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Background: Whether tumor mutation burden (TMB) correlated with improved survival outcomes or 
promotion of immunotherapies remained controversy in various malignancies. We aimed to investigate the 
prognosis of TMB and the potential association with immune infiltrates in clear cell renal cell carcinoma 
(ccRCC). 
Methods: We downloaded the somatic mutation data of 336 ccRCC patients from the Cancer Genome 
Atlas (TCGA) database, and analyzed the mutation profiles with “maftools” package. TMB was calculated 
and we classified the samples into high-TMB and low-TMB group. Differential analysis was conducted to 
compare the expression profiles between two groups using “limma” package, and we identified the 9 hub 
TMB-related signature from batch survival analysis. Gene ontology (GO) analysis and Gene Set Enrichment 
Analysis (GSEA) were performed to screen significantly enriched pathways between two groups. Based 
on the TIMER database, we further assessed the relationships of the mutants of 9 TMB-related signature 
with immune infiltration levels in ccRCC. Besides, we utilized the “CIBERSORT” package to estimate the 
abundance of 22 immune fractions between low- and high-TMB groups, and the significant difference were 
determined by Wilcoxon rank-sum test. Furthermore, Cox regression model combined with survival analysis 
were used to evaluate the prognostic value of immune cells. Last, we constructed a Tumor Mutation Burden 
Prognostic Index (TMBPI) from multivariate Cox results and Receiver Operating Characteristic (ROC) 
curve was drawn to assess the predictive accuracy. 
Results: Single nucleotide polymorphism (SNP) occurred more frequently than insertion or deletion, 
and C>T was the most common of SNV in ccRCC. Higher TMB levels conferred poor survival outcomes, 
associated with higher tumor grades and advanced pathological stages. A total of 1,265 differentially 
expressed genes were obtained and top 19 immune-related genes were identified in Venn diagram. GSEA 
revealed that patients in higher TMB groups correlated with MAPK signaling pathway, Wnt signaling 
pathway and pathway in cancers. Moreover, we identified 9 hub TMB-related immune genes related with 
survival and mutants of 9 signature were associated with lower immune infiltrates. In addition, infiltration 
levels of CD8+ T cell, CD4+ memory resting T cell, M1 and M2 macrophages, as well as dendritic resting 
cells in high-TMB group were lower than that in low-TMB group, especially the level of CD8+ T cell and 
macrophage correlated negatively with prognosis of ccRCC. Last, the TMBPI was constructed and the AUC 
of ROC curve was 0.666.
Conclusions: Higher TMB correlated with poor survival outcomes and might inhibit the immune 
infiltrates in ccRCC. The mutants of 9 hub TMB-related immune signature conferred lower immune cells 
infiltration which deserved further validation.
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Introduction

Kidney cancer is the third most common malignance in 
urinary system, which is only next to prostate cancer and 
bladder cancer. In 2018, the globally estimated new cases 
and deaths were 403,262 and 175,098 respectively (1). Renal 
cell carcinoma (RCC) originates from the renal tubular 
epithelium, and approximately 90% of kidney tumors belong 
to RCC. Nowadays, treatments for RCC include surgery 
with or without postoperative adjuvant therapy, target 
therapy, chemotherapy and immunotherapy and so on. 

The main three histopathological types of RCC 
includes clear cell RCC (ccRCC), chromophobe RCC 
(chRCC) and papillary RCC [pRCC, including type I and 
II (2,3)], and ccRCC accounts for 60–85% in all RCC 
cases. Due to the lack of reliable diagnostic biomarkers 
and early clinical symptoms of RCC, over 25% of RCC 
patients diagnosed with metastatic status, which made it 
difficult to treat by surgery briefly (4). Generally, ccRCC 
patients have worse prognosis than chRCC and pRCC 
(5,6), and the five-year cancer-specific-survival (CSS) for 
ccRCC for T stage I, II, III and IV was 91%, 74%, 67% 
and 32% respectively. 

Recently, immunotherapy has been recognized to be an 
effective method for advanced or aggressive cancers (7-9).  
For example, great efforts have been made in immune 
checkpoint blockade (ICB) for various malignancies, 
such as lung cancer (10,11), breast cancer (12,13) and 
melanoma (14), and the chimeric antigen receptor T cell 
therapy is being clinical used for leukemia and lymphoma 
treatment (15). Additionally, many studies had discovered 
that tumor mutation burden (TMB) and neoepitopes were 
tightly associated with immunotherapy in many cancer 
types (16,17). However, only one-fifth of cancer patients 
could benefit from immunotherapy (18). Therefore, it 
is of great importance to find the molecular mechanism 
of immunotherapy responsiveness (19). To date, many 
molecular determinants have been well identified such as 

programmed death-ligand-1 (PD-L1) (20), neoantigen  
load (21), tumor-infiltrating lymphocytes (TILs) (22) and 
DNA mismatch-repair deficiency (23,24) in many cancers.

With the advanced development of sequencing 
technique, a lot of valuable bioinformatic sources on TMB 
and cancer immunotherapeutic response are available 
from many public databases such as The Cancer Genome 
Atlas (TCGA) database, Gene Expression Omnibus 
(GEO) database and so on. Wang’s study showed that the 
prognostic role of TMB and relationship between TMB and 
immune infiltrate varied from different types of cancers (25). 
However, few relevant researches had focused on TMB 
with immune infiltrates in ccRCC and no accepted opinion 
had been drawn, so we performed this study to investigate 
the prognostic role of TMB and the potential association 
with immune infiltrates in ccRCC.

Methods 

Acquisition of somatic mutation data 

Somatic mutation data were obtained from the publicly 
available TCGA database via the GDC data portal (https://
portal.gdc.cancer.gov/). From the four subtypes of data 
files, we selected the “Masked Somatic Mutation” data and 
processed it based on the VarScan software. We prepared 
the Mutation Annotation Format (MAF) of somatic 
variants and implemented the “maftools” (26) R package 
which provides a multiple of analysis modules to perform 
the visualization process. Besides, we downloaded the 
transcriptome profiles with HTSeq-FPKM workflow type 
of all available ccRCC samples compared with normal 
tissues. The corresponding clinical information were also 
obtained from the GDC portal, including clinical variables 
of age, gender, tumor grade, pathological stage, AJCC-
TNM stages and survival outcomes. Since all the data in 
this research were from public databases, there was no 
ethical conflict to declare.
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Calculation of TMB scores and prognostic analysis

TMB was defined as the total amount of coding errors 
of somatic genes, base substitutions, insertions or 
deletions detected across per million bases. In our study, 
we calculated the mutation frequency with number of 
variants/the length of exons (38 million) for each sample 
via Perl scripts based on the JAVA8 platform (http://
fp.amegroups.cn/cms/036c91c6905ea44352c2eb045e
09f634/atm.2019.10.84-1.pdf). We could classify the 
ccRCC samples into low- and high-TMB groups according 
the median data. Then, we merged the TMB data with 
corresponding survival information via the id number of 
samples. Kaplan-Meier analysis was conducted to compare 
the survival difference between low- and high-TMB 
groups, and the P of log-rank test was calculated. What is 
more, we further assessed the associations of TMB levels 
with clinical characteristics, where Wilcoxon rank-sum test 
was utilized for comparisons between two groups of clinical 
variables, while Kruskal-Wallis (K-W) test was used when 
it comes to three or more groups.

Differentially expressed genes and functional pathways 
analysis

According to the TMB levels, we divided the transcriptome 
data of ccRCC samples into low- and high-TMB groups via 
R software. “Limma” was utilized to identify differentially 
expressed genes (DEGs) in two groups with Fold Change 
(FC) =2 and False Discovery Rate (FDR) <0.05. Heatmap 
plot was drawn to show the difference by “pheatmap” 
package. Then, “org.Hs.eg.db” package was used to get 
the Entrez ID for each DEG and we conducted the Gene 
ontology (GO) analysis with “clusterProfiler”, “enrichplot” 
and “ggplot2” packages. Besides, gene set enrichment 
analysis (GSEA) was performed based on JAVA8 platform 
using the TMB level as the phenotype. We selected the 
“c2.cp.kegg.v6.2.symbols.gmt gene sets” as the reference 
gene set, which was obtained from the MSigDB database 
(http://software.broadinstitute.org/gsea/msigdb/). The 
significant enrichment pathways were considered only 
with FDR <0.25. Furthermore, we obtained a list of 4677 
immune related genes from the Immunology Database 
and Analysis Portal (Immport) to select the differentially 
expressed immune genes between the two groups through 
“VennDiagram” package.

Survival analysis 

We selected the top 19 immune genes with |fold change| 
>2 and FDR <0.05 to further assess the prognostic value 
of differential immune genes in patients with low- and 
high-TMB levels. Bath survival Kaplan-Meier analysis was 
conducted via a “for cycle” R script to find the hub immune 
genes associated with survival outcomes and the P value was 
shown in plot. A P value <0.05 was significant.

TIMER database and CIBERSORT algorithm

We further evaluated the mutation types of hub immune 
genes with immune infiltrates in ccRCC based on the 
“SCNA” module of TIMER database (27) (https://
cistrome.shinyapps.io/timer/). The known mutation types 
of 6 hub genes were shown at the right bottom. The 
distributions of each immune cell subset at each mutation 
status in ccRCC were presented by box plots and the 
difference of infiltration level in each category versus 
normal was compared using two-sided Wilcoxon rank sum 
test with calculated P value.

 Meanwhile, we obtained the transcriptome profiles 
of ccRCC patients in two groups and conducted the 
normalization process via “limma” package. Then, we 
put the preparation data into subsequent analysis to 
assess the immune infractions of each sample through 
the CIBERSORT algorithm (R script v1.03), providing 
an estimation of the abundances of member cell types in 
a mixed cell population, using gene expression data. The 
CIBERSORT was still based on a known reference set, 
providing a set of gene expression features of 22 leukocyte 
subtypes-LM22. The distributions of immune cells in two 
groups were shown by “pheatmap” package. Wilcoxon rank-
sum test was exploited to compare the differential abundances 
of immune infiltrates between low- and high-TMB groups, 
which were exhibited with P value by “vioplot” package. 

Prognostic analysis of immune cells in ccRCC

Based on the TIMER database, we further conducted the 
multivariate Cox of immune infiltration cells, which was 
fitted by function coxph() from R package “survival”. The 
hazard ratio (HR) with 95% confidence interval (95%CI) 
was calculated. Furthermore, the Kaplan-Meier analysis 
was conducted to show the differential survival outcomes 

http://fp.amegroups.cn/cms/036c91c6905ea44352c2eb045e09f634/atm.2019.10.84-1.pdf
http://fp.amegroups.cn/cms/036c91c6905ea44352c2eb045e09f634/atm.2019.10.84-1.pdf
http://fp.amegroups.cn/cms/036c91c6905ea44352c2eb045e09f634/atm.2019.10.84-1.pdf
http://software.broadinstitute.org/gsea/msigdb/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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between different levels of immune infiltrates. A P value 
<0.05 of log-rank test was regarded as the statistical 
significance. 

Construction of TMB Prognostic index (TMBPI) for hub 
immune genes

We conducted the multivariate Cox regression analysis 
to obtain the respective coefficients (βi) of 9 hub immune 
genes. The TMBPI was constructed as: TMBPI = Ʃ(βi × 
Expi) (i=9). Then, we performed the Receiver Operating 
Characteristic (ROC) curve to assess the predictive value of 
9 immune signature in ccRCC. Moreover, Kaplan-Meier 
analysis was conducted to compare the survival difference in 
two groups, where we divided the 530 ccRCC patients into 
high- and low-groups with the median prognostic index as 
the threshold. 

Statistical analysis

The Cox regression model was performed based on 
the “survival” package. “Limma” package was utilized 
to conduct the normalization and differential analysis. 
Wilcoxon rank-sum test was a non-parametric statistical 
hypothesis test mainly used for comparisons between two 
groups and Kruskal-Wallis test was suitable for two or more 
categories. All statistical analysis was implemented based on 
the R software (Version 3.5.2). A P value <0.05 was thought 
to be significant. 

Results 

Landscape of mutation profiles in ccRCC 

We downloaded the somatic mutation profiles of 339 
ccRCC patients from TCGA, including four types of data 

Figure 1 Landscape of mutation profiles in ccRCC samples. Mutation information of each gene in each sample was shown in the waterfall 
plot, in which various colors with annotations at the bottom represented the different mutation types. The barplot above the legend 
exhibited the mutation burden. ccRCC, clear cell renal cell carcinoma. 
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Figure 2 Summary of the mutation information with statistical calculations. (A,B,C) Classification of mutation types according to different 
categories, in which missense mutation accounts for the most fraction, SNP showed more frequency than insertion or deletion, and C>T was 
the most common of SNV; (D,E) tumor mutation burden in specific samples; (F) the top 10 mutated genes in ccRCC; (G) the coincident 
and exclusive associations across mutated genes. SNP, single nucleotide polymorphism; SNV, single nucleotide variants; ccRCC, clear cell 
renal cell carcinoma.
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based on diverse processing software. We utilized the 
“maftools” package to visualize the results based on the 
mutation data with VCF format. Mutation information 
of each gene in each sample was exhibited in waterfall 
plot, where various colors with annotations at the bottom 
represented the different mutation types (Figure 1). In 
summary, these mutations were further classified according 
to different classified categories, in which missense mutation 
accounts for the most fraction (Figure 2A), single nucleotide 
polymorphism occurred more frequently than insertion 
or deletion (Figure 2B), and C>T was the most common 
of single nucleotide variants (SNV) in ccRCC (Figure 2C). 
Besides, we counted the number of altered bases in each 
sample and showed the mutation type with different colors 
in box plot for ccRCC (Figure 2D,E). Last, we exhibited the 
top 10 mutated genes in ccRCC with ranked percentages, 
including VHL (47%), PBRM1 (40%), TTN (14%), SETD2 
(12%), BAP1 (10%), MTOR (7%), DNAH9 (5%), MUC16 
(5%), KDM5C (5%) and HMCN1 (5%) (Figure 2F).  
The coincident and exclusive associations across mutated 
genes were shown in Figure 2G, where green represented the 
co-occurrence and red represented the mutually exclusive 
relationships. Meanwhile, the mutated frequencies of other 
genes were shown by Genecloud plot in Figure S1. 

Moreover, the transcriptome profiles were obtained 
consisted of 539 ccRCC and 72 normal samples. The 
cl inical  information of 530 ccRCC patients were 
shown in Table 1, in which the mean age of patients was  
60.56±12.14 years old and they contained 344 males and 
186 females. 

TMB correlated with survival outcomes, pathological stages 
and tumor grades

We calculated the amount of mutation events per million 
bases as the TMB for 336 ccRCC, and we further divided 
the patients into two groups with high- and low-TMB 
levels using the median TMB as the cutoff value (http://
fp.amegroups.cn/cms/036c91c6905ea44352c2eb045e0
9f634/atm.2019.10.84-1.pdf). Contrary to other conditions 
that higher TMB tends to promote immune recognition 
and results in better prognosis, patients in high-TMB 
group revealed worse survival outcomes than that in low-
TMB group with log-rank test of P=0.035 (Figure 3A). 

Table 1 Clinical baseline of 530 ccRCC patients included in study 
from TCGA cohort

Variables Number (%)

Vital status

Alive 166 (31.32)

Dead 364 (68.68)

Age, y 60.56±12.14

Gender

Female     186 (35.10)

Male 344 (64.90)

AJCC-T

T0/Ta 0

T1 271 (51.13)

T2 69 (13.02)

T3 179 (33.77)

T4 11 (2.08)

AJCC-N

N0 239 (45.09)

N1 16 (3.02)

NX 275 (51.89)

Tumor grade

G1/G2 241 (45.47)

G3/G4 286 (53.96)

Unknown 3 (0.57)

Stage

Stage I & II 322 (60.75)

Stage III & IV 208 (39.25)

TMB level

Low level 190 (35.85)

High level 146 (27.55)

undetected 194 (36.60)

TMBPI

Low level 265 (50.00)

High level 265 (50.00)

ccRCC, clear cell renal cell carcinoma; TMB, tumor mutation 
burden.

http://fp.amegroups.cn/cms/036c91c6905ea44352c2eb045e09f634/atm.2019.10.84-1.pdf
http://fp.amegroups.cn/cms/036c91c6905ea44352c2eb045e09f634/atm.2019.10.84-1.pdf
http://fp.amegroups.cn/cms/036c91c6905ea44352c2eb045e09f634/atm.2019.10.84-1.pdf
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Furthermore, higher TMB levels correlated with advanced 
pathological stages with P=0.044 (Figure 3B), and higher 
tumor grades with P=0.004 (Figure 3C). However, no 
significant differences were observed in associations of 
TMB with AJCC-T, N, M stages (Figure 3D,E,F). 

Comparison of gene expression profiles between low- and 
high-TMB groups

The heatmap indicated that genes in high-TMB group 
showed commonly lower expression levels than that 
in low-TMB group (Figure 4A). Differential analysis 
revealed a list of 1,265 DEGs with |Fold Change| >1 
and 65 DEGs with |Fold Change| >2 in Venn plot 
(Figure 4B ,  http://fp.amegroups.cn/cms/89d685ac9
955df9b8c0a5ef77f653065/atm.2019.10.84-2.pdf) .  
We then conducted the GO enrichment analysis and 
these DEGs were mainly involved in neutrophil mediated 
immunity, neutrophil activation and other immune-related 
crosstalk. In addition, we further selected the GSEA results 

of the top TMB-related items in Figure 4D, including 
MAPK signaling pathway, Wnt signaling pathway, pathway 
in cancers and calcium associated crosstalk with FDR 
<0.25 (Figure 4D, Table S1). Since the TMB correlated 
with immune signature or pathways in ccRCC, we further 
identified top 19 immune related genes from Immport 
database for subsequent analysis (Table 2). 

Identification of hub TMB-related immune genes and 
associations of mutants with immune infiltrates

Batch survival analysis was conducted with R scripts 
to screen 6 prognostic hub immune genes that highly 
associated with survival. Higher expression levels of IL20B, 
CRP and DNASE1 correlated positively with poor survival 
outcomes, while expression level of KIT, MAL and PLCG2 
correlated negatively with prognosis (Figure 5). More 
importantly, we further assessed the underlying relationships 
of the mutants of these hub genes with immune infiltrates 
in ccRCC microenvironment. Compared with the immune 

Figure 3 Prognosis of TMB and associations with risk clinical characteristics. (A) Higher TMB levels correlated with poor survival outcomes 
with P=0.035; (B,C) higher TMB level was associated with advanced stages, and higher tumor grades; (D,E,F) no significant difference were 
observed with AJCC-TNM stages. TMB, tumor mutation burden.
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infiltration levels in samples with wild type of the signature, 
diverse forms of mutation carried by hub genes could 
commonly inhibit the immune infiltrates, including CD8+ 
T cell, neutrophil cell, dendritic cell, macrophage, CD4+ T 
cell and B cell (Figure 6). 

Differential abundance of immune cells in low- and high-
TMB groups

Since we have demonstrated that the DGEs were involved 
in immune crosstalk and mutants of hub immune signature 
negatively correlated with immune infiltrates, we intended 
to further compare the differential profiles of immune 
fractions between high- and low-TMB groups (http://
fp.amegroups.cn/cms/4f8c1ec9c0638cb1728c073c3a
3dc64a/atm.2019.10.84-3.pdf). After the filtration of 
samples with P>0.05 via “CIBERSORT” package, a total 
of 238 samples were selected to perform the immune 

cells analysis, including 121 low-TMB samples and 117 
high-TMB samples. Specific fractions of 22 immune 
cells in each ccRCC sample were shown by box plot in  
Figure 7A. Besides, Wilcoxon rank-sum test revealed that 
the infiltration levels of CD8+ T cell, CD4+ memory resting 
T cell, M1 and M2 macrophages, as well as dendritic resting 
cells in high-TMB group were lower compared with that in 
low-TMB group (Figure 7B). What is more, we revealed the 
distributions of 22 immune cells fractions in two groups by 
heatmap plot (Figure S2). In accordance with the previous 
mutation analysis, higher TMB commonly inhibited the 
immune infiltration levels in ccRCC samples.

Low CD8+ T cell and macrophage infiltrates confers poor 
survival outcomes

To further investigate the underlying prognosis of immune 
cells, we further conducted the Cox regression model 

Table 2 Differential immune genes between low TMB and high TMB groups

Gene symbol Low group High group logFC P value FDR

ALDH1A2 3.207229727 1.189690585 −1.430741288 0.000487388 0.012494635

ANGPTL1 1.589407598 0.69350514 −1.196510666 0.003012692 0.034791935

AQP2 3.081602952 1.209155013 −1.349681782 0.001302924 0.021918655

CALCA 3.035327975 0.031851819 −6.574332845 0.000024800 0.002768713

CAMK1G 2.05445128 0.969264636 −1.083790597 0.000187901 0.007608454

CLDN8 10.63970648 0.161685531 −6.040123958 0.005571293 0.048549242

CRP 2.506466284 7.886501185 1.653730569 0.002477033 0.031423244

DNASE1 1.784588322 0.705062512 −1.339768225 0.000785471 0.016255044

IGF2 59.39521729 10.75192659 −2.465751572 0.001455558 0.022842365

IL20RB 5.427853456 11.14317432 1.037706591 0.000111837 0.005802693

ISLR 14.49659874 6.285053775 −1.205717455 0.005042935 0.046148176

KIT 7.152316217 2.506862239 −1.512527805 0.002650727 0.032701349

MAL 45.73205497 16.12698755 −1.503728773 0.000025300 0.002797265

NTN1 1.349820308 0.385525131 −1.807870552 0.003419216 0.037376997

PLCG2 5.380498416 2.620385457 −1.037960774 0.002089850 0.028363374

SFRP1 4.651136686 1.320148804 −1.816882782 0.003394704 0.037334861

SLIT2 2.086288785 0.885706605 −1.236038088 0.000018300 0.002331511

TNFAIP8L3 3.298707775 1.040122909 −1.665146961 0.004671089 0.044238684

VSIG2 3.998706467 1.166957958 −1.776780795 0.003930559 0.040400933

TMB, tumor mutation burden.
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in ccRCC samples and the model was constructed as: 
Surv(KIRC) ~ B cell + CD8+ T cell + Macrophage + CD4+ 

T cell + Dendritic cell + Neutrophil cell. The Cox results 
suggested that lower CD8+ T cell (HR =0.175, P=0.029) 
and Macrophage (HR =0.062, P=0.020) infiltrates were risk 
factors for ccRCC (Table 3). Furthermore, we performed the 
Kaplan-Meier analysis, in which lower infiltration levels of 
CD8+ T cell and Macrophage indeed correlated with poor 
survival outcomes in ccRCC (Figure 8A). 

Construction and assessment of TMBPI for ccRCC

Based on the above analysis that the alteration of immune 
signature led to lower immune infiltrates and poor prognosis, 
we wanted to evaluate the predictive accuracy of the 6 TMB-
related hub signature. We extracted the transcriptome data 
from 530 ccRCC matched with compete clinical information 
via “merge” function in R studio. Based on the multivariate 
Cox regression model, we constructed the TMBPI as the 
following: PI = (0.042086 × CRP + 0.347889 × DNASE1 + 

0.118190 × IL20RB − 0.027266 × KIT − 0.007359 × MAL 
− 0.256051 × PLCG2). Then, we calculated the TMBPI for 
each ccRCC patients and divided them into high- (n=265) 
and low-risk level (n=265) with the median cutoff value  
(http://fp.amegroups.cn/cms/89d685ac9955df9b8c0a5ef7
7f653065/atm.2019.10.84-2.pdf). The ROC curve of 3-year 
OS prediction was drawn to assess the predictive accuracy 
with AUC =0.666 (Figure 8B). Meanwhile, Kaplan-Meier 
plot showed that patients with high TMBPI revealed worse 
survival outcomes compared with that with low TMBPI, 
which deserved further large samples to validate (Figure 8C).

Discussion

ccRCC is the most common pathological type of RCC. In 
ccRCC, the von Hippel-Lindau (VHL) gene mutation and 
chromosome 3p loss are always founded, including some 
additional tumor suppressor genes which are frequently 
identified next to the VHL gene, such as PBRM 1,  
SETD 2 and BAP1 et al. (28). Immunotherapy in the 

Figure 5 Survival analysis of 6 hub TMB-related signature with P value of log-rank test. TMB, tumor mutation burden.
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treatment of advanced or aggressive cancers has shown 
promising results (29,30). Nowadays, immunotherapy 
for RCC is changing from conventional IL2 non-specific 
immunotherapy to specific targeted immunotherapy based 
on programmed death-1 (PD-1) and PD-L1 inhibitors at 
immune checkpoints. However, only a fraction of patients 
benefit from immunotherapy while most patients have 
no immune response, which represents terrible waste of 
money. Hence, identifying patients who are more likely to 
respond to immunotherapy before taking the drugs seems 
to be particularly important.

 Recently, the application of high-throughput sequencing 
technology has brought up several genome-wide biomarkers 
for ccRCC, such as chromosomal abnormalities which 
was reported to be independently associated with worse 
outcomes. Accordingly, TMB detected from genome-
sequencing is a novel biomarker to predict response to ICB, 
which has been demonstrated its effectiveness in a variety 
of tumors, such as breast cancer (31), lung cancer (32)  
and so on. Alexandra Thomas (33) demonstrated that 
TMB was a determinant of immune-related survival in 

breast cancer patients and can be a useful tool to identify 
candidate immunoregulatory mechanisms associated with 
immunological cold tumors. Negrao (34) found that low 
TMB, negative PD-L1 expression, presence of targetable 
driver mutation and serine/threonine kinase 11 gene 
(STK11) mutation were predictive factors of worse outcome 
in non-small cell lung cancer. However, its prognostic role 
and association with immunotherapy in ccRCC have not 
been explored, so we conduct this research investigate the 
prognostic role of TMB and the potential association with 
immune infiltrates in ccRCC.

Based on the results of the survival analysis, patients 
in High-TMB group showed worse survival outcomes, 
advanced pathological stages and higher tumor grades than 
that in low-TMB group. Pai et al. (35) discovered that there 
was a trend towards improved progression free survival 
(PFS) in Low-TMB colorectal cancer patients (n=39) 
compared to High-/Intermediate-TMB (n=26) (9.9 vs.  
5.8 months), but did not reach statistical significance (P=0.18). 
However, Goodman et al. (36) found that melanoma and 
non-small cell lung cancer patients with High-TMB revealed 

Figure 6 Associations of 6 hub TMB-related signature mutants with immune cells infiltration. (A,B,C,D,E,F) Mutants of 6 TMB-related 
genes conferred the low infiltration levels of immune cells. TMB, tumor mutation burden.
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Figure 7 Comparisons of 22 important immune fractions between low- and high-TMB groups. (A) The specific 22 immune fractions 
represented by various colors in each sample were shown in barplot. (B) Wilcoxon rank-sum test revealed that the infiltration levels of CD8+ 
T cell, CD4+ memory resting T cell, M1 and M2 macrophages, as well as dendritic resting cells in high-TMB group were lower compared 
with that in low-TMB group. TMB, tumor mutation burden.
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Table 3 Multivariate Cox regression analysis of immune infiltration cells in ccRCC

Cell types coef HR 95% CI_low 95% CI_up P value sig

B cell −0.600 0.549 0.022 13.575 0.714 –

CD8+ Tcell −1.741 0.175 0.037 0.837 0.029 *

CD4+ Tcell −0.524 0.592 0.039 8.902 0.705 –

Macrophage −2.774 0.062 0.006 0.647 0.020 *

Neutrophil 3.211 24.809 0.389 1,582.755 0.130 –

Dendritic 1.119 3.062 0.517 18.131 0.217 –

Note: R square =0.017 (max possible =9.72e-01); Likelihood ratio test P=2.02e-01; Wald test P=2.01e-01; Score (logrank) test P=2.02e-01. 
CcRCC, clear cell renal cell carcinoma.

better PFS than that with Low-TMB. Similar conclusion 
was drawn by Park (31) that high TMB in patients with 
HER2-positive refractory metastatic breast cancer may be a 
prognostic marker for good overall survival.

DEGs were ferreted out and GO enrichment analysis 
showed that these DEGs were mainly involved in neutrophil 
mediated immunity, neutrophil activation and other immune-
related crosstalk. Hence, 6 prognostic hub immune genes 
that highly associated with survival were identified (positive 
correlation: IL20B, CRP and DNASE1, negative correlation: 
KIT, MAL and PLCG2). Moreover, mutants of these hub 
immune genes were related to immune infiltrates in ccRCC 
microenvironment. Immune infiltrates including CD8+ T 
cell, neutrophil cell, dendritic cell, macrophage, CD4+ T cell 
and B cell could be inhibited by hub genes mutations.

KIT is a proto-oncogene which encodes a member 
of the type III receptor tyrosine kinase family (37,38) 
and KIT activating mutations lead to dysregulation of 
downstream signaling pathways of hematopoietic stem cells 
for the survival, proliferation and differentiation. Previous 
studies had demonstrated that KIT mutations may result 
in adverse survival in acute myeloid leukemia (39,40) 
and gastroenteropancreatic neuroendocrine tumor (41),  
however, in vulvar melanomas KIT mutations are 
markers of better PFS (42). MAL encodes a membrane 
protein involved in lipid raft organization during T-cell 
signal transduction and activation (43,44), and MAL 
overexpression was associated with poor survival in ovarian 
carcinoma (45) and Hodgkin lymphoma (46).

In the analysis of underlying prognosis of immune cells, 
lower CD8+ T cell and macrophage infiltrates were proven 
to be tightly associated with poor survival outcomes. Yao  
et al. (47) found that metastatic RCC patients with high 
CD8+ T lymphocytes infiltration and low PD-1 expression 
had longer survival. Also, similar result can be found that 

high grade serous ovarian cancer patients with lower 
numbers of intraepithelial CD8+ TILs and positive tumor 
PD-L1 expression had the shortest median OS (48).  
Moreover, previous relevant studies (49,50) had also 
explored the prognostic role of macrophage infiltrates in 
immunotherapy, tumor infiltrating macrophages could play 
an important role in metastasis suppression progress in 
metastatic diseases.

Finally, a prognostic model (TMBPI) was developed using 
6 hub immune genes which can be great useful for survival 
prediction. To our knowledge, this is the first TMB prognostic 
model to predict survival outcomes. Patients with high 
TMBPI revealed worse survival outcomes compared with that 
with low TMBPI. However, the AUC of this predictive model 
was only 0.666 and further large-sample researches are needed 
for verification and modification before clinical application.

However, there are some limitations that should not 
been ignored: (I) lack of basic experiment to validate the 
association between 6 immune genes signature and tumor 
cell immune infiltrates; (II) lack of large clinical sample 
to verify the prognostic effect of TMB and its potential 
relationship with immune infiltrates. Relevant variants and 
big sample clinical trials are needed in the future.

Conclusions

Higher TMB correlated with poor survival outcomes and 
might inhibit the immune infiltrates in ccRCC. The mutants 
of 6 hub TMB-related immune signature conferred lower 
immune cells infiltration which deserved further validation.
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Figure 8 Survival analysis of differentially immune cells across two TMB groups. (A) Kaplan-Meier analysis revealed that lower infiltration 
levels of CD8+ T cell and Macrophage correlated with poor survival outcomes in ccRCC (P<0.05); (B,C) construction and assessment of 
TMBPI for ccRCC (AUC of 3-year OS prediction =0.666), where patients with higher TMBPI conferred poor survival outcomes (P<0.001).  
ccRCC, clear cell renal cell carcinoma; TMBPI, Tumor Mutation Burden Prognostic Index. 
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Figure S1 Genecloud plot showed mutation information of genes in ccRCC. ccRCC, clear cell renal cell carcinoma.
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Figure S2 Differential analysis showed the distributions of immune cells in low- and high-TMB samples, where immune fractions were 
relatively lower in high-TMB groups from the heatmap. TMB, tumor mutation burden.
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Table S1 Top GO items for differentially expressed genes

ID Description Gene ratio Bg ratio P value p.adjust qvalue Gene ID Count

GO:0002446 Neutrophil  
mediated immunity

60/1,164 499/18,493 1.03E-06 0.00277226 0.002741971 MGST1/GAA/ARSB/PRDX4/RAB7A/VAPA/SLC15A4/RNASET2/SIRPA/CYB5R3/GSTP1/AP1M1/
NEU1/MVP/DERA/CTSA/MLEC/CD55/RHOA/FUCA2/RNASE2/ANXA3/DNASE1/RAB14/
DNASE1L3/HEXB/PTPRN2/ALDOA/LPCAT1/SLCO4C1/CD68/PSMD6/S100A9/ACTR10/FTH1/
LAMTOR2/HSP90AA1/PSMD3/ANO6/OSCAR/TNFAIP6/CFD/PGAM1/DYNC1LI1/C3/CYBA/
GUSB/ALDH3B1/ARMC8/SLC2A5/APRT/ATP6V0A1/RAB37/SPTAN1/TIMP2/TSPAN14/CKAP4/
DDOST/CD47/PLA2G1B

60

GO:0002283 Neutrophil activation  
involved in immune  
response

59/1,164 488/18,493 1.06E-06 0.00277226 0.002741971 MGST1/GAA/ARSB/PRDX4/RAB7A/VAPA/SLC15A4/RNASET2/SIRPA/CYB5R3/GSTP1/AP1M1/
NEU1/MVP/DERA/CTSA/MLEC/CD55/RHOA/FUCA2/RNASE2/ANXA3/DNASE1/RAB14/
DNASE1L3/HEXB/PTPRN2/ALDOA/LPCAT1/SLCO4C1/CD68/PSMD6/S100A9/ACTR10/FTH1/
LAMTOR2/HSP90AA1/PSMD3/ANO6/OSCAR/TNFAIP6/CFD/PGAM1/DYNC1LI1/C3/CYBA/
GUSB/ALDH3B1/ARMC8/SLC2A5/APRT/ATP6V0A1/RAB37/SPTAN1/TIMP2/TSPAN14/CKAP4/
DDOST/CD47

59

GO:0042119 Neutrophil  
activation

59/1,164 498/18,493 2.06E-06 0.003575223 0.003536161 MGST1/GAA/ARSB/PRDX4/RAB7A/VAPA/SLC15A4/RNASET2/SIRPA/CYB5R3/GSTP1/AP1M1/
NEU1/MVP/DERA/CTSA/MLEC/CD55/RHOA/FUCA2/RNASE2/ANXA3/DNASE1/RAB14/
DNASE1L3/HEXB/PTPRN2/ALDOA/LPCAT1/SLCO4C1/CD68/PSMD6/S100A9/ACTR10/FTH1/
LAMTOR2/HSP90AA1/PSMD3/ANO6/OSCAR/TNFAIP6/CFD/PGAM1/DYNC1LI1/C3/CYBA/
GUSB/ALDH3B1/ARMC8/SLC2A5/APRT/ATP6V0A1/RAB37/SPTAN1/TIMP2/TSPAN14/CKAP4/
DDOST/CD47

59

GO:0043312 Neutrophil  
degranulation

57/1,164 485/18,493 3.92E-06 0.005112556 0.005056697 MGST1/GAA/ARSB/PRDX4/RAB7A/VAPA/SLC15A4/RNASET2/SIRPA/CYB5R3/GSTP1/AP1M1/
NEU1/MVP/DERA/CTSA/MLEC/CD55/RHOA/FUCA2/RNASE2/ANXA3/RAB14/HEXB/PTPRN2/
ALDOA/LPCAT1/SLCO4C1/CD68/PSMD6/S100A9/ACTR10/FTH1/LAMTOR2/HSP90AA1/
PSMD3/ANO6/OSCAR/TNFAIP6/CFD/PGAM1/DYNC1LI1/C3/CYBA/GUSB/ALDH3B1/ARMC8/
SLC2A5/APRT/ATP6V0A1/RAB37/SPTAN1/TIMP2/TSPAN14/CKAP4/DDOST/CD47

57

GO:0005774 Vacuolar  
membrane

51/1,202 397/19,659 4.11E-07 0.000167399 0.000165144 MGST1/GAA/RAB7A/VAPA/SLC15A4/DAGLB/P2RX4/GLMP/ABCC3/AP1M1/NEU1/SLC35F6/
CTSA/ATP6V1B1/C12orf66/ABCC6/DRAM1/ABCD1/RAB14/SLC39A11/NAPG/RPN2/ACP2/
LPCAT1/SLCO4C1/VASN/CD68/KXD1/AP2A1/ATRAID/VPS33A/SORT1/GNAQ/ATP6V0A4/
LAMTOR2/SLC17A5/PLA2G4F/RAB12/ATP6V1A/ENPEP/LDLR/PIP4P1/DAB2/CLN3/
GABARAPL2/WDR41/ATP6V0A1/RAB37/ITM2C/CKAP4/DDOST

51

GO:0098852 Lytic vacuole  
membrane

46/1,202 345/19,659 5.26E-07 0.000167399 0.000165144 MGST1/GAA/RAB7A/VAPA/SLC15A4/DAGLB/P2RX4/GLMP/AP1M1/NEU1/SLC35F6/CTSA/
C12orf66/DRAM1/ABCD1/RAB14/SLC39A11/NAPG/ACP2/LPCAT1/SLCO4C1/VASN/CD68/
KXD1/AP2A1/ATRAID/VPS33A/SORT1/GNAQ/ATP6V0A4/LAMTOR2/SLC17A5/PLA2G4F/
RAB12/ATP6V1A/ENPEP/LDLR/PIP4P1/DAB2/CLN3/WDR41/ATP6V0A1/RAB37/ITM2C/CKAP4/
DDOST

46

GO:0005765 Lysosomal  
membrane

45/1,202 344/19,659 1.19E-06 0.000252042 0.000248648 MGST1/GAA/RAB7A/VAPA/SLC15A4/DAGLB/P2RX4/GLMP/AP1M1/NEU1/SLC35F6/CTSA/
C12orf66/DRAM1/ABCD1/RAB14/NAPG/ACP2/LPCAT1/SLCO4C1/VASN/CD68/KXD1/AP2A1/
ATRAID/VPS33A/SORT1/GNAQ/ATP6V0A4/LAMTOR2/SLC17A5/PLA2G4F/RAB12/ATP6V1A/
ENPEP/LDLR/PIP4P1/DAB2/CLN3/WDR41/ATP6V0A1/RAB37/ITM2C/CKAP4/DDOST

45

GO:0030667 Secretory granule  
membrane

34/1,202 295/19,659 0.0002868 0.045672869 0.045057759 MGST1/GAA/RAB7A/VAPA/SLC15A4/SIRPA/AP1M1/ATP8B3/MLEC/ABCA3/CD9/CD55/RHOA/
VAMP2/RAB14/ICA1/PTPRN2/LPCAT1/SLCO4C1/CD68/APLP2/LHFPL2/LAMTOR2/ANO6/
DYNC1LI1/CYBA/ALDH3B1/SLC2A5/ATP6V0A1/RAB37/TSPAN14/CKAP4/DDOST/CD47
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