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Abstract: Precision medicine requires individualized treatment regime for subjects with different clinical 
characteristics. Machine learning methods have witnessed rapid progress in recent years, which can be 
employed to make individualized treatment regime in clinical practice. The idea of reinforcement learning 
method is to take action in response to the changing environment. In clinical medicine, this idea can be 
used to assign optimal regime to patients with distinct characteristics. In the field of statistics, reinforcement 
learning has been widely investigated, aiming to identify an optimal dynamic treatment regime (DTR). 
Q-learning is among the earliest methods to identify optimal DTR, which fits linear outcome models in a 
recursive manner. The advantage is its easy interpretation and can be performed in most statistical software. 
However, it suffers from the risk of misspecification of the linear model. More recently, some other methods 
not so heavily depend on model specification have been developed such as inverse probability weighted 
estimator and augmented inverse probability weighted estimator. This review introduces the basic ideas of 
these methods and shows how to perform the learning algorithm within R environment.
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Introduction

Precision medicine is an important concept in the modern 
era, which dictates that the treatment regime should 
be individualized depending on genetic background, 
demographics and clinical characteristics. Many clinical 
conditions can be extremely heterogeneous that the 
treatment regime is highly variable. For example, sepsis is a 
heterogeneous syndrome which is characterized by different 
clinical outcomes and responses to fluid resuscitation (1). 
Treatment regimes should be individualized for different 
subphenotypes. Even for a certain subphenotype, the 
treatment regime can evolve over time. Thus, individualized 
dynamic treatment regime should be adopted to achieve 
the best potential outcome. Reinforcement learning 
(RL) is a powerful method in computer science that 
has been successfully used to teach an agent to learn to 
interact with the environment, aiming to achieve the best 

reward/return. This is quite similar to the situation in 
clinical practice, where a doctor needs to adopt an action 
(treatment regime) depending on a patient’s conditions (e.g., 
demographics, genetic background, clinical characteristics 
and previous response to a specific treatment regime). 
Thus, reinforcement learning can be used to solve a 
clinical decision problem, whereby the concept of precision 
medicine can be realized. In this review article, we will 
introduce (I) the concept of reinforcement learning, (II) 
how this concept can be adopted to clinical research, and 
(III) how to perform RL using R language. 

Basic ideas behind reinforcement learning

The key elements of a RL system include a policy, a reward 
signal, a value function and a model of the environment 
(Figure 1). A policy is usually a function mapping from 
a state to an action. A policy defines how an agent takes 
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action in response to the environment. A reward defines the 
goal of a RL problem. Every time (t) when an agent takes 
an action (at) on the environment, the environment sends a 
reward signal (rt+1) to the agent. The goal of the agent is to 
maximize the reward by taking an appropriate action. While 
the reward signal indicates the immediate benefit after 
taking an action, the value function defines the long-term 
benefit. The value of a state is the total amount of reward 
an agent can expect to accumulate over time, starting 
from that state. For example, when a doctor resuscitates 
a patient with septic shock, the action space comprises 
vasoactive agents and fluid infusion, and the immediate 
reward can be a stabilized blood pressure, or a normalized 
serum lactate (2). Since the policy is a mapping from the 
state to an action, the doctor will make treatment decision 
depending on the environment state of the patient. The 
mortality outcome at hospital discharge can be considered 
as a final reward. The state space of septic shock can be any 
combinations of hemodynamics, electrolytes, serum lactate 
and demographics. However, this can be an extremely large 
space due to the curse of dimensionality, and dimension 
reduction is usually required (3). 

However, several key assumptions that are commonly 
used in RL in computer science may not be applicable in 
clinical trials. First, many RL algorithms such as dynamic 
programming requires that the complete knowledge 
of the environment is known (based on physical laws 
and domain knowledges), which however is usually 
unsatisfied in clinical data. In the septic shock example, the 
underlying mechanisms behind hospital mortality cannot 
be represented by a deterministic equation and must be 
estimated from samples. Second, the data collection can 
be cheap and easy to perform in some RL examples such 
as the blackjack, in which tens of thousands of episodes 
of the game can be simulated (i.e., the data generating 
mechanism is known). This is not true in clinical setting 

because the sample size is usually limited and collecting 
data is expensive (e.g., also for the confidential issues). Of 
note, the state space and action space can be larger than 
the sample size in most situations, and thus parametric 
models are usually required to model the data. Third, the 
Markov property is assumed to be true in computer science, 
which is defined that the probability of each possible value 
for St and Rt depends only on the immediately preceding 
state (St−1) and action (At−1), but not on earlier states and 
actions. However, there is no such assumption from the 
pathophysiology that earlier conditions have no causal 
association with final clinical outcome. Thus, the notion 
of history must be introduced in solving clinical problems. 
The history at a given stage includes all the present and past 
states, plus the present action. As a result, the history space 
grows exponentially with the number of stages (4).

Working example

A simulated dataset is created for the illustration purpose. 

> set.seed(123)

> n=500

> for (i in 1:3) {

assign(paste('x1',i,sep = ''),rnorm(n))

}

> A1linpred <- exp(-0.1+0.5*x11+0.5*x12)

> A1pro <- A1linpred/(1+A1linpred)

> A1 <- rbinom(n,1,prob = A1pro)

> A1opt <- (x11 > -0.54)*(x12 < 0.54)

> x21 <- 0.8*x11 + 0.6*A1 + rnorm(n)

> x22 <- 0.8*x12 - 0.6*A1 + rnorm(n)

> x23 <- 0.8*x13 + 0.7*A1 + rnorm(n)

> A2linpred <- exp(-0.1+0.5*x21+0.5*x22)

> A2pro <- A2linpred/(1+A2linpred)

> A2 <- rbinom(n,1,prob = A2pro)

> A2opt <- (x21 > 0.3)*(x23 < 0.46)

> y <- 2 + 0.25*x11 + 0.25*x12 - 

0.25*x13 - 0.5*(A1-A1opt)^2 -

(A2-A2opt)^2 + rnorm(n)

> dt <- data.frame(x11=x11,x12=x12,x13=x13,

x21=x21,x22=x22,x23=x23,

A1=A1, A2=A2,

y=y)

> head(round(dt,2))

x11 x12 x13 x21 x22 x23 A1 A2 y

State
St

Reward
rt

Action
at

rt+1

St+1

Agent

Environment

Figure 1 Schematic illustration of reinforcement learning system.
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1 −0.56 −0.60 −1.00 −1.15 −1.73 −1.91 0 0 3.44

2 −0.23 −0.99 −1.04 1.30 −1.51 −1.02 1 1 0.55

3 1.56 1.03 −0.02 1.71 −1.19 1.56 1 1 −0.73

4 0.07 0.75 −0.13 −1.06 −1.38 1.76 0 0 1.96

5 0.13 −1.51 −2.55 0.56 −0.42 −2.16 0 1 2.22

6 1.72 −0.10 1.04 3.50 0.22 1.64 1 1 1.02

As noted above, a data frame is generated with two stages. 
On stage 1, there are three covariates denoted as x11, x12 and 
x13; and treatment was A1. On stage 2, the three covariates 
are x21, x22 and x23, and the treatment is A2. Finally, we 
observe an outcome which is a continuous variable. Higher 
values indicate a better outcome. For stage 1, the optimal 
decision rule dictates that A1 should take value 1 for subjects 
with x11 >-0.54 and x12 <0.54. However, clinicians choose 
A1 value by a logit function (the propensity function) in 
clinical practice. Thus, the A1 used in real world practice may 
not equal the value adopted by the optimal rule. The purpose 
of RL is to learn the optimal rule to maximize the outcome Y. 
In the same vein, the optimal decision rule for A2 is to assign 
A2=1 to subjects with x21 >0.3 and x23 <0.46. However, the 
exact form of the outcome function is not easy to specify but 
can be approximated.

Y=2+0.25·x11+0.25·x12-0.25·x13
−0.5·[A1-I(x11 > -0.54)×I(x12 < 0.54)]2 [1]
−[A2-I(x21 > 0.3)×I(x23 < 0.46)]2

There is an indicator function I(·) which returns 1 when 
the express is true, and 0 otherwise. The quadratic function 
suggests that the outcome Y can only be maximized when 
A1 and A2 is equal to the value determined by the optimal 
decision rule in both stage 1 and 2. 

Q-learning algorithm 

Q-learning is a temporal difference control algorithm that 
can be used to estimate optimal dynamic treatment regime 
from longitudinal clinical data. Suppose there are two 
stages, the Q function can be defined as (5): 

2 2 2 2 2 2 2( , ) ( | , )Q h a E Y H h A a= =  [2]

{ }
( )

2
1 1 1 2 2 2 1 1 1 11,1
( , ) ( max , | , )

a
Q h a E Q h a H h A a

∈ −
= =  [3]

The Q function at t=2 measures is the value function of 
assigning 2a  to a patient with history 2h . In a similar sense, 
the Q function at t=1 measures the quality of assigning 1a  
to a patient with history 1h , assuming an optimal regime at 

stage 2 is adopted. The first step of Q learning is the regress 
Y on H1 and A2 to obtain estimators of 2β̂ :

2 2 2 2 20 20 2 21 21
ˆ̂̂̂ ( , , ) +T TQ H A H A Hβ β β  [4]

Where H2 includes history variables up to t=2; H20 is the 
main effect model (treatment-free) consisting a subset of 
variables in H2. Similarly, H21 is also a subset of variables 
of H2 for the contrast function. A contrast function defines 
how the expected outcome varies depending on treatment 
regime. The only means by which the treatment can 
influence outcome are via the contrast function (6). 

The second step is to maximize the Q2 function by 
varying A2. In the above example, if A2 takes value {-1, 

1} ,  we can def ine  { } ( )
2

2 2 2 21,1
ˆ̂max , ,

a
Y Q H a β

∈ −


 ,  which gives 
20 20 21 21

ˆ̂ +T TY H Hβ β= . Y is the potential outcome when optimal 
regime is adopted at stage 2. Finally, the estimated Y  is 
regressed on H1 and A2 to obtain 1̂β  in the model

1 1 1 1 10 10 1 11 11
ˆ̂̂̂ ( , , ) +T TQ H A H A Hβ β β

 [5]

The optimal regime at stage one can be obtained by 
maximizing the above equation. 

Q-learning with R

In the example, the DynTxRegime package (v4.1) will be 
used to obtain optimal regime at each stage. The package 
iqLearn is also available in R that performs Q-learning 
algorithm (5).

> library(DynTxRegime)

> moMain <- buildModelObj(model = ~x11+x12+x13+

x21+x22+x23,

solver.method = 'lm')

> moCont <- buildModelObj(model = ~x21+x22+x23,

solver.method = 'lm') 

The above code creates two components (e.g. the main 
effect and the contrast components) of the outcome model. 
Note that all covariates are specified to be predictive 
on the outcome, and only covariates collected at stage 
two determine the optimal decision rule. However, the 
functional form is mis-specified in the above equation. 

> fitSS <- qLearn(moMain = moMain,

moCont = moCont,

data = dt, response = y, 
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txName = 'A2')

The second stage can be fit by using the above code. We 
can create a confusion matrix to see whether the learning 
algorithm can assign optimal regime to more subjects in the 
training set, than that assigned by the physician (e.g., suppose 
the longitudinal data were collected from electronic healthcare 
records and the treatment was determined by physicians). 

> A2Qlearn <- optTx(fitSS)$optimalTx

> table(A2, A2opt)

A2opt

A2 0 1

0 217 45

1 167 71

> table(A2Qlearn, A2opt)

A2opt

A2Qlearn 0 1

0 357 45

1 27 71

The result shows that the Q-learning method is not 
able to assign optimal regime to more subjects than that 
assigned by physicians. In the observational cohort (the first 
matrix), 217 patients received A2=0, and 71 received A2=1, 
which are optimal regimes. The Q-learning algorithm 
correctly assigned A2=0 to 357 patients, and A2=1 to  
71 patients. Other patients fail to receive the optimal 
regime if treatment regime is determined by the Q-learning 
algorithm. This is due to the misspecification of the 
outcome linear function, which has been widely discussed in 
the literature (7,8).

Q-learning is implemented through a backward recursive 
fitting procedure based on a dynamic programming 
algorithm. The previous step fitted a linear regression model 
for stage two, and next we will regress the estimated outcome 
Y on covariates (X1) and treatment (A1) at stage one.

> moMain <- buildModelObj(model = ~x11+x12+x13,

solver.method = 'lm')

> moCont <- buildModelObj(model = ~x11+x12+x13,

solver.method = 'lm')

> fitFS <- qLearn(moMain = moMain, moCont = moCont,

data = dt, response = fitSS, 

txName = 'A1')

The specification of the regression model is similar to 
that at for stage two except that the response argument 
takes an object returned by previous fit. The coefficient for 
the first stage model can be examined by the following code:

> coef(fitFS)

$outcome

$outcome$Combined

(Intercept) x11 x12 x13

1.592159131 0.156777481 0.188064560 -0.277882456

A1 x11:A1 x12:A1 x13:A1

-0.026082177 -0.014829966 0.000654683 0.007832428

Again, the confusion matrix can help to examine the 
correctness of Q-learning algorithm to assign optimal 
regime. 

> A1Qlearn <- optTx(fitFS)$optimalTx

> table(A1,A1opt)

A1opt

A1 0 1

0 141 140

1 95 124

> table(A1Qlearn, A1opt)

A1opt

A1Qlearn 0 1

0 219 264

1 17 0

It appears that the Q-learning algorithm fails to assign 
optimal regime to more subjects than the physicians’ 
judgement. However, the linear model cannot correctly 
capture the function form as that for data generation. 

Inverse probability weighted estimator (IPWE) 

To circumvent the risk of model misspecification as 
demonstrated above, the inverse probability weighted 
estimator for the population mean outcome can be 
employed (9). The estimator for E{Y*(gη)} is:

( ) ( )
,1

1
IPWE η

ˆ; ,

n
i i

i c i

C Y
n

X
η

π η γ
−

=

= ∑


 [6]

Where Cη=A·g(X,η)+(1−A)·[1−g(X,η)], and g(X,η)∈Gη 
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is a specific treatment regime conditional on covariate X 
and coefficient η. The equation indicates that the observed 
outcome Y (under treatment A) is the counterfactual 
outcome Y*(gη) (under treatment g(X,η)) when Cη=1. 
Otherwise, Y*(gη) is not observed because a patient actually 
received treatment A is not equal to g(X,η). Suppose the 
treatment regime can only takes value 0 or 1. ( )ˆ; ,c iXπ η γ  is 
the probability of Cη=1 giving covariates X: 

Pr 𝐶𝜂 = 1|𝑋 = 𝜋𝑐 𝑋, 𝜂,𝛾� = 𝜋 𝑋, 𝛾� · 𝑔 𝑋, 𝜂 + 1 − 𝜋 𝑋,𝛾� · 1− 𝑔 𝑋, 𝜂

 
[7]

Pr 𝐶𝜂 = 1|𝑋 = 𝜋𝑐 𝑋, 𝜂,𝛾� = 𝜋 𝑋, 𝛾� · 𝑔 𝑋, 𝜂 + 1 − 𝜋 𝑋,𝛾� · 1− 𝑔 𝑋, 𝜂

The estimator IPWE(η) is actually a weighted average 
of observed outcome under decision rule g(X,η). Observed 
outcome Y not following the decision rule was excluded 
(by the Cη,i factor in the numerator) from the calculation. 
For patients who actually receive A=0, by substituting A=0 
into the IPWE(η) equation, the contrast function can be 
written as:

( ) ( )
( ) ( ) ( )
1 ,ˆ

ˆ ˆ1 , 1 , 1 ,
i i

IPWE i

g X Y YC X
X g X X

η
π γ η π γ

−  = − = −
− − −          





 [8]

Similarly, the contrast function for A=1 can be written as:

( ) ( )
( ) ( ) ( )

,ˆ
ˆ ˆ, , ,

i i
IPWE i

g X Y YC X
X g X X

η
π γ η π γ

= =




 [9]

Collectively, the contrast function is written as: 

( ) ( )
( )

( )
1ˆ

ˆ ˆ, 1 ,
i ii i

IPWE i

A YA YC X
X Xπ γ π γ

−
= −

−  





 [10]

From the above discussion, we note that only the 
propensity model is required in the estimation, the mean 
outcome model is not required, which reduces the risk 
of model misspecification. We then define a function 
Z=I(C(X)>0), so that Z=1 indicate subjects who will 
benefit from treatment A=1 than A=0. The optimization 
problem can be regarded as minimization of a weighted 
misclassification error: 

( ) ( ){ } ( ){ } ( )
2

2

1

ˆ ˆarg min 0 arg min
n

opt
i i

g G g G i
g E C X I C X g X W Z g X

∈ ∈ −

  = > − = −   ∑

 [11]( ) ( ){ } ( ){ } ( )
2

2

1

ˆ ˆarg min 0 arg min
n

opt
i i

g G g G i
g E C X I C X g X W Z g X

∈ ∈ −

  = > − = −   ∑

Where ( )ˆˆ
i iW C X= is an estimate of contrast function 

for each subject. The problem can be considered as a 

classification problem with ˆ
iZ  as the binary response, 

Xi as the predictor and ˆ
iW  as the weight. Classification 

and regression trees (CART) can be used to solve this 
problem (10).

The following code builds a propensity score model in 
which the variables x21 and x22 determine the choice of 
treatment regime. Since treatment A is a binary variable, 
a generalized linear model with the response variable 
following binomial distribution.

> moPropen <- buildModelObj(model = ~ x21+x22, 

solver.method = 'glm',

solver.args = list('family'='binomial'),

predict.method = 'predict.glm',

predict.args = list(type='response'))

Then, the rpart package (version 4.1-13) is employed 
to solve the classification problem. The CART model uses 
x21, x22 and x23 as the predictors.

> library(rpart)

> moClass <- buildModelObj(model = ~x21+x22+x23,

solver.method = 'rpart',

solver.args = list(method="class"),

predict.args = list(type='class'))

The second-stage analysis using IPW can be done with 
the following code. 

> fitSS_IPW <- optimalClass(moPropen = moPropen, 

moClass = moClass,

data = dt, response = y,

txName = 'A2')

> library(rpart.plot)

> rpart.plot(classif(object = fitSS_IPW))

Recall that the optimal decision rule is to assign A=1 to 
subjects with x21 >0.3 and x23 <0.46. The CART assigns 
x21 ≥0.15 and x23 <0.49 to receive A=1; but there are still 
moderate misclassifications (Figure 2).

The confusion matrix can be obtained with the following 
code. 

> A2IPW <- optTx(fitSS_IPW)$optimalTx

> table(A2,A2opt)

A2opt
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Figure 2 Decision tree to assign treatment regime A=1 or A=0 to subjects with covariates X2 at stage two by the IPWE method. 

A2 0 1

0 217 45

1 167 71

> table(A2IPW,A2opt)

A2opt

A2IPW 0 1

0 334 0

1 50 116

The results showed that the IPW method can significantly 
improve the accuracy of assigning optimal regime to patients. 
There are only 50 patients who would benefit from A=0 but 
receive A=1 as determined by the IPW method.

Augmented Inverse Probability Weighted 
Estimators (AIPWE)

The IPWE method does not depend on parametric or semi-
parametric at all, making it robust to model misspecification. 
However, the IPWE estimator of contrast values can be too 
noisy to successfully inform the classification regime. One 

method to circumvent the problem is to maximize on a doubly 
robust augmented inverse probability weighted estimator 
(AIPWE) for the population mean outcome over all possible 
regimes (9,11). The AIPWE for the mean outcome is given by: 

( ) ( )
( )

( ) ( ), ,1

1

ˆ; , ˆAIPWE η ; ,
ˆ ˆ; , ; ,

n
i i i c i

i
i c i c i

C Y C X
n m X

X X
η η π η γ

η β
π η γ π η γ

−

=

 − = − 
  

∑




 
[12]

The m(Xi;η,β)=μ(1,X,β)·g(X,η)+μ(0,X,β)·[1-g(X,η)] is a 
model for the potential outcome under treatment regime gη 
that E(Y*(gη)|X)=μ(1,X)·g(X,η)+μ(0,X)·[1−g(X,η)]. AIPWE 
possesses the doubly robust property that the estimate 
is consistent for E(Y*(gη)) if either π(X,γ) or μ(A,X,β) is 
correctly specified. The contrast function for AIPWE 
estimator can be derived from the equation: 

( ) ( )
( )

( )
( )

( ) ( ) ( )
( ) ( )ˆ ˆ1 , ,ˆ ˆ ˆ1, , 0, ,

ˆ ˆˆ ˆ, ,1 , 1 ,
i i i ii i

AIPWE i

A Y A X A XA YC X X X
X XX X

π γ π γ
µ β µ β

π γ π γπ γ π γ
− − −

= − − −
− −      





 

 [13]
( ) ( )

( )
( )

( )
( ) ( ) ( )

( ) ( )ˆ ˆ1 , ,ˆ ˆ ˆ1, , 0, ,
ˆ ˆˆ ˆ, ,1 , 1 ,

i i i ii i
AIPWE i

A Y A X A XA YC X X X
X XX X

π γ π γ
µ β µ β

π γ π γπ γ π γ
− − −

= − − −
− −      





 

The only difference between ( )ˆ
AIPWE iC X  and ( )ˆ

IPWE iC X  
is that the former borrows information from specified 
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parametric regression model of outcome μ(A,X,β), trying 
to strike a balance between two extremes that are non-
parametric or completely depending on the parametric 
model (11). R code to perform AIPWE is very similar 
to that for IPWE, but we need to define the parametric 
outcome model. The outcome model is defined as

> moMain <- buildModelObj(model = 
~x21+x22+x23+x11+x12+x13,

solver.method = 'lm')

> moCont <- buildModelObj(model = ~x21+x22+x23,

solver.method = 'lm')

then the second stage for AIPWE analysis is:

> fitSS_AIPW <- optimalClass(moPropen = moPropen, 

moMain = moMain, moCont = moCont,

moClass = moClass,

data = dt, response = y,

txName = 'A2')

Note that the only difference between AIPWE and 
IPWE is the use of parametric outcome model as specified 
by the moMain and moCont arguments. We know from 
the Q-learning section that the linear outcome model is 
mis-specified. The confusion matrix is examined in the 
following code:

> A2AIPW <- optTx(fitSS_AIPW)$optimalTx

> table(A2,A2opt)

A2opt

A2 0 1

0 217 45

1 167 71

> table(A2AIPW,A2opt)

A2opt

A2AIPW 0 1

0 366 15

1 18 101

The results show that the AIPWE significantly improve the 
accuracy of correctly assigning optimal regime to the patients. 
In this analysis, only 18 subjects are incorrectly assigned A=1 
by the AIPW method, and 15 subjects are falsely assigned A=0. 

This number is better than the IPWE method. 

> rpart.plot(classif(object = fitSS_AIPW))

The decision tree shows that x21 and x23 are used to 
split most nodes (Figure 3). Subjects with x21 <0.3 were 
correctly assigned A=0. The subjects with x23 ≥0.46 are also 
correctly assigned to receive A=0. 

The first stage decision rule can be learned in a recursive 
manner as that for stage two. The only difference is that 
the predictors for both outcome model and propensity 
model are chosen from x11, x12 and x13. Furthermore, the 
response argument in the optimalClass() function receives 
the object returned in the stage two analysis. 

Firstly, we define the propensity for treatment model and 
methods. Here the variable x11 and x12 are used to predict 
treatment assignment. 

> moPropen <- buildModelObj(model = ~ x11+x12, 

solver.method = 'glm', 

solver.args = list('family'='binomial'),

predict.method = 'predict.glm',

predict.args = list(type='response'))

Secondly, we define the classification model in which the 
CART method is used. Other machine learning methods 
such as support vector machine are also allowed and can 
be passed to the buildModelObj() function by the solver.
method argument. 

> moClass <- buildModelObj(model = ~x11 +x12+x13,

solver.method = 'rpart',

solver.args = list(method="class",

control = rpart.control(minsplit = 50)),

predict.args = list(type='class'))

Thirdly, we define the outcome model which is 
composed of the main effect model and contrast model. 

> moMain <- buildModelObj(model = ~x11+x12+x13,

solver.method = 'lm')

> moCont <- buildModelObj(model = ~x11+x12+x13,

solver.method = 'lm')

Final ly,  the AIPWE model  can be f i t  with the 
optimalClass() as before. Note that an optimalClass object 
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Figure 3 Decision tree to assign treatment regime A=1 or A=0 to subjects with covariates X2 at stage two by the AIPWE method. AIPWE, 
Augmented Inverse Probability Weighted Estimators.

is assigned to the response argument, which passes the 
counterfactual outcome under optimal treatment at stage 
two to the modeling strategy for the first stage. This is 
consistent with the idea behind reinforcement learning 
algorithm in computer science that the action-value 
function is updated by assuming all subsequent steps takes 
the optimal action to maximize the action-value function. 

> fitFS_AIPW <- optimalClass(moPropen = moPropen, 

moMain = moMain, moCont = moCont,

moClass = moClass,

data = dt, response = fitSS_AIPW,

txName = 'A1')

> rpart.plot(classif(object = fitFS_AIPW))

The data generating mechanism dictates that optimal 
regime A=1 should be given to subjects with x11 > −0.54 
and x12 <0.54. The majority of subjects receiving A=1 
following the AIPWE rule is those with x11 >−0.52, x12 
<0.57 and x12 >−1 (Figure 4). Classification accuracy can be 

further examined with confusion matrix: 

> A1AIPW <- optTx(fitFS_AIPW)$optimalTx

> table(A1, A1opt)

A1opt

A1 0 1

0 141 140

1 95 124

> table(A1AIPW, A1opt)

A1opt

A1AIPW 0 1

0 217 30

1 19 234

The above output shows that the treatment options made 
by physician misclassify 95 subjects to the A=1 and 140 to 
the A=0 group. The AIPWE rule is able to significantly 
improve the classification accuracy. Only 19 subjects are 
misclassified to A=1 group and 30 subjects are misclassified 
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Figure 4 Decision tree to assign treatment regime A=1 or A=0 to subjects with covariates X1 at stage one by the AIPWE method. AIPWE, 
Augmented Inverse Probability Weighted Estimators.

to the A=0 group.

Final remarks

Exploring dynamic treatment regime borrows ideas from the 
reinforcement learning algorithm from the computer science. 
The Q-learning algorithm is easy to interpret for domain 
experts, but it is limited by the risk of misspecification of the 
linear outcome model. IPWE overcomes this problem by 
non-parametric modeling that the mean outcome is estimated 
by weighting the observed outcome. AIPWE borrows 
information from both the propensity model and mean 
outcome model and enjoys the property of double robustness. 
However, these statistical method does not allow the action 
space to have multiple levels. In real clinical practice, the 
interest may focus on the combinations of treatment regime, 
giving rise to a multi-dimensional action space.
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