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Background: Kidney transplantation has given benefits to patients, although the associated genetic 
mechanisms are unclear. The present study aimed to understand the changes in gene expression and genetic 
pathways after kidney transplantation with the administration of immunosuppressive drugs.
Methods: The transcriptome data of blood samples from kidney transplantation recipients, obtained 
by RNA-seq, were reannotated to a more complete human genome (GRCh38/hg38). We compared the 
differentially expressed genes (DEGs) at pretransplant and 1 week, 3 months and 6 months posttransplant; 
researched the temporal variation of the DEGs; and constructed a long non-coding RNA (lncRNA)-
messenger RNA (mRNA) network.
Results: We found that compared to that at pretransplantation, 1,766 genes and 3,530 genes were 
upregulated and downregulated, respectively, at 1 week after kidney transplantation, and the number 
of DEGs declined over time. These DEGs were separated into 16 clusters, and the temporal variation 
expression was established by the average expression of the DEGs. A pathway analysis suggested that the 
immune reaction was attenuated and that the expression of ribosome-related proteins was reduced.
Conclusions: The lncRNA-mRNA network had 235 connections between 138 lncRNAs and 170 mRNAs. 
This work generated a gene profile based on temporal variation and revealed a significantly altered lncRNA-
mRNA axis contributing to molecular regulation, suggesting the potential gene mechanism of kidney 
transplantation and the effects of immunosuppressive drugs.
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Introduction

Kidney transplantation is the most effective therapeutic 
option for end stage renal disease and provides a high-
quality of life to these patients (1,2). In the past several 
decades, the short-term graft survival after operation 
has been significantly improved with the use of potent 
immunosuppressants (3,4). However, the long-term survival 
of kidney grafts remains to be advanced and is strongly 
threatened by cell-mediated rejection, antibody-mediated 
rejection (5,6) and other nonimmune factors, such as age, 
sex of donors and recipients, surgical operation, delayed 
graft function, postsurgical inflammation and oxidative 
stress, and drug side effects (7-10). Immunological rejection 
after transplantation is the issue that has received the most 
attention in this area, and several studies have highlighted 
immunosuppressants that prevent graft rejection and 
prolong graft survival (11-13). In contrast, little is 
known about the gene expression changes after kidney 
transplantation and after the start of immunosuppressants. 
The genetic mechanisms and pathways related to post 
operation and drug administration remain to be explored.

Long non-coding RNAs (lncRNAs) are a class of long 
non-protein-coding RNAs that modulate gene expression 
through a variety of mechanisms, which have not yet been 
clearly explored (14,15). In addition, the functions of most 
lncRNAs are still unknown (16). LncRNAs are as poorly 
conserved as the introns of coding genes and are less 
conserved than the 5'- or 3'-untranslated regions (UTRs) 
of messenger RNAs (mRNAs) (17). Given the relationship 
of lncRNAs and mRNAs, it is important to integrate 
these datasets to reveal the regulatory mechanisms among 

lncRNA-mRNA (18). To research the role of lncRNAs 
in genetic mechanisms related to kidney transplantation 
and to reveal the regulatory relationship among lncRNAs 
and mRNAs after transplantation and immunosuppressant 
administration, we analyzed the potential target protein-
coding genes and lncRNAs and then performed an 
integrated analysis.

A previous study (19) conducted whole transcriptome 
sequencing in kidney transplantation and characterized 
changes in expression at multiple times posttransplantation. 
However, the work was limited in the discovery of 
differentially expressed mRNAs and the pathways 
involved in each time point after transplantation and 
pretransplantation. In this study, we reannotated the 
previous database to a more complete human genome, 
performed principal component analysis (PCA), compared 
the differentially expressed genes (DEGs) among all time 
points, researched the temporal variation of DEGs and 
constructed a lncRNA-mRNA network. All our results shed 
light on the gene variation profiles of posttransplantation 
and reveal the potential gene regulation mechanism after 
kidney transplant and immunosuppressant administration.

Methods

The flow chart of bioinformatics analyses is presented 
in Figure 1. The transcriptome data (GSE86884, NCBI 
GEO database) of peripheral blood mononuclear cells 
(PBMCs) isolated from whole blood samples with kidney 
transplantation recipients were used and were obtained by the 
RNA-seq technique on an Illumina HiSeq 2000 platform. A 
total of 32 kidney transplantation recipients were included 
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in this study. None of them developed acute rejection 
during the 6-month study period. Peripheral blood samples 
were sequentially obtained pre-transplant (n=32), week 1 
(n=31), months 3 (n=18) and 6 (n=15) post-transplant. Some 
samples were not collected because the patients were not 
seen for follow-up visits. Approximately 12 mL of blood 
per sample was collected into BD Vacutainer EDTA coated 
tubes for isolation of PBMCs. RNA was extracted using 
Qiagen QIAamp RNA Blood Mini kit (Germantown, MD) 
from PBMCs and evaluated for quantity and integrity. One 
ug quality of RNA with RNA integrity number greater than 
6 was used to prepare polyA stranded RNAseq libraries.

Quality control and data processing

The acquisition of RNA-seq data included several steps: (I) 
obtaining raw reads: we downloaded raw fastq data from 
NCBI GEO database. Quality control and filtering of fastq 
data were performed using fastp with default settings (20). 
Tool fastp was a novel multifunctional, and ultra-fast 
FASTQ preprocessor with useful quality control and data-
filtering features. (II) Read alignments: paired-end reads 
were then mapped to the human genome (hg38, UCSC) 
via the Hisat2 tool (version 2.1.0) (21). Tool Hisat2, a 
successor to both Hisat and Tophat2, exports alignments 
in SAM format. The authors have recommended that the 
Hisat/Tophat2 users switch to Hisat2. (III) Genes and exons 
quantification: before calculating quantification values, 
converting the SAM files were converted to BAM files and 
sorted by SAMtools (version 1.9) (22). The raw counts of 
genes and exons were determined using the featureCounts 
function from the Subread package (version 1.6.3) (23) 
where the gencode.v28.annotation.gtf file was used as a 
reference annotation guide. Transcripts per million reads 
(TPM) for each transcript were obtained from the raw 
counts of exons. At that time, we obtained quantification 
values of genes (read counts) or transcript (TPM). 

Analysis of DEGs and time series analysis

Although some time series analysis tools are available, they 
are still in their early stages. We used the classical pairwise 
comparison approach with the R package DESeq2 (24). 
The overall gene expression profiles of the four time 
points (pretransplant and 1 week, 3 months, and 6 months 
posttransplant) were summarized through PCA. The 
DEGs were identified at 1 week vs. pretransplant (as 2 vs.  
1 group), 3 months vs. 1 week (as 3 vs. 2 group), 6 vs.  

3 months (as 4 vs. 3 group) and 6 months vs. pretransplant 
(as 4 vs. 1 group), with the statistical significance threshold 
at a false discovery rate (FDR) <0.05 and a fold change 
≥2 in the analysis. These genes were restricted to the top 
50% of the mean expression level to remove low levels of 
genes. DEGs were displayed by Veen and volcano plots and 
further investigated for function and pathway enrichment 
using KEGG analysis.

LncRNA target prediction and construction of a lncRNA-
mRNA regulatory network

Based on the expression level of log2(TPM+1), we first 
calculated the correlation coefficient and P between 
arbitrary differentially expressed lncRNA (DElncRNA) and 
arbitrary differentially expressed mRNA (DEmRNA) in the 
2 vs. 1 group, respectively. Next, lncRNA target predictions 
were superimposed onto the lncRNA-mRNA correlation 
network to suggest whether the lncRNAs directly regulated 
the expression of the target mRNAs. Similar to Han’s study, 
DElncRNAs were chosen for target prediction to identify 
the cis- or trans-regulatory effects (25). Tool BEDtools was 
used to screen out cis target genes of each DElncRNA, i.e., 
DEmRNAs transcribed within a range of 10kb upstream 
or downstream of each DElncRNA. Tools BLAST and 
RNAplex were utilized to find out trans target genes of each 
DElncRNA based on sequence complementarity and RNA 
duplex energy prediction. The BLAST parameters were 
set as “-evalue 1e-5 -perc_identity 90”, and the RNAplex 
parameters were set as “-e -30”. The requirements 
for DElncRNA paired with DEmRNA were absolute 
correlation coefficient >0.5 and P<0.05 at any one of two 
time points (group 1 and 2). Finally, DElncRNA-DEmRNA 
regulatory network was constructed and visualized by 
CytoScape (version 3.4.0).

Results

DEGs during pre- and posttransplant

The results of PCA are shown in Figure 2A .  The 
pretransplant, three-month and 6-month groups had a 
high overlap, whereas the one-week posttransplant group 
was different from the others based on the gene expression 
profiles. The volcano plot depicting global expression 
patterns indicated DEGs among the four groups (Figure 
2B,C,D,E). After filtering out low count genes by DESeq2, 
Whether the remaining 24,440 genes were differentially 
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expressed was our focus. Figure 2B shows that 1,766 genes 
were upregulated at 1 week after kidney transplantation 
compared to pretransplant (time point 2 vs. 1), whereas 
3,530 genes were downregulated. In order to determine 
how 5,296 above-mentioned DEGs changed or whether 
there was a significant difference in the expression of 
other genes for the next 6 months, DEG analysis was 
performed in the 3 vs. 2 group, the 4 vs. 3 group and the 4 
vs. 1 group. There were 2,206 DEGs in the 3 vs. 2 group, 
which is indicated in Figure 2C. Interestingly, there were 
no DEGs in the 4 vs. 3 group (Figure 2D). This reflected 
that the gene profile at 6 and 3 months after operation was 
roughly the same. However, a total of 1,562 genes were 

expressed differentially 6 months after surgery as opposed 
to that pretransplant (Figure 2E). The results suggested 
that the number of DEGs declined over time. Comparing 
the significant DEGs among the 2 vs. 1, 3 vs. 2 and 4 vs.  
1 group, there were 505 common DEGs. A Venn diagram 
of gene expression analysis represented the overlap of the 
three groups (Figure 2F). These results suggested that the 
number of DEGs declined and gene expression tended to 
be stable over time. 

Time series trend of DEGs after kidney transplantation

In order to identify the dynamic change of these genes at 
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four different time points, we extracted 5,557 DEGs in the 
2 vs. 1 or 3 vs. 2 groups, which were differentially expressed 
at least once, to construct a time series trend analysis. 
These genes were divided into eight clusters according 
to upregulation, downregulation and nondifference 
among the 2 vs. 1 and 3 vs. 2 groups without double 
nondifference. Then, we defined the trend as upregulation 
or downregulation based on the change folds in the 4 vs.  
3 group, although the FDR was nonsignificant. In general, 
we separated these DEGs into 16 clusters, and the temporal 
variation expression figures were established on the average 
expression of DEGs in each cluster in the samples at each 
time point.

As shown in Figure 3, the expression levels of gene sets 
were increased at 1 week posttransplant and are presented 
in clusters 1–6 (Figure 3A,B,C,D,E,F). Some of the genes in 
clusters 1–2 continued to increase at 3 months compared 
to 1 week, suggesting the existence of a long-term effect. 
For the early recovery genes in clusters 3–4, the expression 
dropped to the level of pretransplant at 3 months. There 
was no significant change at 3 months compared to  
1 week in clusters 5–6, but most of these genes appeared 
to decrease within a period of 1 week to 6 months after 
transplantation. Clusters 7–12 contained genes that were 
downregulated at 1 week compared to pretransplant (Figure 
3G,H,I,J,K,L). The genes in clusters 7–8 appeared early in 
recovery, and a long-term affected trend was observed in 
clusters 9–10. The expression of the genes that changed 
at the later period instead of 1 week posttransplant were 
in clusters 13–16, which suggested a chronic potential 
effect of immunosuppressants (Figure 3M,N,O,P). A brief 
table is shown in Figure 3Q. We also performed DEG 
analysis on the 4 vs. 1 group. By overlapping the results 
with the above 5,557 genes, 1,151 genes were differentially 
expressed compared to that pretransplant (Figure 2F). These 
results suggested the likely effects of surgery and drug 
administration.

KEGG pathway analysis

We took every two clusters for KEGG pathway analysis 
(Figure S1). The results showed that clusters 7 & 8 involved 
immune mechanism pathways, such as the T cell receptor 
signaling pathway, Th1 and Th2 cell differentiation, and 
cytokine-cytokine receptor interaction. Complement and 
coagulation cascades and the cell cycle pathway had a 
significant effect in clusters 5 & 6. The ribosome pathway 
played a major role in clusters 11 & 12, whereas the Wnt 

signaling pathway was the top pathway related to clusters 13 
& 14. The pathway analysis suggested that the attenuation 
of the immune reaction, reduced expression of ribosome-
related proteins and the change in the PBMC cell cycle 
occurred after the use of immunosuppressants.

Construction of lncRNA-mRNA association network

With the above methods, we constructed an association 
network including the lncRNAs and target genes that 
were differentially expressed in the 2 vs. 1 or 3 vs. 2 groups  
(Figure 4). There were 1,063 DElncRNAs and 3,563 
DEmRNAs revealed by the correlation analysis, and 
the results showed that 40,432 lncRNA-mRNA pairs 
simultaneously met an absolute correlation coefficient >0.5 
and P<0.05 at two time points. In addition, we obtained 
466 lncRNA-mRNA pairs with cis-regulation and 5,692 
pairs with trans-regulation. Combined with the restriction 
condition of the correlation analysis results, the network 
had 308 nodes and 235 connections between 138 lncRNAs 
and 170 mRNAs. This network indicated that lncRNA 
TMEM161B-AS1 targeted eighteen mRNAs (such as 
ANGEL1, ARSK, CARF, CATSPER2, CD96, DIEXF, 
ELP2, HLCS) in the 2 vs. 1 group. ZBTB25 was a target 
gene of seven lncRNAs (AC007114.2, AL122035.2, 
AL591848.3, IQCH-AS1, KLF3-AS1, PVT1, SLC25A25-
AS1). Several single lncRNAs targeted single mRNAs. A 
portion of the targets mentioned here have been reported 
to be linked to cancer and transplantation. These results 
suggested a potential regulatory mechanism of lncRNAs to 
mRNAs after kidney transplantation.

Conclusions

The benefits of transplantation for end-stage renal disease 
patients have attracted much attention from academia, 
and great progress has been made in basic and clinical 
research on kidney transplantation. Although routine use 
of immunosuppressive drugs after operation have reduced 
the occurrence of acute rejection effectively, but chronic 
allograft injury limited the improvement in long-term 
allograft survival. Whether in case of acute rejection or 
chronic allograft injury, to study the genetic changes before 
pathological changes and functional changes was crucial. 
Most previous studies have focused on DEGs at the time of 
an acute rejection or chronic allograft injury event, but the 
small number of samples and widely varied baseline data 
made lower the credibility of its research results. 
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Figure 4 LncRNA-mRNA association network. Diamond: lncRNA; Ellipse: mRNA; Red: upregulated; or Green: downregulated in the 2 
vs. 1 group. There were two prerequisites for construction: (I) absolute correlation coefficient >0.5 and corresponding P<0.05 at two time 
points (pretransplant and 1 week posttransplant); (II) existing cis- or trans-effects.
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Researches on PBMCs is essential in the process of 
graft rejection after kidney transplantation beginning 
with lymphocytes infiltration. The RNA sequencing data 
were obtained from previous work, in which 32 patients 
receiving living donor kidney allografts were involved. The 
research has investigated changes in gene expression after 
kidney transplantation in patients without acute rejection 
or chronic allograft injury. This was a good reference for 
the screening of biomarkers predicting an acute rejection or 
chronic allograft injury event. However, there were several 
aspects that made our research different from or more 
rigorous than the research of the original data provider. 
Firstly, we mapped raw fastq data to the latest human 
genome (GRCh38/hg38) that covered a lot of information 
about non-coding genes. We picked out 1,063 DElncRNAs 
from 5,557 DEGs either in group 2 vs.1 or group 3 vs. 2 
for further studies. Secondly, we eliminated two samples 
that were far away from the samples-set by PCA analysis 
(SRR4241437 and SRR4241398, Figure S2). It made the 
results more reliable and credible. The results explained the 
benefits of kidney transplantation to patients, particularly at 
the later stage, compared to other therapies (26,27). 

Thirdly, all of our analysis was conducted by the current 
mainstream of data-analysis softwares and methods, such as, 
Hisat2 instead of Hisat/Tophat2 in read alignments, TPM 
instead of FPKM (Fragments Per Kilobase of transcript 
per Million fragments mapped) in gene quantification, 
and three programs (BEDtools, BLAST and RNAplex) in 
DElncRNA-target prediction. Fourthly, the comparative 
objects of DEG analysis were different. We did DEG 
analysis in the 2 vs. 1 group, the 3 vs. 2 groups, the 4 
vs. 3 groups and the 4 vs. 1 group, but original authors 
focused on DEGs after transplant compared to baseline 
at pretransplant. They concluded that gene expression 
signatures at month 3 were similar to week 1. However, 
our study suggested gene expression signatures at week  
1 posttransplant were the most different from that at other 
three time points, based on the result of PCA and time 
series analysis. They ignored that the dynamic change of 
DEGs. In our opinion, to observe that the dynamic change 
of each gene at different time points was more important 
than to compare the difference among different time points. 
For this reason, we constructed time series trend analysis 
by semi-artificial comparison instead of an immature but 
simple tool. Both our study and previous study clarified that 
the numbers of DEGs after transplant compared to baseline 
gradually decreased over time. Fifthly, to advance the study 
of gene mechanism especially in the reaction of lncRNAs to 

mRNAs before and after transplantation, we superimposed 
the result of DElncRNA-target prediction to that of 
correlation analysis for construction of the gene regulatory 
network. This was a unique analysis in our research, which 
did not exist in the previous study. Correlation analysis 
stated pairwise co-expressed genes with direct or indirect 
relationship, and DElncRNA-target prediction method 
identified a batch of directly acting potential target genes of 
one DElncRNA on basis of position and sequence structure. 
We eventually built several hundreds of DElncRNA-
DEmRNA pairs that have yet to be verified. 

In the last aspect, we paid attention to cell-type specific 
gene expression profiles. Most studies about whole genome 
expression still relied on the analysis of the total PBMCs 
(28-30). There were several cell subsets in PBMCs, so the 
information that PBMCs provided was more complete but 
heterogeneous: the differential expression might be due 
to the change of gene expression, the change of cell type 
proportions or both. According to the identification of 
specific gene expression signatures for B-cells (427 genes) 
and T-cells (222 genes), we explored the dynamic changes 
of these specific genes for reflecting the activity of humoral 
immunity and cellular immunity (31). 

In our study, the number of T-cells specific DEGs was 
ninety; 75.6% (n=68) and 13.3% (n=12) were classified 
into cluster 7 & 8 and cluster 11 & 12 respectively. The 
expression level of those genes decreased at 1 week 
following transplant but increased towards pretransplant 
levels over time in the blood. Those genes encompassed 
T-cell receptor (e.g., CD3D, CD3E, CD3G and CD247), 
T-cell costimulatory molecule (e.g., CD28), signal 
transduction-related genes (e.g., CD96, FYN, LAT, MAL, 
TRAT1, TRGC1 and ZAP70), cell adhesion molecules 
(e.g., CD2, CD5, CD6) and genes encoding T-cell 
transcriptional regulators (e.g., GATA3, LEF1, STAT4 
and TCF7). General down-regulation of above-mentioned 
several kinds of genes was probably because of depletion 
of T cells in the early stage after kidney transplantation. 
Only 7.8% (7) of T-cells specific DEGs were classified 
into cluster 6, including ACTN1, ARID3A, BEX3, 
OLAH, PKM, S100A8 and UPP1. ACTN1 was known 
to be involved in cytoskeletal remodeling and calcium 
mobilization, a fundamental process for T-cell activation, 
but it was recently described as a differentiation/maturation 
marker of CD8+ T-cell (32). Up-regulated PKM was 
related to enhanced Th1 and Th17 cell differentiation (33). 
The activation marker S100A8 was strongly increased in 
CD8+ T cells. In addition, the dynamic change of immune 
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checkpoint molecules inhibiting T-cells was also assessed. 
Five checkpoint molecules (CD124/IL7R, CD152/CTLA4, 
CD160, CD223/LAG3 and TIGIT) were all classified 
into cluster 7. Other four checkpoint molecules (CD137, 
CD279/PD1, CD366/TIM3 and VISTA) were not included 
in all 5,557 DEGs. It showed that the immune effect of T 
cells was gradually suppressed by taking immunosuppressive 
drugs for a long time. On the other hand, the number 
of B-cells specific DEGs was forty-four. Six genes (CR1, 
IGHD, IGHG1, IGHG2, IGHG3 and IL4R) were involved 
in B cell mediated immunity. CR1 and IL4R were in cluster 
6, and four immunoglobulin heavy genes were in cluster 
11. The function of the rest of specific genes was not 
clear. Most of B-cell co-receptor molecules, B-cell surface 
markers, signal transduction molecules, and transcriptional 
regulators were non-different. Considering the differential 
subtypes in PBMCs, which lymphocytes are responsible for 
the altered transcripts and the relative frequency needs to 
be explored in the future.

To explore the dynamic changes of those DEGs, we 
performed a time-series trend analysis and identified  
16 gene clusters. We have not retrieved other published 
research related to the temporal variation in gene 
expression in patients without rejection. The expression 
of genes in clusters 3, 4, 7, and 8 were changed at 1 week 
versus pretransplant and meaningfully returned to the 
trend of preoperation in 3 months, which was probably 
explained by the early effect of drugs to avoid acute 
rejection. It is interesting to research these genes, which 
significantly changed at 1 week but then recovered at  
3 months by enlarging the effects of anti-acute rejection 
with drugs. Genes such as MMP9, CD177, IL-34, and 
LAMC3 were in clusters 5, 6, 11, and 12 and appeared to 
recover later at three and 6 months. Turunen et al. (34) 
reported that MMP9 is associated with cold ischemia 
time and the emergence of delayed graft function 
related to kidney transplantation. IL-34 was reviewed by 
Baghdadi et al. (35), and growing evidence has indicated 
a correlation between IL-34 and disease severity, 
chronicity and progression. Based on these findings, we 
hypothesized that the later-recovered genes may act as 
targets to attenuate chronic rejection and improve the 
life of grafts. The expression of genes in clusters 1–2 and 
9–10 were upregulated or downregulated chronically 
post-transplantat ion,  which suggested long-term 
damage by surgery or immunosuppressants. From the 
temporal variation, we clearly understand the influence 
of immunosuppressants, which resulted in the changes of 

genes in PBMCs. The DEGs in each cluster probably play 
different roles after kidney transplantation depending on 
the temporal variation, which remains to be explored.

We subsequently performed KEGG analysis on 
every similar cluster, and we found that clusters 7 &  
8 focused on immune pathways, such as the T cell receptor 
signaling pathway, Th1 and Th2 cell differentiation, 
cytokine-cytokine receptor interaction and Th17 cell 
differentiation. The results suggested that the immune 
system was acutely inhibited after transplantation with 
the use of immunosuppressants and partially recovered 
after 3 months, establishing a new equilibrium in PBMCs. 
It supported the efforts and achievements of research in 
immunosuppressants; however, the posttransplantation 
immune reactions are still worth mentioning. The Wnt 
signaling pathway was the most enriched pathway in clusters 
13 & 14, which was reported in T lymphocyte responses. 
Recent evidence indicated that the Wnt pathway serves as a 
master regulator of T cell immune responses by governing 
the balance between T helper 17/regulatory T cells and 
regulating the formation of effector and memory cytotoxic 
CD8 T cell responses, which influences the outcome of 
immune responses in transplantation (36). In general, the 
pathways from the clusters in this study revealed that the 
immune system was attenuated, the expression of ribosome-
related proteins was downregulated and the cell cycle 
of PBMCs was changed by immunosuppressants after 
transplantation. Increasing evidence has confirmed that 
lncRNAs are one of the most important factors controlling 
gene expression (37). To explore the molecular mechanism 
after kidney transplantation, we combined DEmRNAs 
with target gene prediction of DElncRNAs. Finally, we 
obtained 235 credible lncRNA-mRNA pairs with cis- 
or trans-regulatory effects. This network indicated that 
TMEM161B-AS1 targeted the highest number of mRNAs 
with a positive regulatory relationship and that ZBTB25 
was targeted by the largest number of lncRNAs. By 
regulating these lncRNAs, the expression of corresponding 
mRNA would be changed and play differential functions in 
the processes after transplantation. The lncRNA-mRNA 
network revealed a potential regulatory mechanism of 
lncRNAs targeting mRNAs after kidney transplantation.

In conclusion, our study reannotated the previous 
database to a more complete human genome, obtained 
more intricate DEGs at each time point after kidney 
transplantation, researched the temporal variation of those 
DEGs and constructed a lncRNA-mRNA network. This 
work exhibited a transcriptional profile based on the time 
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course and revealed several hundred significantly altered 
lncRNA-mRNA axes contributing to molecular regulation 
after kidney transplantation, which helps us to understand 
the molecular mechanism after kidney transplantation and 
the effects of immunosuppressive drugs.
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Figure S1 KEGG pathway analysis of DEGs. Fifteen signaling pathways were significantly enriched.
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Figure S2 Result of PCA. Two samples (SRR4241437 and SRR4241398) were far from the sample set. PCA, principal component analysis.
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