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With the advancement in immunotherapy and high-
throughput technologies, tumor infiltrating lymphocytes 
(TILs) have become an important research topic in several 
diseases, especially different cancers. TILs are lymphoid 
cells, including T-cells and B-cells, that can infiltrate 
solid tumor cells and trigger immune responses from the 
individual. Unsurprisingly, the prognostic effects that TILs 
showed in cancer patients can be traced back to the 1980s (1).  
At that time, identification of TILs relied on examining the 
pathology slides of tumor tissues resected from patients; 
this is still a standard approach to analyze TILs in clinics. 
However, the labor-intensive nature and associated high 
costs of this approach make it impractical to use on a large-
scale investigation with a large number of patients.

In recent decades, high-throughput genomic technologies, 
such as microarray and next-generation sequencing 
(NGS), allow researchers to simultaneously examine the 
expression level of the whole transcriptome in one patient 
within a short timeframe and at a relatively low cost. 
Consequently, many algorithms and statistical models have 
been developed to use the expression profiles of selected 
genes to calculate the expression levels of TILs (2-4).  
A detailed discussion and review of different algorithms was 
described previously (5). Since most transcription profiles in 
the public domain were still from microarray, two popular 
methods based on microarray, including CIBERSORT (2) 
and microenvironment cell populations-counter (MCP-
counter) (3), are described in this editorial.

The CIBERSORT algorithm was published in Nature 

Methods in 2015 and has been widely used to analyze 
the expression levels of different kinds of TILs in solid 
tumor tissues. In their original paper on CIBERSORT, the 
authors proposed a gene signature matrix named LM22 
that contains 547 genes. LM22 can be used to distinguish 
22 different hematopoietic cell phenotypes, including 
T-cells and B-cells, among others. The CIBERSORT 
algorithm uses a support vector regression (SVR) method 
to deconvolve the expression profiles of the 547 selected 
genes into the intensity levels of 22 different TILs. More 
than 3,000 human tissue specimens and cell lines were 
validated in the original paper. Sensitivity and specificity 
values were both greater than 0.94, and the area under the 
receiver operator characteristic (ROC) curve (AUC) to 
identify a sample with at least one TIL out of the 22 TILs 
was greater than 0.98. For one specific TIL, the authors 
performed flow cytometry to evaluate the performance of 
the CIBERSORT algorithm in 10 TIL subsets by using 
27 human adult samples. Most of the TIL subsets were 
successfully predicted, which demonstrate the algorithm’s 
potential to be used in large-scale investigations.

MCP-counter is another popular algorithm to analyze 
gene expression profiles to estimate the expression 
levels of multiple TILs. In contrast to the SVR method 
in the CIBERSORT algorithm, the MCP-counter 
algorithm considers the variations of the expression 
level of one gene in a specific TIL type and retains the 
genes showing the lowest variation within the TIL type. 
Consequently, the MCP-counter algorithm identifies 
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genes for distinguishing 10 different TILs within one 
sample. Notably, the most important difference between 
CIBERSORT and MCP-counter is that CIBERSORT 
investigates the expression levels of TILs within one sample 
of immune cell proportions, i.e., intra-sample, whereas 
MCP-counter reports the abundance of TILs for inter-
sample comparisons, at the cost of presenting the TIL in 
arbitrary units. Similar to the CIBERSORT algorithm, 
the MCP-counter algorithm’s performance is validated by 
using the polymerase chain reaction (PCR) experiments 
of prepared RNA mixtures from the peripheral blood 
specimens. Significant associations were reported between 
the predicted values and the prepared concentrations; thus, 
the MCP-counter has also been widely utilized in recent 
studies.

Some limitations exist in using these two algorithms 
to analyze gene expression profiles directly to obtain the 
expression levels of TILs. The rapid growth of NGS 
technology has facilitated the accumulation of significant 
amounts of RNA-seq data. However, the two algorithms 
were both developed from microarray datasets. The 
dynamic ranges of the gene expression profiles obtained 
from the microarray datasets are not the same as what 
we can obtain from the real RNA-seq data. Therefore, 
severe systematic biases will occur if we apply these two 
algorithms to directly RNA-seq data. To address this issue, 
a normalization method, such as spline regression, must 
be performed before using either of these algorithms to 
directly analyze RNA-seq data.

Furthermore, it is well-known that different gene 
expression microarray platforms have different probe 
designs. Some genes that are required for analysis by 
the CIBERSORT and the MCP-counter algorithms are 
not included in the corresponding microarray design. 
Therefore, the estimated expression levels of TILs will 
contain some biases due to the microarray design, if multiple 
datasets are analyzed simultaneously. Lastly, since selected 
genes/biomarkers are used to estimate the expression levels 
of TILs, the collinearity among these selected genes must 
be taken into consideration. Ignoring the collinearity may 
result in overestimation of the prognostic effects of multiple 
TILs with similar expression patterns. In conclusion, 
analyzing multiple datasets, especially from different 
microarray designs, at the same time to do inter-sample 
comparisons is not recommended.

In the last portion of this editorial, we use real studies 
to demonstrate how TILs play important roles in different 
cancers, including breast cancer, colorectal cancer, head 

and neck cancer, and hepatocellular carcinoma. Previous 
studies have shown that the prognosis of breast cancer 
patients is determined by age, stage, tumor grading, and 
molecular subtypes. In addition to these factors, TILs 
have been reported to be associated with a good prognosis 
in human epidermal growth factor receptor 2 (HER2) 
enriched and triple negative subtypes, while inconsistent 
associations between TILs and prognosis were observed 
in luminal patients (6-10). For example, in the ShortHER 
trial, a 9-week trastuzumab adjuvant therapy was linked 
to increased relapse risk [hazard ratio (HR): 1.75, 95% 
confidence interval (CI): 1.09–2.80] in HER2+ patients 
with low TILs but not in patients with high TILs (HR: 
0.23, 95% CI: 0.05–1.09) (11). In the NSABP B-31 trial, 
stromal TILs served as an independent prognostic factor 
but showed no statistical interaction with the addition of 
trastuzumab to chemotherapy in HER2+ breast cancer 
patients (12). One possible explanation of this variation was 
that different TIL compositions and immune cell responses 
exist in the patients. Notably, B-cells and CD4+ T-cells can 
facilitate CD8+ T-cell cytotoxic effect and were associated 
with reduced risk of death in cancer patients (6-9). In 
addition to lymphocytes, myeloid lineage cells participate in 
immune regulation, and the polarized M2 macrophage was 
associated with poor prognosis in early-stage breast cancer 
patients (6,7). Notably, since most of the current studies 
were based on targeted pathology staining, a comprehensive 
analysis of TILs is warranted to initiate systematic and 
large-scale investigations.

TILs can serve as prognostic factors in colorectal 
cancer and their expression levels were correlated to 
the microsatellite instability (MSI). The expressions of 
CD3+, CD8+, FOXP3+ and CD45RO+ lymphocytes were 
associated with favorable prognosis in colorectal cancer 
patients (13,14). MSI-high colorectal cancer exhibited 
higher TILs and M1 macrophages, which might partially 
explain why MSI was identified as an important prognostic 
factor (14,15). TILs also affect systemic therapy in 
colorectal cancer and vice versa. Patients with TILs benefit 
more from 5-FU adjuvant therapy then those without TILs 
(HR: 0.22 vs. 0.84) (16). A cetuximab treatment clinical trial 
in 46 colorectal cancer patients showed higher expression 
levels of CD4+ T-cells, CD8+ T-cells, type 1 helper T-cells, 
regulatory T-cells and myeloid-derived suppressor cells; 
this sheds light on the possibility of utilizing TILs as an 
indicator for further treatments (17).

Human papillomavirus (HPV) is an emerging topic in 
head and neck cancer. Positive HPV status is associated 
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with increased expression levels of CD8+ T-cells, B cells 
and a better prognosis in head and neck cancer (18,19). 
Intriguingly, a linear model showed the collinearity between 
HPV status and CD8+ T-cells in head and neck cancer 
patients, suggesting the immune cells can account for the 
prognostic findings in patients with these cancer types (19). 
Among operable tongue cancer patients with all etiology, 
Chen et al. reported three TILs, high CD4/FOXP3 ratio, 
high CD8/FOXP3 ratio and low FOXP3, were associated 
with better clinical outcomes (20). In contrast, Badoual  
et al. reported high expressions of CD3 and CD8 levels were 
associated with longer overall survival and progression-
free survival in head and neck cancer patients with definite 
chemoradiotherapy, but high expressions of CD4 or FOXP3 
levels were not (21). Therefore, these results imply that 
replication and validation studies are prerequisite before 
applying the findings of TILs in real clinics.

Hepatitis B virus (HBV) and hepatitis C virus (HCV) 
are major causes and subtypes of hepatocellular carcinoma. 
In contrast to HPV in head and neck cancer, patients with 
positive HBV or HCV infections were reported to have 
lower TILs in liver cancer tissues than in the adjacent 
normal liver tissues (22,23). In several studies, among the 
immune cell subsets, CD8+ cells were consistently lower 
in the tumor tissue, but their expression was still reported 
to be a biomarker for indicating a better regional disease 
control in liver cancer. The depletion of CD8+ cells was 
linked to a down-regulation of CD28 and an up-regulation 
of programmed cell death 1 receptor (PD-1), which is 
the most popular target of immunotherapy nowadays 
(24,25). In conclusion, TILs may serve as not only the 
prognostic biomarkers for multiple cancers but also as 
predictive biomarkers for advanced treatments, including 
chemoradiotherapy and immunotherapy in the future.
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