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The alterations of gut microbiota in mice with chronic pancreatitis
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Background: The changes of intestinal microbiome are associated with inflammatory, metabolic, and 
malignant disorders, and there are no studies assessing the intestinal microbiota of mice with chronic 
pancreatitis (CP). Thus, we aim to investigate the variations in diversity, composition and function of 
intestinal microbiota in CP mice.
Methods: Sixteen male C57BL/6 mice were randomly selected, and divided into two groups, treated 
intraperitoneally with saline (normal control group, CT group) or ethanol + cerulein (experimental group, 
CP group) for 6 weeks. Body weight as measured in entire processes. Histopathological examination of CP 
index was conducted to verify the CP induction. Extracted DNA from colon samples was used for Illumina 
HiSeq sequencing of the bacterial V4 region of 16S rRNA gene and analyzed using Quantitative Insights Into 
Microbial Ecology (QIIME). Functional profiling of microbial communities was predicted with BugBase.
Results: Significant alterations of the gut microbiota were found in the CP mice compared to CT groups, 
as revealed by significant decrease in bacterial richness and diversity, declined the relative abundance 
of Lachnospiraceae_NK4A136, Ruminiclostridium and Roseburia, and increased the relative abundances of 
Bacteroides and Alloprevotella genera. Analysis of microbial community-level phenotypes revealed significant 
differences in nine phenotypes (aerobic, anaerobic, containing mobile elements, facultatively anaerobic, 
biofilm forming, gram-negative, gram-positive, potentially pathogenic, and stress tolerant) between CP 
group and CT group. 
Conclusions: This study indicated that mice with CP had a distinct microbiota profile.
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Introduction

Chronic pancreatitis (CP) is characterized by progressive 
inflammatory and fibrotic changes with the destruction 
of pancreatic structures, leading to impaired functions of 
exocrine and endocrine (1). Patients with CP develop the 
clinical features of abdominal pain, pancreatic exocrine 
insufficiency (PEI) and diabetes, which have a severely effect 
on the quality of life (2). The PEI as exogenous enzymes 

[pancreatic enzyme replacement therapy (PERT)] may 
reduce bloating, diarrhea, malabsorption, and malnutrition 
(3-6). However, regardless of the adequacy of PERT, CP 
patients still have clinical symptoms such as steatorrhea (7). 
Small intestinal bacterial overgrowth (SIBO) is common 
in patients with CP, and it can result in chronic intestinal 
symptoms, including abdominal pain, flatulence, and 
malabsorption (8,9). Therefore, SIBO should be a potential 
target for the treatment in CP with PEI.
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According to the results of duodenal aspiration cultures, 
SIBO is typically defined as the overload 105 colony forming 
units per milliliter (CFU/mL) of bacteria in usually colonic 
enterobacteria (10). It is suggested that SIBO may aggravate 
PEI, and SIBO treatment may be helpful for patients with 
PEI (7). Moreover, studies have shown that oral antibiotic 
therapy effectively reduced intestinal bacterial overgrowth 
in dogs with PEI (11) and alleviated intestinal symptoms 
in SIBO patients (12). In recent years, gut microbiome 
plays a vital role in human health and disease. Dysbiosis has 
been found to be related to the activation of inflammatory 
cytokines in inflammatory-mediated metabolic disease (13),  
as well as other diseases such as obesity, metabolic 
syndrome, and diabetes (14-16). However, a few studies 
have examined links between alterations of intestinal 
microbiota and CP (17). Therefore, we aim to investigate 
the variations in diversity, composition and function of 
intestinal microbiota in CP mice. 

Methods

Chemicals and reagents

Cerulein, the decapeptide analogue of cholecystokinin, was 
purchased from Bachem AG (Bubendorf, Switzerland). 
All efforts were made to minimize animal suffering. All 
studies were approved by the Animal Experimental Ethical 
Inspection Form of Southeast University.

Animals and experimental design

Specific pathogen-free (aged 6–8 weeks) male wild-type 
C57BL/6 mice were purchased from Animal Laboratory 
of Nanjing Medical University (Nanjing, China). In the 
adaptation period (7 days), mice were randomly divided into 
normal control (CT) and experimental groups (n=8 mice 
per group) and maintained in a 12 h light/12 h dark cycle at 
23±1 ℃, with free access to sterilized water and food. For 
experimental group, mice received single intraperitoneal 
(IP) injection of alcohol (30%, 3 g/kg/day) 6 days a week for  
6 weeks. In addition, the mice were given IP of cerulein 
every hour for 6 hours (50 μg/kg/body weight) on once a 
week of 6 consecutive weeks (CP group). Meanwhile, normal 
CT mice received comparable injections of normal saline 
instead of cerulein and ethanol for 6 weeks (CT group). 
The body weights of all mice were recorded at the end of 
each week and ahead of the final sacrifice. After 6 weeks  
of ethanol + cerulein or saline administration, the mice were 

sacrificed and their pancreas and colon feces were collected 
and stored in –80 ℃ refrigerator (DWHL-528S, Meiling, 
Hefei, China).

Evaluation of pancreas morphology

To make paraffin section, fresh pancreas were fixed in 
4% paraformaldehyde, paraffin-embedded and sectioned 
at 3–5 μm. The sections of the specimens were stained 
with hematoxylin and eosin (HE) and Masson staining 
according to standard histological examination, then the 
morphological changes and fibrosis were observed under a 
light microscope.

DNA extraction and 16S rRNA gene sequencing

Total bacterial genomic DNA samples were extracted 
using the Metagenomic DNA (MoBio Laboratories, 
Carlsbad, CA, USA). The quantity and quality of extracted 
DNAs were measured using a NanoDrop ND-1000 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA) and agarose gel electrophoresis, respectively. 
The 16S rRNA gene comprising V4 region was amplified 
by polymerase chain reaction (PCR) using composite 
specific bacterial primers [the forward primer 515F (5'- 
GTGCCAGCMGCCGCGGTAA-3') and the reverse 
primer 806R (5'-GGACTACHVGGGTWTCTAAT-3']. 
Thermal cycling consisted of the following condition: 98 
℃ for 30 s (1 cycle), 98 ℃ for 15 s/58 ℃ for 15 s/72 ℃ for 
15 s (30 cycles), and a final extension at 72 ℃ for 1 min. 
High-throughput pyrosequencing of the PCR products was 
performed on an Illlumina HiSeq4000 platform at GUHE 
Info technology Co., Ltd (Hangzhou, China).

Gut microbiota sequence analysis

Sequence data analyses were mainly performed using 
Quantitative Insights Into Microbial Ecology (QIIME) and 
R packages (v3.2.0). The raw paired-end reads from the 
original DNA fragments were merged using FLASH (18),  
and assigned to each sample according to the unique 
barcodes. High-quality reads for bioinformatics analysis 
were performed and all of the effective reads from each 
sample were clustered into operational taxonomic units 
(OTUs) based on a 97% sequence similarity according to 
VSEARCH (19). OTU-level alpha diversity indices, such 
as Chao1 richness estimator, Shannon diversity index, and 
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Simpson index, were calculated using the OTU table in 
QIIME (20). OTU-level ranked abundance curves were 
generated to compare the richness and evenness of OTUs 
among samples. Beta diversity analysis was performed to 
investigate the structural variation of microbial communities 
across samples using UniFrac distance metrics (21,22), 
and visualized via principal coordinate analysis (PCoA) 
and principal component analysis (PCA) (23). Linear 
discriminant analysis effect size (LEfSe) was performed 
to detect differentially abundant taxa across groups using 
the default parameters (24). BugBase (http://github.com/
danknights/bugbase) was used to calculate differences 
between both groups in terms of microbial phenotypes, 
based on high-quality sequences (25). The output file was 
further analysed using statistical analysis of metagenomic 
profiles (STAMP) software package v2.1.3 (26).

Statistical analysis

Data were expressed as mean ± standard deviation (SD), and 
the differences between groups with normal distribution 
were evaluated by the Student’s t-test using SPSS 19.0. The 
criterion of significance was conducted at P<0.05.

Results

Body weight 

The weight of mice in the experimental group was 

significantly lower than CT group from the second week, as 
shown in Figure 1. After 6 weeks, the average body weight 
of the mice was 21.96±1.00 g in CP group significantly 
lower than CT group (28.05±1.07 g) (P<0.001). 

 

Pancreatic histopathological assessment 

As shown in Figure 2A,B, the HE staining of the pancreas 
tissues revealed profound acinar loss, infiltration of 
inflammatory cells, enlarged interstitial spaces, glandular 
atrophy, degeneration and parenchyma fibrosis in the CP 
group. Masson staining (Figure 2C,D) showed extensive 
trichrome-positive staining in the CP group.

Generation of OTUs 

For the two groups, variable regions (V4) of the bacterial 
16S rRNA gene were amplified by PCR. The raw reads of 
high-throughput pyrosequencing in CP and CT groups 
were 129,472 and 136,647, respectively. After removing the 
low-quality sequences, the two groups of clean tags were 
113,235  and 121,852, respectively, and were subjected 
to the following analysis. The CP and CT groups were 
identified with 918 and 1,530 OTUs, respectively, based 
on the conventional criterion of 97% similarity (equal to 
species level) (Table 1). The average length of the sequences 
was 2 bp × 150 bp. Moreover, there was significant 
differences in the number of OTUs between CP group and 
CT group in Figure 3.

Gut microbial dysbiosis in CP mice

Richness and diversity of bacteria phylotypes
The curves of OTU rank (Figure 4A) ,  rarefaction  
(Figure 4B), Shannon-Winner curves (Figure 4C), indexes 
of Shannon (Figure 4D), Simpson (Figure 4E), and Chao1 
(Figure 4F) were calculated. Cerulein combined with 
alcohol significantly reduced the richness of the intestinal 
microbiota in CP mice. 

Bacterial taxonomic composition
The sequences were analyzed at multiple (phylum to genus) 
taxonomic levels. At the phylum levels, gut microbiota was 
mainly composed of Firmicutes, Bacteroidetes, Proteobacteria 
among the two groups. The relative abundance of 
Bacteroidetes (55.8% vs. 11.2%) significantly increased and 
the relative abundance of Firmicutes (38.0% vs. 85.5%) 
decreased in CP group compared with the CT group 

Figure 1 Body weights of the C57BL/6 mice with CP (red), or 
CT (green) for 6 weeks were recorded. Each value is expressed as 
the mean ± SD. ***, P<0.001. CP, chronic pancreatitis mice; CT, 
control mice; SD, standard deviation.
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(Figure 5A), thereby reducing the ratio of Firmicutes/

Bacteroidetes. At the genus levels, the CP group had higher 

abundance of bacteria like Bacteroides and Alloprevotella, 

and lower significantly such as Lachnospiraceae_NK4A136, 

Ruminiclostridium, Roseburia and Blautia compared to the 
CT group (P<0.05 all) (Figure 5B).

Taxonomic characterization of the gut microbial profile
Weighted UniFrac cluster tree based on UPGMA 
showed the beta diversity changes of intestinal flora in 
the two groups (Figure 6A,B). LEfSe was used to identify 
differential microbial abundances between CP and healthy 
mice. This analysis revealed significant differences in 
bacterial clades from phylum to species level between 
groups, e.g., Lachnospiraceae and Ruminococcaceae and 
Roseburia were more abundant in the CT group, whereas 
the families Bacteroidaceae, Muribaculaceae, Prevotellaceae, 

Figure 2 Representative light microscopic appearances of the pancreas stained with HE staining (A,B), and Masson staining (C,D) in the 
two groups of mice (original magnification ×400). CP, chronic pancreatitis mice; CT, control mice; HE, hematoxylin and eosin.

Table 1 Illumina HiSeq sequencing data

Sample Tags Clean tags OTUs

CP 129,472 113,235 918

CT 136,647 121,852 1,530

OTUs, operational taxonomic units; CP, chronic pancreatitis mice; 
CT, control mice.
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Enterobacteriaceae and Bifidobacteriaceae were more abundant 
in the CP mice (Figure 6C,D). 

Microbial potential functions

Using BugBase, nine potential phenotypes, including 
aerobic ,  anaerobic ,  containing mobi le  e lements , 
facultatively anaerobic, biofilm forming, gram-negative, 
gram-positive, potentially pathogenic, and stress tolerant 
were predicted significant in the two groups (P<0.05), as 
shown Table 2. Among all the phenotypes, CP mice tend 
to have more aerobic, facultatively anaerobic and biofilm 
forming, and less anaerobic and containing mobile elements 
bacteria. Additionally, we observed that a significantly 
lower representation of gram-positive bacteria, whereas 
proportion of gram-negative and potentially pathogenic 
phenotypes were observed to be significantly enriched in 
the CP mice. 

Discussion 

There is a lack of knowledge in regard to the changes in 
diversity, composition and function of the gut microbiome 
in mice with CP. In this current study, we found that the 
CP mice indicated reduced weight gain and fibrogenesis 
processes of pancreas. Mice with CP had a distinct 
gut microbiota profile compared to the healthy mice. 
Moreover, we first explored the microbial community level 
phenotypes, revealing that the proportion of gram-negative 
and potentially pathogenic phenotypes was increased in 

mice with CP. 
Alcohol intake is the main etiology factor related to  

CP (27). It is generally suggested that CP may be caused by 
repeated acute pancreatitis (28). The combination of alcohol 
and cerulein leads to typical pancreatic fibrosis, activation 
of stellate cells, and inflammation of the pancreas (29). In 
our study, the repeated injection with ethanol and caerulein 
for 6 weeks caused CP. All three main pathological criteria 
of human CP, including parenchyma fibrosis, loss of acinar 
cells, and infiltration of inflammatory cells, were observed 
in present CP model mice. 

Alpha diversity has been shown to be potential associated 
to the pathogenesis in various diseases. For example, a 
lower bacterial diversity is related to inflammatory bowel 
disease (30). Our results show the non-significant difference 
in bacterial alpha diversity (Shannon and Simpson index) 
in the two groups, whereas CP mice had the lower species 
richness (observed OTUs and Chao1) than the healthy 
mice. Therefore, the decrease of bacterial diversity in CP 
mice may promote the progress of the disease.

Moreover, our findings showed that the intestinal 
microbial community of mice with CP was significantly 
different from normal mice. Previous studies have shown 
that the gut microbial community of Crohn’s disease 
patients was characterized by decrease in phylum Firmicutes 
and concomitant increase in phylum Proteobacteria (31,32). 
Among the top 3 predominant, the abundance of Firmicutes 
was decreased, Bacteroidetes and Proteobacteria were more 
abundant in CP group, which was consistent with previous 
studies (33). However, inconsistent results have been 
reported. Hu et al. found (34,35) that the proportion of 
Bacteroidetes was decreased with CP mice, an increased 
proportion of Firmicutes was observed in study. Multiple 
bacteria of the phylum Firmicutes was significantly decreased 
in the gut microbial community of Crohn’s disease  
patients (36). Indeed, the ratio of Firmicutes/Bacteroidetes has 
been used as a significant indicator to estimate the status of 
human gut microbes (37,38). Our study revealed a decreased 
ratio of Firmicutes/Bacteroidetes in CP mice, suggesting that 
the progression of CP might result in the disproportions of 
Firmicutes and Bacteroidetes in the gut. 

At the genus levels, CP mice reduced the abundance 
of butyrate-producing bacterial species, and several anti-
inflammatory bacteria including Lachnospiraceae_NK4A136, 
Ruminococcus, Roseburia and Blautia, and these taxa have 
been considered as beneficial microbiota for gut health 
(39-41). Recently, Jandhyala et al. (35,42) have evaluated 
that the Ruminococcus abundance of gut microbiome was 

Figure 3 OTUs number of gut microbiota in two groups. 
**, P<0.01. OTUs, operational taxonomic units; CP, chronic 
pancreatitis mice; CT, control mice.
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Figure 4 The characteristics of the diversity, richness, and structure of the intestinal flora in  the two groups of mice. (A,B,C) OTU rank 
curves, rarefaction curves and Shannon curves of gut microbiota for each sample, respectively; (D,E,F) shows the Shannon index, Simpson 
index, and Chao1 index of each group. Values are presented as median (quartile) (n=5). Differences were assessed by Mann-Whitney-
Wilcoxon test and denoted as follows: *, P<0.05 compared with CT group. OTU, operational taxonomic unit; CP, chronic pancreatitis mice; 
CT, control mice.
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reduced in patients with CP. Moreover, our study found 
that conditional pathogenic bacteria was increased in CP 
mice, including Bacteroides and Enterobacteriales. Previously, 
increased conditional pathogenic bacteria has been reported 
in fecal extracts of Crohn’s disease patients (36,43). In 
contrast, other beneficial bacteria such as Lactobacillus, 
Alloprevotella, and Bifidobacterium were significantly 

increased in the CP mice, nevertheless, the relevance of 
these changes was unclear. Some studies have been reported 
higher prevalence of Lactobacillus and Bifidobacterium in 
gastrointestinal disorders (44). Consequently, the differences 
in beta diversity were found to be due to significant 
decreases in prominent members of the gut microbiota with 
a significant increase in mice with CP. 

Figure 5 Bacterial composition of the different communities. Relative abundances of the gut microbiota at phylum level (A) and genus level 
(B). CP, chronic pancreatitis mice; CT, control mice.
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Figure 6 Bacterial composition of the different communities in the two groups. (A,B) Plot of unweighted UniFrac principal coordinates 
were scored on the relative abundance of OTU (97% similarity level). Each dot denotes a sample. Blue dots represent the CT group and red 
dots represent the CP group; (C) cladogram of the LDA scores showing the differentially abundant genera; (D) key microbiota contributing 
to the composition of gut microbiota in the fecal samples of the two groups. OTU, operational taxonomic unit; CP, chronic pancreatitis 
mice; CT, control mice; PCoA, principal coordinate analysis; PCA, principal component analysis; LDA, linear discriminant analysis.
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At the microbial community level, gene functions related 
to aerobic, facultative anaerobiosis, and form biofilms 
were increased in the CP group. Anaerobic and gram-
positive species were significantly depleted in CP mice, 
likely owing to the decreased abundance of Lachnospiraceae 

and Ruminococcaceae. CP is a disease characterized by 
maldigestion with malabsorption and malnutrition. Million 
et al. (45) found a depletion of anaerobes in malnutrition. 
In additional, significant enrichment of gram-negative and 
potential pathogenic bacteria were predicted for the group, 
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which were majorly attributed to increase the abundance 
of Bacteroidetes. Therefore, the intestinal microflora of CP 
mice was changed compared with that of healthy mice. 

There are some limitations in our study. First, we 
evaluated only a small number of animals in the CP group, 
limiting our ability to fully characterize the microbiome of 
CP mice. Second, we did not consider to evaluate samples 
of the small intestine. Third, it may be more valuable to 
observe the time course of changes in intestinal microflora 
by the development of CP. Finally, there is no evidence 
for the causal relationship between CP and intestinal flora 
imbalance. 

Conclusions
 

This study indicated that mice with CP had a distinct 
microbiota profile.
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