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Background: To explore whether deep convolutional neural networks (DCNNs) have the potential to 
improve diagnostic efficiency and increase the level of interobserver agreement in the classification of thyroid 
nodules in histopathological slides.
Methods: A total of 11,715 fragmented images from 806 patients’ original histological images were divided 
into a training dataset and a test dataset. Inception-ResNet-v2 and VGG-19 were trained using the training 
dataset and tested using the test dataset to determine the diagnostic efficiencies of different histologic types 
of thyroid nodules, including normal tissue, adenoma, nodular goiter, papillary thyroid carcinoma (PTC), 
follicular thyroid carcinoma (FTC), medullary thyroid carcinoma (MTC) and anaplastic thyroid carcinoma 
(ATC). Misdiagnoses were further analyzed.
Results: The total 11,715 fragmented images were divided into a training dataset and a test dataset for each 
pathology type at a ratio of 5:1. Using the test set, VGG-19 yielded a better average diagnostic accuracy than 
did Inception-ResNet-v2 (97.34% vs. 94.42%, respectively). The VGG-19 model applied to 7 pathology 
types showed a fragmentation accuracy of 88.33% for normal tissue, 98.57% for ATC, 98.89% for FTC, 
100% for MTC, 97.77% for PTC, 100% for nodular goiter and 92.44% for adenoma. It achieved excellent 
diagnostic efficiencies for all the malignant types. Normal tissue and adenoma were the most challenging 
histological types to classify.
Conclusions: The DCNN models, especially VGG-19, achieved satisfactory accuracies on the task of 
differentiating thyroid tumors by histopathology. Analysis of the misdiagnosed cases revealed that normal 
tissue and adenoma were the most challenging histological types for the DCNN to differentiate, while all the 
malignant classifications achieved excellent diagnostic efficiencies. The results indicate that DCNN models 
may have potential for facilitating histopathologic thyroid disease diagnosis.
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Introduction

Thyroid nodules are common diseases presented in 
the clinic, and their pathological types are complex. 
Thyroid nodules mainly include benign tumors and 
malignant tumors (i.e., thyroid cancer). Benign thyroid 
tumors include nodular goiter and thyroid adenoma. 
Thyroid cancers include papillary, follicular, medullary 
and anaplastic carcinomas. The differential diagnosis 
of thyroid nodules is crucial because thyroid carcinoma 
requires surgery, while only follow-up is necessary in cases 
of benign nodules. Pathological diagnosis of resected 
specimens is the gold standard for tumor diagnosis. 
Currently, the vast majority of pathological tissue 
sections are acquired by pathologists, and collections 
of specimens accumulated over long periods are used 
for clinical diagnosis. Nevertheless, manual differential 
diagnosis of thyroid tumor histopathological images 
remains a challenge for three main reasons: (I) the ability 
to correctly diagnose samples greatly depends on the 
professional background and experience of the pathologist, 
and such experience cannot be acquired quickly; (II) the 
work is tedious, expensive and time-consuming; and (III) 
it is challenging for the human eye to distinguish subtle 
changes in tissues; thus, pathologists can experience 
fatigue, which may lead to misdiagnosis. Thus, the precise 
histopathologic diagnosis of thyroid nodules remains a 
challenging task.

Machine learning (ML) has been increasingly used 
in the medical imaging field and has been applied to 
pathological diagnoses of different diseases (1,2). Deep 
convolutional neural networks (DCNNs) are a type of 
ML, namely, a special type of artificial neural network 
that resembles the multi layered human cognitive 
system. Many researchers have investigated applications 
of DCNNs for assessing pathological images (3-6). 
Sharma et al. developed a system that used a DCNN to 
classify gastric carcinoma from whole-slide images (7). A 
DCNN was applied to the classification of breast cancer 
histology images and showed a satisfactory diagnostic 
accuracy rate (8).

In this  study,  we developed DCNN automated 
classification systems for diagnosing thyroid nodules in 
histopathology images using the VGG-19 and Inception-
ResNet-v2 models. This study sought to reveal whether 
DCCNs have the potential to improve the diagnostic 
efficiency and increase the level of interobserver agreement 
in the classification of thyroid nodules.

Methods

Patients and pathological images

This study was conducted with the approval of the ethics 
committee of Fudan University Shanghai Cancer Center 
(FUSCC). The procedures were carried out in accordance 
with the approved guidelines. The image dataset was 
acquired from 806 consecutive patients who were diagnosed 
with thyroid tumors and underwent primary surgery at 
FUSCC from January 1, 2010 to July 31, 2017. Written 
informed consent was obtained from all patients. The 
pathologic slides were stained with hematoxylin and eosin 
(H&E) for morphological evaluation. All the images were 
digitized at ×100 magnification. Each image was labeled 
with one of 7 classes: 0: normal tissue, 1: adenoma, 2: 
nodular goiter, 3: PTC, 4: follicular thyroid carcinoma 
(FTC), 5: medullary thyroid carcinoma (MTC) and 6: 
anaplastic thyroid carcinoma (ATC). The labeling was 
performed by two senior pathologists from FUSCC 
who provided a diagnosis from the overall image and 
preliminarily specified the area of interest used for the 
classification. Cases of disagreement between specialists 
were discarded. All the images were selected so that the 
pathological classification could be objectively determined 
from the image content.

Data augmentation

Original images should be augmented to a large degree to 
achieve a satisfactory classification effect. In this dataset, 
an automatic feature extraction program was adapted to 
segment original images into several patches. Nuclear 
features are useful for differentiating between carcinoma 
and non-carcinoma cells and should include single nucleus 
information, such as color and shape, as well as nuclei 
organization features, such as intensity or variability. 
Because the nucleus has a mottled appearance with a dark 
color under H&E staining, we used the Laplacian of the 
Gaussian function (LOG) (9) to identify the nucleus and 
to locate cells to automatically capture the relevant region. 
The procedure for segmenting one image was as follows: 
(I) LOG was used to detect the nuclei in H&E-stained 
sections; (II) one nucleus was randomly selected as the 
center; then, the number of nuclei in the area around it was 
calculated (patch range: 448×448 pixels); (III) the patch was 
removed after the number of nuclei exceeded a threshold 
T (10% of the total number of nuclei in the entire original 
image); (IV) each original image was automatically divided 
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into 15 patches (Figure 1).
We augmented the training data by flipping and rotating 

the images. Each image fragment was flipped horizontally 
and rotated by 0º, 90º, 180º and 270º. Through this flipping 
and rotating process, we increased the size of the training 
data eightfold. If we were instead to directly augment 
the training data, the required storage space would have 
expanded by 8 times. Thus, to save storage space, we did 
not augment the training data in advance but only during 

the training process. During each iteration of the training 
process, a batch of images was fetched from the training 
data. We randomly flipped and rotated each image in the 
batch. For each image, we randomly applied only one of the 
8 transformations.

Network architecture

We used two DCNN models in our experiment: VGG-19 
and Inception-ResNet-v2 (10). The VGG-19 architecture 
is described in Table 1: it comprises 16 convolutional layers 
and 3 fully connected layers. The convolutional layers in 
VGG-19 are all 3×3 convolutional layers with a stride and 
padding of 1; the pooling layers are all 2×2 pooling layers 
with a stride of 2. The default input image size in VGG-
19 is 224×224. After each pooling layer, the size of the 
feature map is reduced by half. The last feature map before 
the fully connected layers is 7×7 with 512 channels, and it 
is expanded into a vector with 25,088 (7×7×512) channels. 
The VGG-19 model is shown in Figure 2.

The Inception-ResNet-v2 model is shown in Figure 3A, 
and its architecture is described in Table 2. The Inception-
ResNet-v2 model included three types of inception 
modules: Inception-ResNet-A, Inception-ResNet-B and 

Figure 1 Automatic feature extraction and image segmentation 
program (×100). (A) An original image of the H&E stained section 
is input into the program. (B) LOG is used to detect nuclei which 
have a mottled appearance with a dark color in H&E-stained 
samples. (C) One nucleus is randomly selected as the center. The 
patch is removed after the number of nuclei exceeds a threshold T 
(10% of the total number of nuclei in the entire original image). 
Each original image was automatically divided into 15 patches.

Original image of H&E-stained section

Nucleus identification

Original image divided into 15 patches automatically

A

B

C

Table 1 Architecture of the VGG-19 model

Layer Patch size Input size

conv×2 3×3/1 3×224×224

pool 2×2 64×224×224

conv×2 3×3/1 64×112×112

pool 2×2 128×112×112

conv×4 3×3/1 128×56×56

pool 2×2 256×56×56

conv×4 3×3/1 256×28×28

pool 2×2 512×28×28

conv×4 3×3/1 512×14×14

pool 2×2 512×14×14

fc 25,088×4,096 25,088

fc 4,096×4,096 4,096

fc 4,096×7 4,096

Softmax classifier –

Conv stands for the convolutional layer, pool stands for the 
pooling layer, and fc stands for the fully connected layer. 
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Inception-ResNet-C (see Figure 3B, from left to right). 
The inception modules are well-designed convolutional 
modules that both generate discriminatory features and 
reduce the number of parameters. Each inception module 
is composed of several convolutional and pooling layers 
in parallel. Small convolutional layers (e.g., 1×7, 7×1) are 
used in the inception modules to reduce the number of 
parameters. Two types of reduction modules also exist in 
Inception-ResNet-v2 that are designed to reduce the image 
size during training (Figure 3C). The default input size 
for Inception-ResNet-v2 is 299×299; thus, we resized the 
training data before training.

We applied a transfer learning approach to capitalize 
on the generalizability of pretrained VGG-19 and 
Inception-ResNet-v2 models. We used models pretrained 
on ImageNet to acquire the initial parameters for the 
customized VGG-19 and Inception-ResNet-v2 used in this 
study. The transfer learning approach enabled us to speed 

up the training convergence, reduce the training time, and 
increase the final classification accuracy.

The output of the original VGG-19 and Inception-
ResNet-v2 networks includes 1,000 classes, but our case 
required only 7 classes: normal tissue, PTC, ATC, MTC, 
FTC, goiter and adenoma. Therefore, we changed the 
output channel number of the last layer from 1,000 to 7. 
Furthermore, differences in the contrast of the images can 
occur due to the staining technique used to prepare the 
histology slides. To prevent the varying image contrasts 
from influencing the training process, we normalized the 
contrast of the training images and used average filtering to 
denoise the images. Specifically, we subtracted the average 
of the three red, green and blue (RGB) image channels for 
each pixel of each image.

For training, we adopted a batch training method in 
which each batch contained 8 pictures. One advantage of 
the batch training approach is that not all the training data 
need to be input into the neural network simultaneously; 
instead, the training dataset is input into the neural network 
in batches. This approach reduces the storage required for 
training and accelerates the training process. In addition, 
we used stochastic gradient descent (SGD) to control the 
rate of gradient descent. The learning rate was set to 0.001, 
and the dropout rate was set to 0.4. We chose a relatively 
small learning rate to allow the neural network to find the 
best global convergence point during training. The role of 
the dropout layer is to prevent overfitting and increase the 
generalizability of the trained model.

Systematic program of histological image classification

Figure 4 displays the systematic program developed for 
histological image classification of thyroid diseases. The 
model program includes a development module and 
an implementation module. The development module 
comprised an automatic image intercepting unit, an image 
preprocessing unit, a training/testing set forming unit, 
a training unit and a testing unit. The implementation 
module included an automatic image interception unit, a 
second image preprocessing unit, and a classification unit.

When constructing the DCNN model, the program 
detected the original classified histological images in the 
automatic image interception unit and then automatically 
generated multiple patches of 448×448 pixels, each 
containing a certain number of cells. Then, the patches 
were normalized by the image preprocessing unit. Thus, 
the training/testing set forming unit yielded a training set 

Figure 2 Schematic of the VGG-19 model.

Classification

Softmax

Conv 4-512 : 4

Conv 4-256 : 4

Conv 4-512 : 4

Conv 2-128 : 2

Conv 2-64 : 2

input & rotate
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Figure 3 Architecture of the Inception-ResNet-v2 model. (A) Schematic of the Inception-ResNet-v2 model; (B) Inception-ResNet-v2 
includes of 3 types of Inception modules, labeled as A, B, C. Each inception module is composed of several convolutional layers; (C) 
schematic of reductions A and B, which are designed to reduce the size of the output.

A Softmax Output: 1,000

Output: 1,792

Output: 1,792

Output: 8×8×1,792

Output: 8×8×1,792

Output: 17×17×896

Output: 17×17×896

Output: 35×35×256

Output: 35×35×256

299×299×3

Dropout (keep 0.8)

Average pooling

5× Inception-ResNet-C

Reduction-B

10× Inception-ResNet-B

Reduction-A

5× Inception-ResNet-A

Stem
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Relu activation
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and a test set. Next, the selected and pretrained DCNN 
models were trained by the training unit in batches. The 
pretrained DCNN models were initially obtained and 
tested in the testing unit, and the final DCNN models 
were fixed when the test accuracy rate reached or exceeded 
a certain standard. The final models were applied in the 
implementation module.

When applying the final DCNN models, the original 
histological images were intercepted and preprocessed 
just as in the development module. Subsequently, these 
preprocessed patches were input into the final DCNN 
model in the classification unit for classification.

Program design and training were conducted on a 
desktop computer running an Ubuntu 16.04 system. The 
computer environment was equipped with an Ubuntu 16.04 
operating system running Python, OpenCV, TensorFlow, 
gcc compiler, and a GTX 1080 discrete graphics GPU.

Results

We obtained 806 H&E stained histopathology images, 

which included 93 images of normal tissue, 91 images 
of adenoma, 209 images of nodular goiter, 155 images 
of PTC, 76 images of FTC, 101 images of MTC and 81 
images of ATC. After augmentation, 11,715 448×448 
fragmented images were extracted, representing 1,125 
images of normal tissue, 1,215 images of ATC, 1,110 
images of FTC, 1,515 images of MTC, 2,280 images 
of PTC, 3,135 images of goiter and 1,335 images of 
adenoma. We randomly split the dataset into a training 
subset and a test subset for each pathology type at a ratio 
of 5:1. We obtained 9,796 fragmented images for training 
and 1,919 fragmented images for testing with no overlap 
from the original images, resulting in 945 normal tissue, 
1,005 ATC, 930 FTC, 1,260 MTC, 1,921 PTC, 2,625 
goiter and 1,110 adenoma images in the training group 
and 180 normal tissue, 210 ATC, 180 FTC, 255 MTC, 
359 PTC, 510 goiter and 225 adenoma images in the test 
group (Table 3). Examples of the fragmented images from 
each classification are shown in Figure 5.

We trained the two models on the training data and 
tested them on the test data. Table 4 shows the diagnostic 

Table 2 Architecture of the Inception-ResNet-v2 model

Layer Patch size/stride Input size

conv 3×3/2 299×299×3

conv 3×3/1 147×147×32

Filter concat 3×3/2 pool + 3×3/2 conv 147×147×64

Filter concat 1×1 conv, 3×3 conv + 1×1 conv, 7×1 conv, 1×7 conv, 3×3 conv 73×73×160

Filter concat 3×3/1 conv + max pool/2 71×71×128

Inception-ResNet-A×5 – 35×35×256

Reduction-A – 35×35×256

Inception-ResNet-B×10 – 17×17×896

Reduction-B – 17×17×896

Inception-ResNet-C×5 – 8×8×1,792

Average pooling 8×8/8 8×8×1,792

dropout keep =0.8 1×1×1,792

fc 1,792×1,000 1,792

fc 1,000×7 1,000

Conv stands for the convolutional layer, pool stands for the pooling layer, and fc stands for the fully connected layer. All layers before 
fc are the base part of Inception-Resnet-v2. The patch size is the kernel size of the convolutional layer, the pooling layer or the fully 
connected layer. Stride is the gap between two operations. The input size is the feature map input size of the layer, and the output size of 
each layer is the input size of the next layer. Softmax is a function for classification. Filter concat is a module that combines different conv 
filters and pool filters. Inception-ResNet-A, B, C and Reduction -A, B are illustrated in Figure 2.
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efficiency of the VGG-19 model on the test data. When 
applied to the 7 pathology types, the VGG-19 model 
achieved a fragmentation accuracy of 88.33% for normal 
tissue, 98.57% for ATC, 98.89% for FTC, 100% for MTC, 
97.77% for PTC, 100% for nodular goiter and 92.44% for 
adenoma, exhibiting an average fragmentation accuracy 
of 97.34%. Using only the raw images (without data 
augmentation), the VGG-19 model achieved an accuracy 
rate of 95.70% for normal tissue, 98.77% for ATC, 98.68% 
for FTC, 100% for MTC, 97.42% for PTC, 100% for 

nodular goiter and 96.70% for adenoma. The VGG-19 
model exhibited an average accuracy of 98.39% on the raw 
images (Table 4).

The Inception-ResNet-v2 model applied to the  
7 pathology types achieved a fragmentation accuracy of 
82.22% for normal tissue, 94.76% for ATC, 95% for FTC, 
98.43% for MTC, 93.31% for PTC, 98.43% for nodular 
goiter and 91.56% for adenoma. exhibiting an average 
fragmentation accuracy of 94.42%. On the raw images 
(without data augmentation), the Inception-ResNet-v2 

Figure 4 A systematic program for histological image classification of thyroid diseases.

Table 3 Distribution of images in the dataset

Pathology type Raw image Training data Testing data Total

Normal 93 945 180 1,125

ATC 81 1,005 210 1,215

FTC 76 930 180 1,110

MTC 101 1,260 255 1,515

PTC 155 1,921 359 2,280

Goiter 209 2,625 510 3,135

Adenoma 91 1,110 225 1,335

Total 806 9,796 1,919 11,715

ATC, anaplastic thyroid carcinoma; FTC, follicular thyroid carcinoma; MTC, medullary thyroid carcinoma; PTC, papillary thyroid carcinoma.

 Development module 

Classified original histological 
images

Classification results

Output

Update 
parameter

Automatic image interception unit 

Image preprocessing unit 

Training/testing set forming unit

Training unit

Testing unit

Classification unit

Image preprocessing unit 

Automatic image interception unit 

Original histological images to be 
classified

 Implementation module 
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Figure 5 Histopathological classifications of fragmented images (HE, ×100): (A) Normal tissue; (B) ATC; (C) FTC; (D) MTC; (E) PTC; 
(F) goiter; (G) adenoma. ATC, anaplastic thyroid carcinoma; FTC, follicular thyroid carcinoma; MTC, medullary thyroid carcinoma; PTC, 
papillary thyroid carcinoma. 

model exhibited an accuracy rate of 94.62% for normal 
tissue, 95.06% for ATC, 92.11% for FTC, 96.04% for 
MTC, 92.90% for PTC, 96.65% for nodular goiter and 
93.41% for adenoma, exhibiting an average accuracy of 
94.67% on the raw images (Table 4).

VGG-19 was clearly more accurate than was Inception-
ResNet-v2 when predicting the 7 pathologic types of 
thyroid diseases. We further analyzed the misdiagnosed 
images to determine the reasons for the misdiagnosis. 
The specific error classifications of VGG-19 are listed 
in Table 5. In the thyroid normal tissue group, which 
showed the highest rate of misdiagnosis, 7 fragmented 
images were misdiagnosed as goiter and 14 as adenoma. 
Misclassification was frequently observed in the adenoma 
group, among which 3 images were misclassified as normal 
tissue, 5 as FTC and 9 as PTC. The ATC, FTC and PTC 
groups had similar accuracies for the fragmented images: 3 
fragmented images of ATC were misdiagnosed as FTC; 2 
fragmented images of FTC were misdiagnosed as PTC; and 
7 fragmented images of PTC were misdiagnosed as FTC 
and 1 as goiter. No error classifications occurred in the 
MTC group or in the goiter group. Some typical examples 
of misclassified fragmented images are shown in Figure 6.

Discussion

Deep learning is currently the most suitable and widely used 
algorithm for image recognition in the artificial intelligence 
field. Deep learning models imitate the working mechanism 
of the human brain. Convolutional neural networks can be 
constructed to automatically extract features from input 
data, enabling the machine to understand the learning 
data, obtain information and output results. Deep learning 
has been applied to multiple aspects of the preoperative 
diagnosis of thyroid tumors. Our previous work (11) 
reported that the Inception-v3 network achieved promising 
diagnostic performance in classifying ultrasonographic 
images of thyroid nodules (sensitivity 93.3%, specificity 
87.4%), while Ko et al. (12) revealed that there was no 
significant difference between experienced radiologists and 
a DCNN regarding the diagnostic ability to differentiate 
thyroid malignancies from ultrasound images (achieving 
area under the curve (AUC) scores of 0.805–0.860 and 
0.835–0.850, respectively). A large-scale multicenter 
retrospective study of 2,692 patients demonstrated similar 
sensitivity but improved the specificity of a DCCN 
compared with radiologists for identifying sonographic 

A B C D

E F G
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images of thyroid nodules (13). However, DCCNs have 
not yet been used for histopathologic diagnosis of thyroid 
diseases. This article is a pioneering prospective study that 
utilized 2 types of DCNN algorithms and compared their 
performances on histological images encompassing various 
histological types of thyroid diseases.

From the experimental results, both the VGG-19 model 
and the Inception-Resnet-v2 model achieved satisfactory 
average accuracies for the recognition of fragmented and 
raw images (VGG-19: 97.3% and 98.4%; Inception-
Resnet-v2: 94.4% and 94.7%). Because few reports exist 
of using DCNNs for the classification of thyroid tumors, 
for comparisons, we must refer to previous studies in 
which DCNNs were applied to identifying other types of 
tumors. For example, DCNNs have been most often used 
in classifying breast cancer histology images: achieving 
accuracies of 83.3% to 93.2% in Han’s and Araujo’s 

studies, respectively (8,14). Khosravi and his colleagues 
trained six DCNN architectures to detect H&E-stained 
histopathology images of different cancer tissues (lung, 
breast, and bladder cancers), and all the architectures 
performed at remarkable accuracies, varying from 96.6% to 
100% (15). Thus, we can assume that DCNNs have some 
potential to provide reliable and accurate classifications. 
With the help of computer-aided diagnosis in routine 
H&E-stained images, pathologists may have less need for 
other assistive technologies, such as immune-histochemical 
staining, which demand more energy, time and resources.

According to  the  l i terature ,  the  c lass i f icat ion 
performances of DCCNs depend heavily on the quality 
and quantity of training data (16). An image of a complete 
pathological slice may contain numerous different tissues, 
including tumor tissue, normal thyroid tissue, follicular 
tissue, inflammatory cells, blood vessels, muscle tissue, 

Table 4 Diagnostic efficiency of VGG-19 and Inception-ResNet-v2 on the testing data

Pathologic classifications
VGG-19 (%) Inception-ResNet-v2 (%)

Fragment Raw image Fragment Raw image

Normal tissue 88.33 (159/180) 95.70 (89/93) 82.22 (148/180) 94.62 (88/93)

ATC 98.57 (207/210) 98.77 (80/81) 94.76 (199/210) 95.06 (77/81)

FTC 98.89 (178/180) 98.68 (75/76) 95.00 (171/180) 92.11 (70/76)

MTC 100.00 (255/255) 100.00 (101/101) 98.43 (251/255) 96.04 (97/101)

PTC 97.77 (351/359) 97.42 (151/155) 93.31 (335/359) 92.90 (144/155)

Goiter 100.00 (510/510) 100.00 (209/209) 98.43 (502/510) 96.65 (202/209)

Adenoma 92.44 (208/225) 96.70 (88/91) 91.56 (206/225) 93.41 (85/91)

Average accuracy 97.34 (1,868/1,919) 98.39 (793/806) 94.42 (1,812/1,919) 94.67 (763/806)

ATC, anaplastic thyroid carcinoma; FTC, follicular thyroid carcinoma; MTC, medullary thyroid carcinoma; PTC, papillary thyroid carcinoma. 

Table 5 Confusion matrix of the classification results of VGG-19 (fragmented images)

Pathologic 
classifications

Normal tissue ATC FTC MTC PTC Goiter Adenoma

Normal tissue 159 (88.33%) 0 0 0 0 7 (3.89%) 14 (7.78%)

ATC 0 207 (98.57%) 3 (1.43%) 0 0 0 0

FTC 0 0 178 (98.89%) 0 2 (1.11%) 0 0

MTC 0 0 0 255 (100%) 0 0 0

PTC 0 0 7 (1.95%) 0 351 (97.77%) 1 (0.28%) 0

Goiter 0 0 0 0 0 510 (100%) 0

Adenoma 3 (1.33%) 0 5 (2.22%) 0 0 9 (4%) 208 (92.44%)

ATC, anaplastic thyroid carcinoma; FTC, follicular thyroid carcinoma; MTC, medullary thyroid carcinoma; PTC, papillary thyroid carcinoma.



Wang et al. Histological diagnosis of thyroid nodules using DCNNs

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(18):468 | http://dx.doi.org/10.21037/atm.2019.08.54

Page 10 of 13

fibrous tissue and so on, and histological images may also 
vary widely in color and scale batch due to different tissue 
preparation methods and imaging equipment. In addition, 
DCNN algorithms are typically trained and tested on 

numerous smaller images that are segmented from the 
original image. The DCNN images used in the current 
study were carefully selected by experienced pathologists, 
and the pathological diagnoses were definitive; therefore, 

A B C

D E F

G H I

Figure 6 Typical misclassified fragmented images HE, ×100. (A,B) Misdiagnosed fragmented image of normal tissue: (A) an image 
misdiagnosed as goiter; (B) an image misdiagnosed as adenoma. (C) Misdiagnosed fragmented image of ATC: the image was misdiagnosed 
as FTC; (D,E,F) misdiagnosed fragmented images of PTC and FTC: (D) an image of PTC misdiagnosed as FTC; (E) an image of FTC 
misdiagnosed as PTC; (F) an image of PTC misdiagnosed as goiter; (G,H,I) misdiagnosed fragmented images of adenoma: (G) an image 
misdiagnosed as goiter; (H) an image misdiagnosed as FTC (containing only a portion of capsule and follicles, which are somewhat similar 
to FTC misdiagnosed as normal tissue). ATC, anaplastic thyroid carcinoma; FTC, follicular thyroid carcinoma; PTC, papillary thyroid 
carcinoma.
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the images had typical cell morphology and arrangements, 
which provided histological features that were well-captured 
by the DCNN. However, in clinical practice, this type of 
manual approach would be time-consuming and subjective 
(16,17), which could introduce bias in the algorithms. 
Considering the issue of data collection, we adapted an 
automatic feature extraction program based on the strength 
of nucleus recognition (which has a dark mottled appearance 
in slides). This procedure enabled us to obtain sufficient 
numbers of patches containing adequate numbers of cells 
that could provide adequate features for the DCNN within 
a reasonable amount of time. In this regard, utilization of 
an automatic feature extraction program could improve the 
efficiency of training DCNN models and avoid biases and 
errors during the extraction procedure.

VGG-19 was generally more accurate than Inception-
ResNet-v2 on all the classifications. The Inception-
ResNet-v2 model was mainly designed for multiscale 
image training, while VGG-19 is more suitable for the 
recognition of single-scale images. The histological images 
used in the training set were adjusted to a single resolution 
and included a similar number of cells with a dark mottled 
appearance; thus, the scale was relatively simple. Therefore, 
the average accuracy on the augmented datasets as well as 
the average accuracy on raw images was higher for VGG-19 
than for Inception-ResNet-v2 (augmented datasets 98.39% 
vs. 94.67%; raw images 97.34% vs. 94.42%, respectively). 
Our study indicated that Inception-ResNet-v2 did not have 
an advantage over VGG-19 for the classification of thyroid 
diseases based on histological images; instead, VGG-19 
performed better at this task.

After this comparison, the VGG-19 model was chosen 
over Inception-ResNet-v2. The pathologists at FUSCC 
further investigated the misdiagnosed images to analyze the 
reasons for failure. In this study, normal tissue was the most 
challenging histologic type for DCNN to differentiate, and 
all misdiagnosed fragments were classified as benign thyroid 
tumors (goiter and adenoma). Although the pathologists 
considered the images to be typical of normal thyroids, we 
reviewed the misdiagnosed images and found that several 
reasons could have caused the misdiagnoses. The training/
test data were extracted from original images such that the 
fragmented images were all magnified and captured follicles 
of different sizes. Because goiter and adenoma both present 
nodular changes in the thyroid gland microscopically, 
when the fragmented images of normal tissue included 
some large follicles, the images could be misclassified 
(see Figure 5A vs. Figure 6A,B). As shown in Figure 6A,B, 

although both images intercepted large follicles, a higher 
intensity of the follicular epithelial cells between follicles 
and smaller follicles (although consistent in size) can be 
observed in Figure 6B than in Figure 6A, which implied that 
Figure 6A is more consistent with adenoma because goiter 
is characterized by fewer epithelial cells, given the enlarged 
follicles and lack of a complete capsule (18). In addition, 
given that the DCNN classification mechanism was mainly 
based on the size and staining of the nucleus, the DCNN 
made classification errors among normal tissue, goiter and 
adenoma because the follicular epithelial cells of these three 
pathologies share the same morphology (normal epithelial 
cells). Meanwhile, it was clear that the DCNN had no 
confusion between normal and malignant tumor tissue.

Three fragmented images of ATC were misclassified 
as FTC, but the fragmentation accuracy of ATC reached 
98.57% in this study. Microscopically, the morphological 
features of ATC depend on the admixture of three main 
histological patterns (spindle, giant and epithelioid cells) 
with marked pleomorphism and numerous mitoses that 
show sarcomatoid, epithelioid-squamoid or other rare 
variant changes (19). Due to the unique cell morphology 
and disappearance of the follicular structure, classification 
errors were rare among ATC, benign tumor/normal 
tissue and other types of thyroid cancer. Considering the 
misclassifications shown in Figure 6C, we assumed that 
the pathological diagnosis of FTC was mainly based on 
capsular/vascular invasion, which presents as tumor cells 
infiltrating fibrovascular tissue. VGG-19 might confuse 
ATC with FTC due to the fibrovascular tissue of the FTC 
background compared with that of PTC and MTC.

Regarding the diagnostic efficiencies of PTC and 
FTC, VGG-19 achieved satisfactory accuracy in this 
study. Interestingly, the misdiagnoses of FTC and PTC 
overlapped at a high proportion (Table 5, Figure 6D,E). 
Because PTC and FTC are both included in differentiated 
thyroid carcinoma (DTC), cancerous cells of both types 
originate from thyroid follicular epithelial cells and manifest 
with a similar cell morphology. Additionally, a variant of 
PTC exists named follicular papillary thyroid carcinoma 
(FPTC), which has similar histopathologic features 
(mostly composed of follicles without papillary structure) 
as follicular tumors (20). Meanwhile, a papillary structure 
may also sometimes appear in FTC (21). In Figure 6D,  
the fragment included a portion of a follicular-like 
structure accompanied by a cancerous region derived 
from follicular epithelial cells; therefore, the DCNN 
confused the PTC patch as FTC. Similarly, the cancerous 
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region in Figure 6E was filled with papillary structure, 
which accounted for the misclassification of FTC as PTC. 
Moreover, Figure 6F shows the misclassification of PTC 
as goiter. We speculate that this misclassification may have 
occurred because the cells in the image had low intensity 
along with a relatively large papilla containing colloid, 
which appears similar to goiter.

The diagnostic efficiency of adenoma by DCNN 
was comparatively lower in this experiment. More than 
half of the misclassifications were due to confusion 
between adenoma and goiter (Table 5). The epithelial cell 
morphology is almost the same in both adenoma and goiter; 
therefore, the key to the differential diagnosis relies on 
the following histopathologic features: (I) a complete and 
homogeneous capsule in adenoma; (II) smaller follicles 
with similar size as normal tissue in adenoma but larger 
follicles of various sizes in goiter; and (III) papillary 
hyperplasia sometimes observed in goiter (22). Therefore, 
when a fragmented adenoma image did not capture the 
abovementioned features (for example, Figure 6G presents 
follicles of different sizes without a complete capsule), 
the patch had a high misclassification risk. Another high 
proportion of the misclassifications corresponded to 
confusion between adenoma and FTC. A capsular structure 
exists in both adenoma and FTC, but FTC features 
capsular/vascular invasion, which can be better observed 
at low power or in whole slices. Thus, it remains difficult 
for the DCNN to differentiate adenoma and FTC from 
magnified fragments, which include only limited image 
information (Figure 6H). Figure 6I shows an adenoma patch 
misclassified as normal tissue, which might be due to the 
lower intensities of cells and the larger follicles compared to 
other adenoma patches (Figure 5G).

VGG-19 achieved a diagnostic efficiency of 100% 
for MTC and goiter. MTC is characterized by changes 
in cell morphology, including relatively uniform, short 
spindles or polygonal cells arranged in sheets, nests, islands, 
bundles, follicles or acinars (23). Thus, the distinctive cell 
morphology aided the DCNN in achieving its excellent 
diagnostic efficiency for MTC. Likewise, the goiter training 
data included the largest number of images (2,625 patches); 
thus, we assumed that the DCNN was also adequately 
trained and gained excellent diagnostic efficiency for these 
images.

This study demonstrated the application of DCNNs 
for the classification of thyroid diseases based on histology, 
although further potential improvements could be made by 
training the model with more images. Future studies should 

expand the training pool and integrate histomorphology 
with molecular biomarkers.

Conclusions

In summary, our work demonstrated that DCNN models 
can be applied to facilitate the differentiation of thyroid 
nodules using histological images in clinical settings. After 
training with a large dataset, the DCNN models, especially 
VGG-19, achieved excellent diagnostic efficiencies. The 
assistance of DCCN models could reduce the pathologists' 
workloads and improve their efficacy at determining the 
histopathology of thyroid tumors.
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