathology (Figure 2) of a surgical lung biopsy 
specimen from our patient showed bone metaplasia 
formation with partial bone marrow. Serum calcium, serum 
phosphate, vitamin D and parathyroid hormone (PTH) 
levels were within normal ranges. The cardiac ultrasound 
did not show any abnormities. A comprehensive analysis of 

the test results demonstrated that our evidence supported 
the diagnosis of IPO. 

Deleterious genes filtered by genetic analysis

WES generated a yield of 11–16 Gb of data for each 
individual; 92% of the target region covered a depth of 
more than 10×, and the average coverage depth exceeded 
200×, which met the analysis requirements. Overall, 55,225 
SNVs and 7,007 indels were selected after alignment and 
variant calling. An overview of the information regarding 
the variants containing SNVs/indels on each chromosome 
is shown in Figure S2. Through exome region (including 
exonic, splicing, ncRNA, UTR-3 and UTR-5) filtering, 
24,185 variants were found, including 23,427 SNVs and 
758 indels. By selecting non-synonymous, stop-gain, 
stop-loss, frame-shift insertion, frame-shift deletion and 
missense variants, 11,223 SNVs and 263 indels were further 
prioritized. By filtering low frequency variants, 1,691 SNVs 

A B
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Figure 1 High-resolution computed tomography (HRCT) images of the proband. Lung windows and mediastinal windows of HRCT 
images of the chest showing there is no apparent progression of lung lesions over 2 years. (A,B) CT images of 2015-05-12; (C,D) images of 
2017-07-12.
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and 137 indels were selected. Next, 333 variants (196 SNVs 
and 137 indels) were filtered by functional predictors. 
Unfortunately, no variants were screened following an 
autosomal recessive inheritance. However, 40 potential 
de novo variants, including 25 SNVs, and 15 indels were 
identified in the patient. The filtering process applied to the 
variants is shown in Figure S3.

Pathway analysis of the 40 deleterious variants 

The 40 identified variants are listed in Table S2. As BMP/
Smads, Wnt/β-catenin, and OPG/RANKL/RANK were 
the best-studied signalling pathways that affect bone 
metabolism, we chose variants of genes encoding proteins 
involved in the above pathways. The literature indicates 
that DAAM2 mediates the Wnt5a/β-catenin signalling  
pathway (35), which promotes the bone-resorption of 
osteoclasts. These results suggested that variants of DAAM2 
can cause abnormalities in bone metabolism, leading to IPO. 

Discussion

In general, IPO is associated with longstanding pulmonary 
injury and has unknown specific clinical implications and 
pathological significance. Therefore, the identification 
of the genetic variants involved is essential for disease 
identification and treatment. Herein, we diagnosed a rare 
case of IPO by lung biopsy, and further WES identified 
a de novo variant of DAAM2 (c.G2960T:p.R987L) in the 
proband, which may be associated with IPO. 

We propose that WES may be a potential method of 

molecularly diagnosing IPO patients in the clinical setting. 
However, several genes, including ubiquitin-specific 
peptidase 17-like family member 8 (USP17L8), gamma-
glutamyltransferase light chain 2 (GGTLC2), mucin 3A 
(MUC3A), CTAGE family, member 6 (CTAGE6), SCO-
spondin (SSPO), proline-rich protein BstNI subfamily 3 
(PRB3), SLAIN motif family, member 1 (SLAIN1) and 
axonemal central pair apparatus protein (HYDIN), have not 
been extensively studied, and both their functions and the 
significance of their variants should be further evaluated. 

DAAM2 may play an important role in the occurrence 
and development of lung, kidney, colorectal and glioma 
tumours (36-39). DAAM2 was found to be elevated in the 
acute phase of Guillain-Barre syndrome through the Wnt 
signalling pathway (40). DAAM2 was reported to regulate 
heart morphogenesis combing with DAAM1 (41). A previous 
study demonstrated that DAAM2 also regulated the 
development of CNS via Wnt signalling (35). In our study, 
we suggest that DAAM2 may regulate bone-resorption in 
the lung, and dysfunction of DAAM2 (c.G2960T:p.R987L) 
may be responsible for the occurrence of heterotopic 
ossification in the lung. It appears that the other 39 
candidate variants we found may also play roles in bone 
metabolism, and the exact mechanisms need to be further 
studied.

A literature review indicates that IPO is associated with 
a myriad of pathogenesis pathways. According to a study 
by Chan et al., pulmonary ossification is the consequence 
of a series of pathophysiological changes, including the 
degeneration of the arterial media and the inflammation 
and hyalinization of the perivascular tissue, and it may 
have a close relationship with dystrophic pulmonary  
calcification (11). Kawakami and colleagues suggested that 
certain conditions such as tissue acidosis caused by hypoxia 
and capillary congestion might play roles in the formation 
of osseous tissue (4). Some have suggested that chronic 
intra-alveolar hemorrhage appeared to be associated with 
subsequent fibrosis and ossification (42). However, tissue 
damage is believed to be the most important triggering 
factor, because it can induce the precipitation of calcium salt, 
the activation of alkaline phosphatase and the production 
of profibrogenic cytokines in an alkaline environment (43). 
The transforming growth factor-β (TGF-β) superfamily 
was reported to play a role in metaplastic bone formation 
by stimulating osteoblast and chondrocyte proliferation (44). 
Interleukin-1 and interleukin-4 have also been shown to 
induce bone formation (11,45,46). 

IPO represents a rare form of heterotopic ossification, 

Figure 2 Histopathology of lung biopsy. Histology of the 
pulmonary lesions (arrow) showing bone tissue formation in the 
lung (haematoxylin and eosin staining, original magnification ×200).
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and great achievements have been made in genetic research 
on heterotopic ossification. Although several discoveries 
in the genetic basis for heterotopic ossification have been 
reported, its mechanism is still unclear. According to a 
report by Agarwal et al., inhibition of Hif1α (a mediator 
of cellular adaptation to hypoxia) can prevent heterotopic 
ossification in a mouse model (47). Mitchell et al. suggested 
that three candidate variants in ADRB2, TLR4 and CFH 
are associated with heterotopic ossification (48). SEMA3A 
was reported to play a role in neurogenic heterotopic 
ossification (49). However, ACVR1 and GNAS were not 
found in a mesenteric heterotopic ossification patient, 
although they were reported to have a potential connection 
to heterotopic ossification (50-52). 

It should be noted that this study included WES results 
for only one IPO case; therefore, we may have missed 
potentially significant variants outside the exons and 
variants coding sequences, such as those in the promoter or 
other regulatory elements. However, this problem could be 
overcome by the additional genetic analysis of other patients 
with IPO. Although computational software that predicts 
deleterious effects of variants on protein function provides 
powerful evidence for screening candidate variants, these 
tools are not suitable for testing other types of variants, 
including copy number variations and fusions. In addition, 
we failed to provide proper treatment for the patient. It is 
believed that awareness and recognition of this rare disease 
can lead to further discoveries that would elucidate the 
mechanism and treatment of IPO.

Conclusions

In summary, we diagnosed a rare case of IPO and a de novo 
variant of DAAM2 (c.G2960T:p.R987L) by WES that may 
participate in the progression of this rare disease. To our 
knowledge, our case represents the first report to evaluate 
the genetic mechanism of IPO by WES, and we hope that 
this study attracts more attention to IPO. We also want 
to stress the importance of lung biopsy or bronchial lung 
biopsy and genetic testing to identify the causes of and 
future therapy for IPO.
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Supplementary

Table S1 Pulmonary function variations over more than 2 years

Variables 2015-05-07 2017-07-28

VC (% predicted) 72 71.2

FRC (% predicted) 94 86

RV (% predicted) 106 94

TLC (% predicted) 76.7 60

FVC (% predicted) 74.4 72

FEV1 (% predicted) 65 63

FEV1/FVC (%) 74.3 73

PEF (% predicted) 77.9 93

PEF 25% 34 62

PEF 50% 45.4 48

PEF 75% 55 32

MVV (% predicted) 84.2 76

DLCO (% predicted) 66.3 61

RV/TLC (%) 139.4 101.7

The comparison shows slightly worsened restricted pulmonary ventilation dysfunction. VC, vital capacity; FRC, functional residual 
capacity; RV, residual volume; TLC, total lung capacity; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; PEF, peak 
expiratory flow rate; MVV, maximum ventilatory volume; DLCO, carbon monoxide diffusion capacity.
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Figure S1 Exclusive filter strategy.

Figure S2 Overview of the variants, including SNVs and indels 
detected in the patient. SNVs, single nucleotide variants.



Raw data

Variants filtered with align and 

annovar 

24,185 variants

23,427 SNPs + 758 indels 

62,232 variants

55,225 SNPs + 7,007 indels 

Select variants in exonic, splicing, 

ncRNA, UTR5 and UTR3

11,486 variants

11,223 SNPs + 263 indels 

Select nonsynonymous, stopgain, 

stoploss, frameshift and missense 

mutations 

1,828 variants

1,691 SNPs + 137 indels

ESP6500siv2≤ 0.01,  

1000G-ALL≤ 0.01, 1000G-EAS≤ 0.01

333 variants

196 SNPs + 137 indels

Functional prediction by SIFT, 

Polyphen-2, FATHMM and 

MutationTaster

Select variants that only exist in the 

patient

40 variants

25 SNPs + 15 indels 

Pathway analysis and literatures 

review

DAAM2

Figure S3 Flow chart for variant filtering used in the study.



Table S2 Information about the 40 candidate variants

Chr Pos Ref Alt Gene SIFT Polyphen-2 Mutation Taster FATHMM Mutant Frequency† AA change

2 100210334 CG C AFF3 – – – – 0.04081 A⇒fs

3 195505787 CGTGA C MUC4 – – – – 0 G⇒fs

3 195507206 T LFB‡ MUC4 – – – – 0 S⇒fs

3 75790783 G LFB‡ ZNF717 – – – – 0.08824 S⇒fs

4 4190576 C G OTOP1 0 D D T 0.00002755 R⇒P

6 39869226 G T DAAM2 0 D D – 0.00004980 R⇒L

6 168376882 G GT HGC6.3 – – – – 0 Q⇒fs

6 168376880 T TG HGC6.3 – – – – 0 Q⇒fs

6 33167055 G T RXRB 0.01 D D D 0 P⇒Q

7 143453661 T G CTAGE6 – – – – 0 E⇒A

7 100550485 A G MUC3A – – – – 0 S⇒G

7 100550486 G T MUC3A – – – – 0 S⇒I

7 100550488 A T MUC3A – – – – 0 M⇒L

7 100550507 C T MUC3A – – – – 0 T⇒I

7 100550570 T C MUC3A – – – – 0 M⇒T

7 100550571 G C MUC3A – – – – 0 M⇒I

7 100550602 T A MUC3A – – – – 0 S⇒T

7 149509455 C T SSPO – – – – 0.001 Q⇒X

8 7830694 C A USP17L8 – – – – 0 A⇒S

11 99690482 C LFB‡ CNTN5 – – – – 0.01393 F⇒ANX

11 35640807 C A FJX1 0.01 D D T 0 P⇒Q

12 112036823 G T ATXN2 – P D T 0 Q⇒K

12 58220811 G T CTDSP2 0 D D T 0 L⇒I

12 58220816 A G CTDSP2 0 P D T 0 I⇒T

12 53343231 G C KRT18 0 D D D 0 A⇒P

12 11420391 LFB‡ T PRB3 – – – – 0.1654 P fs

12 11420334 LFB‡ G PRB3 – – – – 0.1072 P⇒fs

13 78272267 T TGG SLAIN1 – – – – 1 A⇒Q

14 20181609 T C OR11H2 – – – – 0 Y⇒C

15 28518114 TC T HERC2 – – – – 0 G⇒fs

15 22082368 G C POTEB2 – – – – 0 Q⇒E

16 70977799 A LFB‡ HYDIN – – – – 0 S⇒fs

16 28074466 C A GSG1L 0 D D T 0 D⇒Y

17 45234490 C LFB‡ CDC27 – – – – 0 E⇒fs

19 55370551 TGG T KIR3DL2 – – – – 0 W⇒fs

19 55370554 C CAT KIR3DL2 – – – – 0 P⇒fs

19 9006737 G A MUC16 0 D D T 0 L⇒F

19 18279974 A G PIK3R2 0 D D D 0.0002 Y⇒C

22 22989594 G C GGTLC2 – – – – 0.0001587 R⇒P

22 22989602 C T GGTLC2 – – – – 0 P⇒S
†, data from GnomAD (East Asian); LFB‡, large fragment base. Chr, chromosome; Pos, position; Ref, reference sequence base; Alt, alternative base identified; AA change, amino 
acid changes; D, probably damaging (Polyphen-2) or disease causing (MutationTaster and FATHMM); P, possibly damaging; T, tolerated. 


