
Page 1 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(20):540 | http://dx.doi.org/10.21037/atm.2019.10.16

Original Article

Downregulation of HSPA2 inhibits proliferation via ERK1/2 
pathway and endoplasmic reticular stress in lung adenocarcinoma

Longxiang Cao, Xiaoshuai Yuan, Feichao Bao, Wang Lv, Zhehao He, Jie Tang, Jia Han, Jian Hu

Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China

Contributions: (I) Conception and design: L Cao, X Yuan; (II) Administrative support: W Lv, J Hu; (III) Provision of study materials or patients: W 

Lv, F Bao; (IV) Collection and assembly of data: F Bao, W Lv, Z He, J Tang; (V) Data analysis and interpretation: L Cao, X Yuan, F Bao, W Lv, Z 

He; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Jian Hu. Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 

310003, China. Email: dr_hujian@zju.edu.cn.

Background: To explore the mechanisms of HSPA2 downregulation in inhibiting the proliferation of lung 
adenocarcinoma.
Methods: We obtained 85 specimens of human lung adenocarcinoma and specimens of adjacent nontumor 
tissues from the First Affiliated Hospital, School of Medicine, Zhejiang University. We then analyzed the 
expression of HSPA2 in these tissues and in lung adenocarcinoma and normal lung cell lines. Human lung 
adenocarcinoma cell lines were transfected with siRNA silencing HSPA2 and subjected to colony forming, 
Thiazolyl blue tetrazolium bromide (MTT), propidium iodide flow cytometry, immunofluorescence assay 
and western blotting to explore the causes of the reduction in the proliferation of lung adenocarcinoma 
cells and the endoplasmic reticulum stress induced by HSPA2 downregulation. Finally, we confirmed these 
mechanisms via rescue assay.
Results: Greater HSPA2 expression was found in the lung adenocarcinoma specimens than in the 
specimens of adjacent nontumor tissues, and greater expression was found in lung adenocarcinoma cell 
lines than in normal cell lines. HSPA2 knockdown via siRNA reduced proliferation and led to G1/S phase 
cell cycle arrest in the lung adenocarcinoma cell lines. G1/S phase cell cycle arrest triggered by HSPA2 
downregulation could be attributed, at least in part, to phosphorylation and activation of the Erk1/2 pathway 
and probably to activation of IRE1α/PERK-mediated endoplasmic reticulum stress.
Conclusions: HSPA2 plays an important role in the origin and development of lung adenocarcinoma. It is 
thus deserving of further study as a promising clinical therapeutic target.
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Introduction

Malignant tumors are among the most horrible diseases of 
the 21st century, and lung cancer is the most commonly 
diagnosed cancer and the leading cause of cancer death (1).  
Most lung cancer diagnoses (85%) are non-small cell lung 
cancer (NSCLC) (2), including lung adenocarcinoma. The 
5-year survival estimates for NSCLC range from 73% 

for stage IA disease to 13% for stage IV disease (3). The 
increasing morbidity rates of lung adenocarcinoma has led 
to a relative flood of research.

HSPA2 is a variant in the HSP70 family and it is an 
essential in spermiogenesis. In oncology research, HSPA2 
was first reported in renal cell carcinoma (4). Several studies 
have shown that HSPA2 plays important roles in the cell 
growth and proliferation of hepatocellular carcinoma, 
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nasopharyngeal carcinoma, esophageal squamous cell 
carcinoma, NSCLC, pancreatic ductal adenocarcinoma, 
colorectal carcinoma and breast carcinoma (5-10). Increased 
expression of HSPA2 was significantly related to a shorter 
overall duration of survival in patients with stage I-II 
carcinoma (7). 

However, unlike other members of the HSP70 family, the 
function of HSPA2 in carcinogenesis and the development 
of lung cancer has rarely been reported. We thus explored 
the role of HSPA2 in lung cancer cell proliferation to 
determine how the downregulation of HSPA2 inhibits the 
proliferation of lung adenocarcinoma cells via multiple 
mechanisms.

Methods

Patients and tissue specimens

Eight- f ive  c l in ica l  pathology spec imens  of  lung 
adenocarcinoma tissue and matched adjacent nontumor 
tissue were collected from the Department of Thoracic 
Surgery, the First Affiliated Hospital, School of Medicine, 
Zhejiang University with the approval of Research Ethics 
Committee of the First Affiliated Hospital, College 
of medicine, Zhejiang University. The procedure was 
conducted in accordance with the 1964 Declaration of 
Helsinki and its later amendments or comparable ethical 
standards. All patients had given signed informed consent. 
The specimens of adjacent nontumor tissue for each patient 
were obtained more than 3 cm from carcinoma tissue. 

Cell lines and cell culture

We used human lung adenocarcinoma cell lines (including 
A549, H1975, and H292), human bronchial epithelium, 
and human embryonic lung fibroblasts (MRC-5) for our 
experiments. All cell lines were acquired from the Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China). 
They were cultured at 37 ℃ in a humidified atmosphere 
(Thermo Fisher Scientific) in the presence of 5% CO2 - 
95% air and were grown in RMPI-1640 supplemented with 
10% Fetal Bovine Serum (FBS). 

Real-time PCR

Total RNA was extracted from tissues by TRIzol reagent 
(Invitrogen Life Technologies) and used to synthesize 
cDNA (Bio-Rad, Hercules, CA, USA). Real-time PCR was 

performed according to standard protocols.

Transfection of HSPA2 siRNA and overexpressing plasmid

The cells were plated in six-well plates and allowed to 
attach overnight. With the application of lipofectamin2000, 
HSPA2 siRNA sequenced and overexpressing plasmid was 
transfected into A549 and H1975 cell lines to knockdown 
or overexpress the HSPA2 gene respectively.

Colony formation assay and MTT assay

After the cells being transfected as needed, colony 
formation assay was performed in six-well plates with cell 
culture for 14 days without disturbance. We washed the 
media in triplicate with phosphate-buffered saline (PBS) 
solution followed by 0.1% crystal violet for 15 minutes.

We seeded A549 and H1975 cells (being transfected as 
needed) into 96-well plates at 80% to 90% subconfluence. 
MTT was added to the medium for 3 hours of incubation 
after 24, 48, and 72 hours of incubation. The cell culture 
medium was then mixed with 150 μL of dimethyl sulfoxide 
for 10 minutes, and the optical absorbance was measured at 
490 nm.

Immunofluorescence assay

We performed transfection in culture dishes and labeled 
ER with ER-Tracker™ Green dyes (Invitrogen Life 
Technologies) according to the instructions of the 
manufacturer. Washed the cell for three times with PBS for 
5 minutes and visualized at room temperature using a Carl 
Zeiss microscope (Carl Zeiss AG, Jena, Germany). The 
exposure times between treatments were consistent and the 
brightness and contrast of the images were adjusted using 
Adobe Photoshop software (Adobe Systems Inc., San Jose, 
CA, USA) for presentation.

Cell cycle assay

We performed flow cytometry according to standard 
protocols of DNA staining solution (Multisciences Biotech 
Co., Ltd., China). After transfection, the cells were collected 
and washed with PBS. The cell pellets were obtained by 
centrifugation and the supernatant was discarded. Then 
added 1 mL of DNA staining solution incubated the cell 
samples for 30 minutes at room temperature in the dark for 
the flow cytometry.
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Western blot

The cells were sonicated in the proper amount of 
radioimmunoprecipitation assay buffer, and 20 μg of protein 
was resolved on 12% polyacrylamide sodium dodecyl sulfate 
gels. The proteins were then transferred to polyvinylidene 
difluoride membranes, which were blocked with 3% 
bovine serum albumin in Tris-buffered saline-Tween 20. 
The membranes were incubated successively with the 
corresponding primary antibodies and secondary antibodies. 
Finally, the proteins were visualized with chemiluminescent 
horseradish peroxidase substrate.

Statistical analysis

All experiments were performed in triplicate, and the results 
were analyzed with GraphPad Prism 7.0. P values of less 
than 0.05 were considered to indicate statistical significance.

Results

HSPA2 showed greater expression in tissue and cell lines 
of lung adenocarcinoma than in adjacent nontumor tissue 
and normal cells

We applied qRT-PCR to measure tissue specimens from 
85 patients. Every column represented one patient, and 
the A/C ratio indicated the ratio of PCR results between 
group A (adjacent nontumor tissues) and group C (lung 
adenocarcinoma tissues). The qRT-PCR results of 
demonstrated that HSPA2 showed greater expression in 
lung adenocarcinoma tissues than in the adjacent nontumor 
tissues (Figure 1A).

Western blotting showed that the lung adenocarcinoma 
cell lines had a significantly higher expression level of 
HSPA2 than the human bronchial epithelium and MRC-5 
cell lines (Figure 1B).

Knockdown of HSPA2 reduced proliferation of 
adenocarcinoma cells

Selection of an effective siRNA sequence to knock 
down HSPA2 gene expression
We found siRNA sequence no.1532 to be the most effective, 
so it was applied in the subsequent experiments (Figure 2A).

Knockdown of HSPA2 reduced proliferation of A549 
and H1975 cells
MTT assay and colony formation assay demonstrated that 
knockdown of HSPA2 reduced the proliferation of A549 
and H1975 cells (Figure 2B,C).

Knockdown of HSPA2 induced G1/S phase cell cycle arrest 
of A549 and H1975 cells

The results of flow cytometry show that G1 phase cell 
increased and G2 phase cell decreased in the HSPA2 
knockdown group of A549 and H1975 cell lines (Figure 3A). 
These results indicated that knockdown of HSPA2 induced 
G1/S phase cell cycle arrest.

Cell cycle regulation proteins, including CDK4, cyclin 
D1, cyclin D3, and cyclin E1, showed reduced expression 
in the HSPA2 knockdown group. G1/S phase checkpoint 
protein p-Rb(S795) and p-Rb(S807/811) were also 
downregulated, whereas Rb protein showed no significant 
difference between the two groups (Figure 3B).
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Figure 1 Expression of HSPA2 was higher in tissue and cell lines of 
lung adenocarcinoma. (A) Expression level comparison of HSPA2 in 
lung adenocarcinoma specimens and specimens of adjacent nontumor 
tissue. HSPA2 expression was greater in the lung adenocarcinoma 
specimens than in those of adjacent nontumor tissue. The denary 
logarithms of the A/C ratio (C indicates the expression of HSPA2 
in cancer tissue, and A indicates the expression of HSPA2 in the 
adjacent nontumor tissue, all with ∆CT value) are shown from low to 
high. Negatives showed greater expression in lung adenocarcinoma 
specimens than in those of adjacent nontumor tissues. (B) Expression 
level comparison of HSPA2 in lung adenocarcinoma and normal cell 
lines. Western blot result shows greater HSPA2 expression in lung 
cancer cell lines (A549, H1975, H292) than in normal lung cell lines 
(human bronchial epithelium, MRC-5).
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Knockdown of HSPA2 activated Erk1/2 signaling 
transduction pathway and Erk1/2 inhibitor rescue 
experiment

We found an increased phosphorylation level of Erk1/2 
protein in both A549 and H1975 cell lines. The total 
protein level, relative protein level of STAT3, and the 
Akt pathway remained stable (Figure 4A). We presumed 
that HSPA2 could participate in the Erk1/2 cell signal 
transduction pathway. Activation of the Erk1/2 pathway 
induces cell cycle arrest in lung adenocarcinoma.

To confirm the former result, we rescued the G1/S phase 
cell cycle arrest by 24-hour treatment with Selumetinib 
(specific phosphorylation Erk1/2 inhibitor) after HSPA2 
knockdown in A549 and H1975. Figure 4B shows that 
Selumetinib was able to rescue cell cycle arrest of A549 and 
H1975 cells.

Knockdown of HSPA2 enhanced ER stress in A549 and 
H1975 cells

Immunofluorescence
We hypothesized that organelles may participate in the 
process of G1/S phase arrest induced by HSPA2 knockdown. 

We thus selected a specialized endoplasmic reticulum (ER) 
marker to stain the ER of A549 and H1975 transfected by 
HSPA2 siRNA or blank siRNA. We then observed them 
via laser confocal microscopy (LCM). Immunofluorescence 
demonstrated greater signal enhancement in the HSPA2 
knockdown group than in the control group (Figure 5A), 
which indicates an increase in ER stress (11). These results 
confirmed our hypothesis.

Western blot
We focused the ER stress signaling pathway protein (ATF6, 
IRE1α, PERK) and Bip (modulin of IRE1α protein). Western 
blotting showed that an increase in the expression levels of 
IRE1α and PERK and a decrease in Bip (Figure 5B).

Rescue assay via HSPA2 knockdown and overexpression 

We observed the expression levels of HSPA2, CDK4, cyclin 
D1, cyclin D3, cyclin E1, p-Rb(S795), p-Rb(S807/811), 
p-Erk1/2, IRE1α ,  PERK, and Bip in the previous 
experiments. HSPA2 overexpressing plasmid was applied in 
A549 cell line. By comparing the changing protein levels in 
the control group (Con), the knockdown group (KD), the 
overexpression group (OE), and the rescue group (KD + 

Figure 2 Knockdown of HSPA2 reduced proliferation of adenocarcinoma cells. (A) Effects of HSPA2 siRNA on the expression of HSPA2. 
Western blot analysis demonstrates the effect of HSPA2 siRNA transfection on HSPA2 expression in A549 and H1975 cells. (B) HSPA2 
knockdown reduced the proliferation of A549 and H1975 cells by MTT assay. The values obtained from the transfected and control cells 
represent the mean ± SD of three independent experiments. (C) HSPA2 knockdown reduced the proliferation of A549 and H1975 cells by 
representative colony formation assay. *P<0.05.
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Figure 3 Knockdown of HSPA2 induced G1/S phase cell cycle arrest. (A) HSPA2 knockdown induced the G1/S phase cell cycle arrest of 
A549 and H1975 cells. Cell cycle profiles of A549 and H1975 cells transfected with HSPA2 siRNA and control cells were determined by 
flow cytometry and error bars. Cell count versus PI staining is shown (10,000 per treatment). (B) HSPA2 knockdown induced the change 
of G1/S phase regulation and checkpoint proteins of A549 and H1975 cells. Western blot analysis of G1/S phase cell cycle regulation and 
checkpoint proteins with A549 and H1975 cell transfected with HSPA2 siRNA and control cells are shown. *, P<0.05.
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Figure 4 Knockdown of HSPA2 activated Erk1/2 signaling transduction pathway. (A) Downregulation of HSPA2 related with Erk1/2 
signaling transduction pathway and c-Myc protein. Western blot analysis of proteins in pathways involved in cell cycle regulation with 
A549 and H1975 cells transfected with HSPA2 siRNA and control cells. (B) Verification of the finding that HSPA2 knockdown triggers the 
activation of the Erk1/2 pathway. Cell cycle profiles of A549 and H1975 cells with or without HSPA2 knockdown or Selumetinib (1 μM) and 
error bars were determined by flow cytometry. *, P<0.05.

OE), we confirmed the conclusion that downregulation of 
HSPA2 inhibits proliferation via the ERK1/2 pathway and 
ER stress in lung adenocarcinoma (Figure 6).

Discussion

Ferrucio Ritossa proposed the existence of the heat shock 
response in the 1960s (12). It is now recognized that the 
heat shock response is widespread in most kinds of species 
and that cells surrounding the exchanging protein structure 
would show a heat shock response. A major characteristic of 
the heat shock response is that it encodes the gene signals of 
heat shock protein (HSPs) and then induces and amplifies 
the follow-up biological response. Heat shock response 
decreases the negative effect by means of environmental or 
endogenous molecular stress (13). 

Molecular chaperone HSPs control protein folding to 
participate in the intracellular balance. Some HSPs serve as the 
molecular chaperones of other hyperspecialization proteins, 
such as signal transduction proteins and transcription factors. 

Some HSPs show resistance to apoptosis and participate 
in some cellular immune responses (14). These findings 
have attracted scholars to study and induced lots of clinical 
applications.

The largest family of HSPs is the HSPA (HSP70) family, 
which belongs to the human protein group (15). HSPA2 is 
a variant of this family. It was first found in testicular tissue 
and is highly expressed in pachytene stage spermatocytes in 
rodents. We therefore regard HSPA2 as a specific expression 
protein of the testes (16).

HSPA2 protein is thought to be abnormally expressed 
in lung alveolar carcinoma (17). The construction of 
HSPA2 protein directly influences its regulated function in 
the progression of lung cancer (18). Biomarkers (7,19,20) 
and polymorphism (21) analysis have been the main 
achievements of HSPA2 research for lung cancer, but studies 
of the mechanism are rare. In 2016, Chang et al. showed 
interaction between HSPA2 and JAG1, one of the ligands in 
the Notch pathway. The improved transcriptional level of 
JAG1 was related with HSPA2, and both participated in the 
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process of malignant transformation of lung cancer (22). We 
have found no further studies of the mechanism of HSPA2 
function in lung adenocarcinoma.

In this study, we observed HSPA2 expression in lung 
adenocarcinoma tissue and relative cell lines. Our results 
show greater HSPA2 expression in the lung adenocarcinoma 
specimens than in the adjacent nontumor tissues, which was 
confirmed by western blot of the cell lines.

The proliferation of lung adenocarcinoma cell lines (A549 
and H1975) decreased after HSPA2 knockdown, which was 
induced by G1/S phase cell cycle arrest as the expression 
of relative protein in the G1/S phase cell cycle changed 
accordingly. After downregulation of HSPA2, western 
blotting showed increasing phosphorylation of Erk1/2. 
The extracellular signal–regulated kinase ERK1 and ERK2 
(ERK1/2) cascade regulates a variety of cellular processes 
via phosphorylation of multiple target proteins. The 
outcomes of its activation range from stimulation of cell 
survival and proliferation to triggering of tumor suppressor 
responses such as cell differentiation, cell senescence, and 
apoptosis (23). The hyperphosphorylation of Erk1/2 protein 
could promote cell cycle arrest by regulating p16 (24),  
p21 (25), and p27 (26), which are common inhibitors of 
G1/S cyclin-dependent kinase. The function of increasing 
the phosphorylation level of Erk1/2 protein in cell cycle 
regulation was consistent with our results.

The ER is the major site of protein synthesis and 
transport in eukaryotic cells and can transport abnormal 
proteins to the cytoplasm. Those proteins were degraded 
by proteasome via ER-associated degradation. A disorder 
of ER-associated degradation would induce ER stress and 
trigger the unfolded protein response. IRE1α, PERK, and 
ATF6 protein represent three branches of the unfolded 
protein response (27). Studies of ER stress in the regulation 
of tumor cell cycle arrest have been reported (28,29). 
Meanwhile, the functions of HSPs in ER stress have been 
frequently studied (30-34). However, the relationship 
between HSPA2 and ER stress remains unknown. Our 
study shows that upregulation level of IRE1α and PERK 
protein in the HSPA2 knockdown group is comparable with 
that in the control group. It is worth noting that the Erk1/2 
cascade have a reported relationship with ER stress. Erk1/2 
has been intimately linked with the IRE1α and PERK stress 
pathway. Erk1/2 protein activation was inhibited after ER 
stress and IRE1α pathway activation, but the mechanism 
was unclear (35). A similar phenomenon has been observed 
in gastric cancer cells, in which activation of Erk1/2 
inhibited Bip protein in the IRE1α pathway, after which 

apoptosis was induced by ER stress (36).
The activation of Erk1/2 mediated phosphorylation 

of CHOP (downstream of the PERK pathway). This 
process could change the activity of its own transcriptional 
activation domain, subsequently changing its affinity with 
the binding protein and ultimately leading to changes 
in the gene expression profiles (37). In a study of HeLa 
cells, Erk1/2 also played an important role in the process 
of apoptosis induced by the high expression level of 
CHOP, and Erk1/2 also mediated the phosphorylation of  
CHOP (38). It remains uncertain which genes were 
dependent on CHOP phosphorylation and were responsible 
for alteration of the cellular phenotype associated with 
triggering the subsequent progression of cell apoptosis.

Therefore, when the downregulation of HSPA2 
induces ER stress, crosstalk may occur with the high 
phosphorylation level of Erk1/2. Erk1/2 activation leading 
to ER stress or ER stress happening before Erk1/2 protein 
phosphorylation require further study, and the relationship 
between ER stress and the cell cycle requires further 
discussion.

Conclusions

We observed greater expression of HSPA2  in lung 
adenocarcinoma tumor tissues and cell lines than in the 
adjacent nontumor tissues and normal cell lines. It was 
confirmed that HSPA2 gene silencing effectively inhibited 
the proliferation of lung adenocarcinoma cell lines. HSPA2 
gene silencing led to the G1/S phase arrest of A549 and 
H1975 cells. It was demonstrated that HSPA2 caused G1/
S phase arrest in A549 and H1975 cells via regulation of the 
Erk1/2 pathway and by triggering ER stress, thus inhibiting 
the proliferation of A549 and H1975 cells. We confirmed, 
for the first time, that HSPA2 plays an important role in 
the occurrence and development of lung adenocarcinoma. 
It is thus worthy of further study as a promising clinical 
therapeutic target.
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