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Background: The modified early warning score (MEWS) was set up to supply prompt recognition of 
clinically deteriorating patients before they undergo a severe and life-threatening event. The study aimed to 
describe the probable usefulness of the MEWS in identifying deteriorating post-Whipple patients in hospital 
wards. 
Methods: We performed a study to analyze the relationship between the vital parameters and postoperative 
severe adverse events of patients after Whipple surgery in Guangdong Provincial People’s Hospital 
from 2000 to 2017. In the retrospective study, a total of 13,651 sets of vital parameters in 236 Whipple 
postoperative patients were included. Subsequently, we applied a MEWS scoring system and explored the 
accuracy of the MEWS in evaluating the patients’ final events versus advanced mathematical models. We 
then put the MEWS into the ward warning system and confirmed the accuracy of the MEWS based on the 
results of prospective studies again.
Results: We assessed the ability of the MEWS to predict postoperative complications with an accuracy rate 
of 90.86–91.23%, a sensitivity of 83.04–90.88%, and a specificity of 90.85–95.73%.
Conclusions: The MEWS model was applied to identify post-Whipple patients at risk of complication. 
Once the MEWS ≥2, interventions were needed to minimize the adverse events. Our data suggest that the 
MEWS is comparable to the advanced mathematical models, but MEWS is more accessible to perform and 
more generally applicable.
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Introduction

It is challenging to identify ward patients who are in danger 
of deterioration. In the earlier literature, through the 
observation of cases, Goldhill emphasized the importance 
of physiological abnormality as a marker for a person whose 
condition dramatically worsens (1). Thus, the early warning 
system was conceived, and, depending on the actual situation 

in different countries and departments, the modified 
early warning scores (MEWS) was created. Moreover, the 
MEWS is intended to improve communication between 
nursing staff and junior doctors and to respond to patients 
who need to be given immediate priority. Louise indicated 
that adherence to the MEWS protocol is essential (2). Some 
studies have illustrated that the risk of death increased with 
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an increasing MEWS score (3-5). However, Vorwerk voiced 
concerns about the tendency of low MEWS stratification to 
create type II errors (6). 

In a UK cohort study, after the use of MEWS, the 
number of cardiac arrest calls relative to adult hospital 
admissions, the proportion of patients admitted to intensive 
care, and the in-hospital mortality of these patients fell 
dramatically (7). It also found that the early detection 
of deterioration in patients on surgical wards outside 
the intensive care unit (ICU) should be improved by 
introducing an automated MEWS-based system with paging 
functionality (8), while other studies indicated that MEWS 
could enhance patient care and improve the efficient use 
of available clinical resources (9). Overall, the MEWS was 
more suitable for the evaluation of the prognosis of local 
patients than the traditional scale (10).

Our project aimed to predict the occurrence of 
complications in post-Whipple patients based on the 
MEWS. We usually performed Whipple procedure to 
remove a malignant tumor involving the ampulla of Vater, 
the terminal part of the common bile duct, the duodenum, 
or the head of the pancreas. It is also used to remove cystic 
pancreatic neoplasms that may be malignant or chronic 
calcified pancreatitis that causes intractable abdominal pain. 
However, post-Whipple severe complications should not be 
ignored because of the poor prognosis for patients, mainly 
manifested as prolonged discharge time, deteriorating 
condition, transfer to the ICU, or death. Therefore, early 
detection of postoperative complications is a significant 
means for prompt intervention and prevention of adverse 
outcomes.

The goal in our study was to provide the hospital staff 
with more attentions into the value of the MEWS in 
predicting their patients’ prognosis and thereby increase the 
awareness and protocol adherence.

Methods

Research center

The retrospective observational study and prospective 
confirmatory study were conducted in a large urban hospital 
medical center (Guangdong Provincial People’s Hospital) 
where there are 110,000 admissions per annum in China.

Patient choice

In the 183-month inclusion period from January 2000 to 

March 2015, all post-Whipple surgery patients who were 
in the hospital at 07:00/10:00/13:00/16:00/19:00 and in 
the department of general surgery were included. Patients 
18 years and older with more than one overnight stay were 
included. The Ethics Committee of Guangdong Academy 
of Medical Sciences Medical Center approved the study, 
and the necessity for informed consent was waived.

Data collection

According to the protocol, each time the vital parameters 
of the patients were obtained, the nurses were requested 
to record the vital parameters in the electronic system and 
determine the MEWS. The MEWS measurements could 
be repeated any time during the patients’ hospitalization 
by the nurses and doctors, and all the vital parameters were 
used for analysis. The professional investigators checked 
the charts of all included patients and determined whether 
the MEWS was documented and calculated correctly. We 
discarded all the incomplete data sets of vital signs and 
only included the complete set of vital signs measured at 
a given time, including respiratory rate (RR), heart rate 
(HR), systolic blood pressure (SBP), and temperature 
(TEM). Scores were recalculated by investigators using 
available data in the charts. Moreover, we found out all the 
patients’ post-operation regression and then calculated the 
relationship between the scores and the regression. 

Follow-up

If the post-Whipple patients have bleeding, infection, 
pancreatic leakage, bile leakage, intestinal leakage, gastric 
emptying disorder, hypoalbuminemia, ICU admission, or 
died, we defined them has postoperative complications. All 
patients admitted during the study period were followed up 
from admission to final events after inclusion. Also, patients 
were followed up for 30 days after discharge to obtain 
information about the last events.

Advanced models

To further verify the accuracy of the MEWS, we used some 
more advanced models and algorithms for verification. It 
is necessary for a dichotomous problem to judge whether 
the patient with or without adverse events is based on the 
patient’s vital parameters. We divided the database, which 
includes 13,651 sets of vital parameters, into a 75% training 
set (n=10,238) and a 25% test set (n=3,413). By learning 
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the known sample training set, the binary classification 
algorithm finds the classification rules and predict the 
category of new data. At present, there are classification 
algorithms such as support vector machine (SVM), 
backpropagation (BP) artificial neural network (ANN), 
decision tree (DT), and so on.

SVM model
SVM is used to solve the problem of linear separability 
(Figure 1A). If in the case the data is linearly inseparable, 
SVM will move from a low-dimension input space to 
a higher dimension space using a nonlinear mapping 
algorithm (Figure 1B). The use of a higher dimension makes 
a linear analysis of nonlinear characteristics in the sample 

possible. It is also based on the structural risk minimization 
theory to construct the best hyperplane in the feature space 
so that the learner is globally optimized, and the expectation 
in the entire sample space meets specific upper bound with 
some probability. We set up the RR, HR, SBP, and TEM 
as vectors in four different dimensions. Each set of data has 
four different vectors and one outcome variable. 

ANN model
BP ANN is a multilayer feedforward network trained by 
error BP (Figure 1C). Its basic premise is a gradient descent 
method. The basic BP algorithm includes the forward 
propagation of signal and backward propagation of error. 
The error output is calculated in the direction from input to 

Figure 1 Schematic diagram of the advanced mathematical models. (A) Schematic diagram of the LK SVM; (B) schematic diagram of the 
RBFK SVM; (C) BP ANN model predicts exact patient regression based on MEWS. “ω” means weights, “θ” means threshold, “φ” and “ψ” 
means different logical activation function, “ο” means outcome, “i” and “k” means different nodes, m =4, q =5, L =1 in our study; (D) the 
decision tree of the training set. LK, linear kernel; SVM, support vector machine; RBFK, radial basis function kernel; BP, backpropagation; 
ANN, artificial neural network; MEWS, modified early warning score.

Schematic diagram of the LK SVM.
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output, while the weight and threshold are adjusted in the 
direction from output to input. In the forward propagation, 
the input signal acts on the output node through a hidden 
layer. After the nonlinear transformation, the output signal 
is generated. The error BP is transmitted back to the output 
error back layer by layer to the input layer through the 
hidden layer and distributes the error to all the units in each 
segment. By adjusting the connection strength of the input 
node and hidden layer node, and the connection strength 
and threshold value of the hidden layer node and the output 
node, the error decreases along the gradient direction. After 
repeated learning and training, the network parameters 
(weights and thresholds) corresponding to the minimum 
error are determined, and the practice is stopped. At this 
point, the trained neural network can process the non-linear 
transformation information with the minimum output error 
for the input information of similar samples.

A neural network with a single hidden layer is modeled 
using the R language n-net package. Four input layer 
neuron nodes were set according to the four factors of RR, 
HR, SBP, and TEM. A three-layer neural network with a 
hidden layer can already approach any nonlinear function, 
so setting a hidden layer can simplify the calculation process 
of the model and achieve a better prediction effect (the 
number of nodes in a single hidden layer, which called “size” 
is 5). The hidden layer and the output layer use a logical 
activation function. The activation function is a Tansig 
function, and its expression is f(x)=2/(1+e^(-2x) )-1. The 
patient’s critical scores and eventual regression identification 
is a binary classification problem, so the output layer has a 
neuron node.

DT model
DT is a decision analysis method based on the known 
likelihood of various situations. It is used to calculate the 
probability of net present value greater than or equal to zero 
to evaluate project risk and to judge its feasibility. The DT 
consisted of a series of nodes from the top of the tree to the 
root node at the start, and each node is a decision or split 
points. According to the input value a condition is set, if the 
vital parameters meet the conditions, the left or the right 
path is taken. This process continues until the screening of 
all states for all the inner nodes is complete and reaches the 
bottom leaf nodes; the output of a certain value is our forecast 
results. We use the C5.0 algorithm to construct the DT, 
which was evaluated on training data (n=10,238, Figure 1D).  
The system selected size of 13, and of the cases, there are 
about 507 errors that account for 5%.

Statistical analysis

Descriptive characteristics and frequencies were calculated 
in SPSS version 22.0. The SVM, BP ANN, and DT models 
were built and tested using Rstudio 3.5.1 for Windows 64-
bit. Continuous variables are summarized by mean and 
standard deviation since data were distributed normally. 
There was a minute number of untruthful parameters in the 
database, and these parameters were normal.

We defined the RR, HR, SBP, and TEM as four 
variables, and used the SVM, ANN, and DT models to 
analyze the combination between the MaxScores and final 
events in each group’s variables. We take the accuracy, 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), type I error, type II error, 
the area under the curve (AUC) as the evaluation indexes of 
the models.

Prospective confirmatory study

Then from Apr. 2015 to Sep. 2017, we used the MEWS 
to predict the incidence of postoperative complications 
according to the 2,211 integrated vital parameters of 79 
post-Whipple patients, which allowed us to detect and 
intervene in the patients’ abnormalities at once. According 
to the procedure of the retrospective study, we analyzed the 
prospective study in the same way.

Results

Patient characteristics

From January 2000 to March 2015, a total of 236 patients 
comprising 13,651 groups of integrated vital parameters, 
participated in a 183-month inclusion period of historical 
statistics (Figure 2 and Table S1).  

MEWS protocol in our institution

Four basic vital parameters were considered in an easy-
to-use algorithm (Table 1). The range for the MEWS 
was between 0 and 8. We distributed a protocol card and 
extensively trained the staff during the implementation of 
the protocol.

Establishment of Max-MEWS

To determine the largest score of this scale, we used the 
receiver operating characteristic (ROC) curve to observe 



Annals of Translational Medicine, Vol 7, No 20 October 2019 Page 5 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(20):574 | http://dx.doi.org/10.21037/atm.2019.09.24

Figure 2 The frequency distribution of vital parameters in post-Whipple patients in the retrospective study (n=13,651). 

Table 1 MEWS and protocol in Guangdong Provincial People’s Hospital

Vital parameters 2 1 0 1 2

Respiratory rate (breaths/min) <12 – 12–20 – >20

Heart rate (beats/min) <50 50–60 61–100 101–110 >110

Systolic blood pressure (mmHg) <80 80–90 91–140 141–160 >160

Temperature (℃) <35.0 35.0–36.1 36.2–37.2 37.3–38.5 >38.5

1, Determine MEWS→MEWS ≥2 contact clinician on duty; 2, clinician on duty assess patient <30 min and draft a plan for treatment; 3, 
effect of therapy is analyzed <60 min; 4, if no effect of treatment→clinician on duty or nurse contacts the rapid intervention team (RIT); 5, 
Document aberrant parameters in the patient’s charts. MEWS, modified early warning score.

each value (Figure 3) and found that MEWS =2 was the best 
choice (Table S2). Consequently, a total score of 2 or higher 
was considered a critical score. MEWS was calculated by 
hand and electronically documented on the patients’ charts. 
Once a patient reached a critical MEWS (≥2), the nurses 
would contact the doctor on duty at once. The doctor 
would then assess the patient within 30 minutes, and draft a 
plan for treatment, evaluate this within 60 minutes, or call a 
rapid intervention team (RIT).

Measuring and documentation

There was a total of 13,651 sets of data included in the 
retrospective observational study. Figure 4 displays a 
flowchart of the measurement and documentation. After the 
frequency analysis of the data, MEWS was set up according 
to the results obtained, and the number of people with 
different scores and different outcomes was calculated. 
Then we set up the distribution of the confusion matrix 
under MEWS in the retrospective study (Table S3).
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Models calculation

According to Table 2, the prediction accuracy of MEWS is 
up to 90.86%, sensitivity is 90.88%, specificity is 90.85%, 
type I error is 9.15%, and type II error is 9.12%. 

The prediction accuracy of the linear kernel (LK) SVM 
model was about 90.36%, the sensitivity was about 85.97%, 
and the specificity was about 93.27% (Table 2). To improve 
the quality of the SVM model, we used the radial basis 
function kernel (RBFK) SVM model and calculated the 
similar evaluation index (Table 2). The prediction accuracy 
of the RBFK SVM model was about 92.03%, the sensitivity 
was about 87.44%, and the specificity was about 95.08%. 
Finally, we have set up the corresponding confusion matrix 
(Table S4).

The accuracy of the neural network model and other 
indicators are highly volatile and have a wide range of 
fluctuations, and the training time of the model is much 
longer than that of the MEWS. Selecting a neural network 
model with accuracy near the median can represent the 
general situation of the neural network model under the 
existing parameter settings. We ran the BP ANN model 
200 times to get the best solution and get the characteristic 
of each evaluation indicator (Table S5). The prediction 
accuracy of the BP ANN is about 92.56%, and the 
sensitivity is about 89.05%, the specificity is about 94.88%. 

The confusion matrix is obtained on the test set (Table S6). 
In machine learning, a DT is a predictive model that 

represents a mapping relationship between object attributes 
and object values. Because DT is a decision analysis method 
based on the known likelihood of various situations, so 
from the ROC curve and seven indicators, the accuracy, 
sensitivity, specificity, PPV, and NPV of the DT model 
were higher than the other four models, while type I error 
and Type II where are lower than the other four models 
(Table 2 and Figure 5). The DT also gives the corresponding 
confusion matrix (Table S7). We can consider DT as a “more 
advanced MEWS”.

Prospective confirmatory study

We investigated the patient characteristics of the 
prospective study (Table S8) and drew the corresponding 
frequency distribution diagram (Figure 6). Moreover, we 
drew a ROC and calculated each statistical parameter to 
find the optimal solution in the prospective confirmatory 
studies between MEWS, SVM, BP ANN, and DT (Figure 7 
and Table 2). 

Discussion

To able to ignore the individual errors arising from 
measuring vital parameters at various times caused by the 
fluctuation of the diverse human body, we used big data 
to generate a conclusion. At a large, Chinese government 

Figure 3 The ROC curves of different MEWS. ROC, receiver 
operating characteristic; MEWS, modified early warning score.

Figure 4 A flowchart of the measurement and documentation. 
MEWS, modified early warning score; HAE, have adverse events; 
NAE, no adverse events.
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hospital, we used the MEWS to accurately predict 
postoperative outcome in 90.86–91.23% of general surgery 
ward post-Whipple patients. We found that MEWS was 
a sensitive predictor of adverse events in patients; patients 
with a MEWS ≥2 were prone to complications such as 
bleeding, infection, leakage, gastric emptying disorder, 

hypoalbuminemia, and so on. With a MEWS <2, the 
patient usually recovered and was discharged within 2 weeks 
after surgery.

The LK SVM model involves a parameter related to the 
model error budget, called “cost”. According to Table S9,  
we discover that adjusting the cost parameters will not 
fundamentally improve the fitting quality, but significantly 
increase the training cost. Therefore, we take cost =1 and 
build the confusion matrix of the LK SVM. To improve 
the quality of the SVM model, we used a positive gamma 
parameter for nonlinear computing. The gamma parameter 
is used to control the locality of similarity calculated 
between its two vector inputs. If the gamma value is too 
significant, it is easy to produce an amount close to 0, and 
if the gamma value is too small, it is easy to include more 
distant vectors in the calculation. To balance the bias and 
the variance, we take cost =1 and gamma =1 for the RBFK 
SVM model.

Because the neural network contains a random 
component in the form of weight vector initialization, it is 
unlikely to obtain the same result after repeated use of the 
neural network, even if the obtained BP ANN model does 
not converge and cannot be used for the “bi-directional 
early warning study”.

The MEWS we designed judged the four parameters, 
which could be considered as equally essential and then 
sum them up to determine whether the result of the post-
Whipple patients was have adverse events (HAE) or no 
adverse events (NAE). The DT model shows the relative 
importance of four indexes in the classification process step 

Figure 5 The ROC of the five models in the retrospective 
observational study. ROC, receiver operating characteristic; 
MEWS, modified early warning score; LK, linear kernel; SVM, 
support vector machine; RBFK, radial basis function kernel; BP, 
backpropagation; ANN, artificial neural network.

Table 2 The relevant evaluation indexes of MEWS, SVM, BP ANN, and DT models were evaluated

Statistical  
parameters 

Retro-MEWS
Retro-LK 

SVM
Retro-RBFK 

SVM
Retro-BP 

ANN
Retro-DT Pro-MEWS Pro-LK SVM

Pro-RBFK 
SVM

Pro-BP 
ANN

Pro-DT

Accuracy 0.9086 0.9036 0.9203 0.9256 0.9499 0.9123 0.8856 0.9154 0.9177 0.9561

Sensitivity 0.9088 0.8597 0.8744 0.8905 0.9353 0.8304 0.7653 0.7870 0.8138 0.9056

Specificity 0.9085 0.9327 0.9508 0.9488 0.9596 0.9573 0.9516 0.9860 0.9748 0.9839

PPV 0.8679 0.8945 0.9218 0.9203 0.9388 0.9143 0.8969 0.9686 0.9466 0.9686

NPV 0.9379 0.9093 0.9194 0.9289 0.9572 0.9113 0.8807 0.8939 0.9050 0.9499

Type I error 0.0915 0.0673 0.0492 0.0512 0.0404 0.0427 0.0484 0.0140 0.0252 0.0161

Type II error 0.0912 0.1403 0.1256 0.1095 0.0647 0.1696 0.2347 0.2130 0.1862 0.0944

AUC 0.9028 0.9019 0.9206 0.9246 0.9480 0.9128 0.8888 0.9313 0.9258 0.9593

MEWS, modified early warning score; LK, linear kernel; SVM, support vector machine; RBFK, radial basis function kernel; BP,  
backpropagation; ANN, artificial neural network; DT, decision tree; PPV, positive predictive value; NPV, negative predictive value; AUC, 
area under the curve.
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by step. If the degree of RR1 used is considered 100%, then 
the degrees of SBP1, HR1, and TEM1 used are 68.40%, 
51.00%, and 8.79%, respectively. As can be seen from the 
DT graph, RR1 is more often used than other indexes 
in the classification process. The DT is similar in form 
to MEWS, and it judges the range based on each index 
value, and then makes the next step. However, the DT also 
considers the importance between the different indexes in 
the classification process, so it has high prediction accuracy.

We used f ive models  to evaluate retrospect ive 
observational studies, so we drew a ROC to find the best 
solution between MEWS, SVM, BP ANN, and DT. It is 
clear that the MEWS was the easiest to use, and its AUC on 
the test set was equal to that of the LK SVM (about 90%). 
The accuracy of RBFK SVM and BP ANN models on the 
test set (about 92%) was higher than that of the MEWS, 
but from the perspective of sensitivity, the MEWS had the 
highest sensitivity of the four models above. The DT had 
both the high prediction accuracy and specificity of LK 
SVM, RBFK SVM, and BP ANN and the high sensitivity 
of the MEWS model. However, the simplicity of the DT 
model was still not as good as the MEWS in real-time 

Figure 6 The frequency distribution of vital parameters in the prospective study (n=2,211).

Figure 7 The ROC of the five models in the prospective 
confirmatory study. ROC, receiver operating characteristic; 
MEWS, modified early warning score; LK, linear kernel; SVM, 
support vector machine; RBFK, radial basis function kernel; BP, 
backpropagation; ANN, artificial neural network.
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processing, and some decision paths (from the root node to 
leaf node) of the DT model reuse the same variable, which 
also reduces the convenience of use.

Five models were trained from the retrospective 
observational study data set, and it was concluded that 
the MEWS was workable and straightforward, with high 
accuracy and sensitivity at the same time.

In prospective confirmatory studies, as an advanced 
MEWS, the DT still performed well among the statistical 
parameters. In contrast, LK SVM was the least correct in 
predicting post-Whipple complications of the five models 
in prospective studies. It is worth mentioning that RBFK 
SVM had the highest specificity (98.60%, followed by DT 
98.39%) and the lowest type I error (1.40%, followed by 
DT 1.61%) in prospective studies. However, this was not 
our primary outcome measure, because our focus in setting 
up a MEWS was to identify patients with a potential risk of 
post-Whipple complications, rather than patients without 
postoperative complications but with intensive intervention. 
Therefore, the scale we designed should have high 
sensitivity and a lower type II error. The MEWS was in 
line with our expectations, with a high sensitivity of 83.04% 
and a small type II error of 16.96%, only inferior to DT 
and leading the other three advanced mathematical models. 
DT is still the most correct model that best conforms to the 
prediction of post-Whipple complications of patients due 
to its unique advantages of enumerating all permutations. 
However, there is no doubt that the use of DT has a high 
technical threshold and computing cost. The MEWS, with 
its simple and convenient operation, high sensitivity, and 
low type II errors comparable to the advanced mathematical 
models, will be the preferred model for medical staff to 
identify patients with postoperative complications in the 
first instance from the hospital bed.

The strengths of our study include its ambispective 
and observational design, and a large number of patient 
samples examined. We applied the MEWS across all adult 
post-Whipple surgical patients in Guangdong’s largest 
government hospital, where the burden of illness, patient 
volume, and limited resources underscore the immense 
challenges of delivering added attention and management 
of medical personnel.  

The study has several limitations. We evaluated only one 
significant adverse outcome: the presence of postoperative 
complications. Other studies of early warning scores among 
hospital inpatients have evaluated specific patient-important 
outcomes, including ICU admission and cardiac arrest. 
Moreover, our object of study was limited to post-Whipple 

patients in the general surgery ward. If we had extended 
the scoring to patients from more departments and more 
disease types, the results would be more useful, but this was 
not feasible due to resource restrictions. However, about 
5% of a large number of patients in our department has 
required Whipple surgical treatment in recent years, so 
this study is of great significance in guiding perioperative 
patient management of Whipple surgery in general surgery 
wards around the world.

In published papers, most of the studies are retrospective 
analyses (3,7,8,10-13), and only a few are prospective 
studies (14-16). Most of the current publications are still 
used to assess whether patients need to be transferred to the  
ICU (14), and some of them are used for predicting 
the outcome of in-hospital cardiac arrest (12). Age was 
associated with an increase in the risk of death, and being 
on a medical ward rather than a surgical ward was associated 
with an increase in the risk of death (3). End-tidal CO2 
(EtCO2) was another independent predictor of critical 
illness (17). The MEWS from all over the world have a 
sensitivity which generally fluctuates between 72.4% and 
95.5%, and a specificity which fluctuates between 83.0% 
and 90.8% (11,14,16).

Timely identification of critical illness is a vital step 
towards establishing its overall burden in low-resource 
settings. This step can lay the foundation to evaluate 
interventions that minimize morbidity and mortality. 
Although Churpek’s team found that several machine 
learning methods were more accurate for predicting clinical 
deterioration on the wards (18), guidelines and protocols 
used in high-income settings can be challenging to translate 
to settings with fewer resources, diverse patient populations, 
and various disease phenotypes. The MEWS, a simple 
scoring system formed of patients’ vital signs, is an approach 
that can perform measurements at the bedside with minimal 
resources.

Conclusions

Our study performed in a real-life setting, and we proved 
that a MEWS ≥2 was a strong predictor of adverse events 
in post-Whipple patients. Also, we assessed the ability 
of MEWS to predict postoperative complications with 
an accuracy rate of 90.86–91.23%, a sensitivity of 83.04–
90.88%, and a specificity of 90.85–95.73%. The results 
attest to the reliability of our MEWS as a screening tool. 
In comparison to similar studies around the world, our 
study used both retrospective observational studies and 
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prospective confirmatory studies.
Additionally, most studies have previously focused on 

the use of MEWS to assess criteria for patient access to the 
ICU, and we are the first international study to predict and 
check postoperative complications. Moreover, we used a 
tremendous amount of data, and the data we included came 
from different time points during the hospitalization of 
patients. This is also the first international study of MEWS 
using the data of vital signs measured at random times, 
which makes the clinical application more accessible and 
more efficient. Finally, our project is the first attempt to use 
MEWS as a prognostic indicator in postoperative patients. 
It is inexpensive, convenient, and less invasive than any 
scoring system used in other papers. The predictive values 
of MEWS in this study are comparable to the advanced 
mathematical models, but MEWS is more convenient, 
accessible, and more applicable.
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Supplementary

Table S1 Patient characteristics in retrospective study

Patient characteristics Value

Characteristic proportion (n=236), %

Gender1 (man:woman) 58.5:41.5

Diagnose1 (pancreatic cancer:  
periampullary carcinoma:neither)

25.8:60.6:13.6

Characteristic parameters (n=236), mean ± SD

Age1 (years) 57.97±11.12

Preoperative TB1 (μmol/L) 122.17±116.77

Postoperative TB1 (μmol/L) 45.74±41.18

Preoperative WBC1 (×109/L) 13.84±5.10

Postoperative WBC1 (×109/L) 10.67±5.86

Preoperative RBC1 (×1012/L) 3.54±0.66

Postoperative RBC1 (×1012/L) 3.43±0.51

Preoperative Hb1 (g/L) 105.61±20.91

Postoperative Hb1 (g/L) 98.28±22.80

Preoperative ALB1 (g/L) 28.78±19.45

Postoperative ALB1 (g/L) 35.05±9.92

Preoperative GLU1 (mmol/L) 10.55±4.01

Postoperative GLU1 (mmol/L) 7.34±3.57

Vital parameters (n=13,651), mean ± SD

RR1 (breaths/min) 20.25±4.48

HR1 (beats/min) 87.64±18.85

SBP1 (mmHg) 125.44±24.94

TEM1 (℃) 37.16±0.88

SD, standard deviation; TB, total bilirubin; WBC, white blood 
cell count; RBC, red blood cell count; Hb, hemoglobin; ALB, al-
bumin; GLU, glucose; RR, respiratory rate; HR, heart rate; SBP, 
systolic blood pressure; TEM, temperature.

Table S2 A comparison between the MEWS =2 and MEWS =3

Statistical parameters MEWS =2 MEWS =3

Sensitivity 0.9088 0.7288

Specificity 0.9085 0.9682

Accuracy 0.9086 0.8729

Area under curve (AUC) 0.9028 0.8909

MEWS, modified early warning score.

Table S3 The distribution of the confusion matrix under MEWS 
in the retrospective study (n=13,651)

MEWS MEWS ≥2 MEWS <2 Total

HAE 4,940 496 5,436

NAE 752 7,463 8,215

Total 5,692 7,959 13,651

MEWS, modified early warning score; HAE, have adverse 
events; NAE, no adverse events.

Table S4 The distribution of the confusion matrix of the LK SVM 
and RBFK SVM models under the test set (n=3,413)

Outcomes
LK SVM RBFK SVM

Pred-HAE Pred-NAE Pred-HAE Pred-NAE

HAE 1,170 191 1,190 171

NAE 138 1,914 101 1,951

LK, linear kernel; SVM, support vector machine; RBFK, radial 
basis function kernel; HAE, have adverse events; NAE, no 
adverse events.

Table S5 The characteristic of each evaluation indicator is shown in BP ANN model (n=10,238)

Statistical parameters Accuracy Sensitivity Specificity PPV NPV Type I error Type II error

Median 0.9256 0.8935 0.9493 0.9209 0.9306 0.0507 0.1065

Mean 0.9194 0.8737 0.9497 0.9215 0.9244 0.0503 0.1263

Min 0.6015 0.0007 0.8728 0.6217 0.6014 0 0.0720

Max 0.9517 0.9280 1 1 0.9529 0.1272 0.9993

BP, backpropagation; ANN, artificial neural network; PPV, positive predictive value; NPV, negative predictive value.  



Table S6 The distribution of the confusion matrix under the BP 
ANN model of the test set (n=3,413)

BP ANN Pred-HAE Pred-NAE

HAE 1,212 149

NAE 105 1,947

BP, backpropagation; ANN, artificial neural network; HAE, have 
adverse events; NAE, no adverse events.

Table S7 The distribution of the confusion matrix under the DT 
model of training the set (n=10,238)

Decision tree Pred-HAE Pred-NAE

HAE 3,821 254

NAE 253 5,910

DT, decision tree; HAE, have adverse events; NAE, no adverse 
events.

Table S8 Patient characteristics in prospective study

Patient characteristics Value

Characteristic proportion (n=79), %

Gender2 (man:woman) 58.2:41.8

Diagnose2 (pancreatic cancer:  
periampullary carcinoma:neither)

30.4:41.8:27.8

Characteristic parameters (n=79), mean ± SD

Age2 (years) 60.18±11.54

Preoperative TB2 (μmol/L) 83.19±79.85

Postoperative TB2 (μmol/L) 50.15±50.11

Preoperative WBC2 (×109/L) 12.16±4.86

Postoperative WBC2 (×109/L) 10.05±3.77

Preoperative RBC2 (×1012/L) 3.93±0.66

Postoperative RBC2 (×1012/L) 3.62±0.48

Preoperative Hb2 (g/L) 113.71±16.53

Postoperative Hb2 (g/L) 106.30±14.10

Preoperative ALB2 (g/L) 32.68±5.00

Postoperative ALB2 (g/L) 36.16±5.36

Preoperative GLU2 (mmol/L) 9.13±3.41

Postoperative GLU2 (mmol/L) 9.05±3.85

Vital parameters (n=2,211), mean ± SD

RR2 (breaths/min) 19.97±4.31

HR2 (beats/min) 80.86±17.71

SBP2 (mmHg) 123.10±22.28

TEM2 (℃) 36.80±0.74

SD, standard deviation; TB, total bilirubin; WBC, white blood 
cell count; RBC, red blood cell count; Hb, hemoglobin; ALB, 
albumin; GLU, glucose; RR, respiratory rate; HR, heart rate; 
SBP, systolic blood pressure; TEM, temperature. 

Table S9 Different statistical parameters under different cost parameters

Statistical parameters 0.01 0.1 1 10 100 1000

Training accuracy 0.900566517 0.900957218 0.901640945 0.90134792 0.90154327 0.90134792

Test accuracy 0.900966891 0.90331087 0.903603868 0.903603868 0.903603868 0.90448286

Sensitivity 0.850844967 0.857457752 0.859662013 0.859662013 0.859662013 0.859662013

Specificity 0.934210526 0.933723197 0.932748538 0.932748538 0.932748538 0.934210526


