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Abstract: The number of diagnostic test accuracy (DTA) studies concerning biomarkers have gradually 
increased during the past years. However, study designs remain imperfect, and the statistical methods used 
are not meaningful in some published studies. Here, we introduce recommendations for designing DTA 
studies, including consecutive enrollment of participants with uniform inclusion and exclusion criteria, 
blinded testing and interpretation, prespecified thresholds, and the use of one reference standard for all 
subjects. In addition, we also describe more relevant statistical methods in DTA studies, including decision 
curve analysis (DCA), nomograms, diagnostic model and scale, net reclassification index (NRI), and the 
integrated discriminatory index (IDI). This review may help clinicians to better design DTA studies that 
investigating biomarkers.
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A diagnostic test accuracy (DTA) study is a special 
type of clinical research. Traditional observational 
or interventional research primarily focuses on the 
efficiency and safety of treatment approaches, or factors 
affecting the occurrence or outcomes of a target disease. 
In contrast, DTA studies center around the diagnostic 
efficiency of index tests, including those of serum 
biomarkers and imaging parameters. The metrics used to 
estimate the diagnostic efficiency of an index test include 
sensitivity, specificity, accuracy, area under curve (AUC), 
positive/negative likelihood ratio (PLR/NLR), and 
positive/negative predictive value (PPV/NPV) (1).

The majority of diseases have their own reference 
standards; however, the clinical application of their 
reference standards usually has shortcomings which limits 
their clinical application. In breast cancer diagnosis, for 

example, the reference standard for breast cancer diagnosis 
is biopsy, which is invasive and operator dependent. 
Consequently, researchers usually search for some 
noninvasive, low-cost, convenient, objective, and shorter 
turn-around time (TAT) tools for breast cancer diagnosis, 
like serum or urine biomarkers. Notably, during the past 
decades, the number of studies investigating diagnostic 
accuracy of biomarkers has gradually increased. This may 
be by virtue of biomarkers’ advantages, which include lower 
costs, a noninvasiveness approach, objective assessment, 
convenience, and shorter TAT. Before deciding whether 
to recommend a biomarker in a guideline, it is crucial to 
evaluate its diagnostic accuracy in various clinical settings. 
The studies with rigorous design and meaningful statistical 
analysis can provide strong and straightforward evidence 
for guideline markers. Therefore, it is essential that studies 
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be conducted scrupulously in order to properly evaluate the 
diagnostic accuracy of biomarkers.

Here, we review and summarize the key knowledge 
needed for designing a DTA study that investigates 
the diagnostic accuracy of biomarkers. Although only 
biomarkers are discussed in this study, some of the 
conclusions in this report can also be extended to other 
diagnostic tools, such as imaging, immunochemistry, or 
electrocardiograph parameters.

Consecutively enrolling participants with 
uniform inclusion and exclusion criteria

In clinical practice, the information obtained first for 
diagnosis is history, symptoms, and signs. Therefore, these 
are usually listed as inclusion and exclusion criteria in DTA. 
For example, if a patient with dyspnea visits an emergency 
department (ED), heart failure (HF) may be suspected by a 
clinician. However, the current criteria for HF diagnosis is 
very subjective, and treatment response is needed in some 
cases. In such cases, some researchers may consider serum 
biomarkers for HF diagnosis, including N-terminal pro-
brain natriuretic peptide (NT-proBNP). When performing 
a study investigating the diagnostic accuracy of NT-proBNP 
for HF, the inclusion criteria should be patients with dyspnea 
who visit the ED. Notably, although some patients visit 
the ED complaining of dyspnea, their diagnosis is easy to 
make based on history, signs, or symptoms, trauma induced 
dyspnea. Therefore, trauma-induced dyspnea should be 
listed as an exclusion criterion (2). The participants who 
are enrolled should meet the inclusion criteria but should 
not meet the exclusion criteria. In some studies, researchers 
enroll healthy individuals as controls. This type of study 
design can bias the diagnostic accuracy of an index test, 
because healthy individuals are obviously not the target 
population in whom HF is suspected (3,4).

Another design weakness involves the two-gate design (3). 
In a study investigating the diagnostic accuracy of serum 
and urine cytokeratin-19 fragments (CYFRA 21-1) for 
bladder cancer (5), the researchers did not report whether 
there was a uniform inclusion and exclusion criteria for 
patient enrollment. They only reported that they enrolled 
some patients with bladder cancer, and patients with 
cystitis, urolithiasis, urinary tract infection (UTI), kidney 
carcinomas, and benign bladder tumor were set as controls. 
In fact, some of the non-bladder cancer subjects might have 
had different signs, symptoms, and history when compared 
with the bladder cancer patients. Thus, they could not 

be the target population in whom bladder cancer should 
be suspected. In short, uniform inclusion and exclusion 
criteria are essential to ensuring the representativeness of 
participants in DTA studies. The representativeness of 
subjects is especially important because only studies with a 
real-world design can guide real-world clinical practice.

In addition to uniform inclusion and exclusion criteria, 
another key point to ensure the representativeness of 
participants is consecutive enrollment. That means, unless 
ethical issues arise, all participants who meet the inclusion 
criteria and do not meet the exclusion criteria should be 
enrolled, irrespective of their final diagnosis, social and 
economic status, disease severity, and complications. In 
a study investigating the diagnostic accuracy of CYFRA 
21-1 for bladder cancer (5), the researchers did not report 
whether the participants were consecutively enrolled, the 
ramifications of which were that the prevalence of bladder 
cancer in the studied cohort might not have been consistent 
with clinical practice. In a DTA study, prevalence has 
theoretically little effect on sensitivity, specificity, PLR, and 
NLR; however, NPV, and PPV are greatly affected by it (6). 
Therefore, the PPV and NPV in this study are unreliable. 
Usually, we believe that the level of evidence from 
prospective studies is higher than that from retrospective 
studies. This is partly because that, in prospective DTA 
studies, subjects can be consecutively enrolled, and thus 
the prevalence of target disease is consistent with clinical 
settings. In addition, the proportion of missing data is lower 
in prospective studies. In retrospective studies, meanwhile, 
some subjects may be excluded because they have some 
missing value, and the prevalence of target disease is 
problematic.

I suggest the full title of a DTA report should be PIDTA: 
P, participants; I, index test; D, study design; T, target 
disease; A, aims. The two key characteristics of study design 
are the type of data collection (prospective or retrospective) 
and whether blinding is performed. The aims of a study 
include evaluating the diagnostic accuracy of an index test, 
comparing the diagnostic accuracy of two or more index 
tests, and evaluating whether a new diagnostic test provides 
additional diagnostic information beyond conventional 
diagnostic information.

Here are two examples of DTA report titles:
•	 Diagnostic accuracy of N-terminal pro-brain 

natriuretic peptide for heart failure in dyspnea patients: 
a prospective study (P: dyspnea patients; I: N-terminal 
pro-brain natriuretic peptide; D: prospective study; T: 
heart failure; A: only evaluate the diagnostic accuracy 



Annals of Translational Medicine, Vol 7, No 23 December 2019 Page 3 of 8

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):788 | http://dx.doi.org/10.21037/atm.2019.11.133

of N-terminal pro-brain natriuretic peptide).
•	 Head-to-head comparison of serum and urine 

cytokeratin-19 fragments for bladder cancer diagnosis 
in hematuria patients: a prospective and double-
blinded study (P: hematuria patients; I: serum and 
urine cytokeratin-19 fragments; D: prospective, 
double-blinded, and head-to-head comparison; T: 
bladder cancer; A: comparing the diagnostic accuracy 
of serum and urine cytokeratin-19 fragments).

Blinded testing and interpretation

Blinded design is usually used in interventional studies. In 
DTA studies, blinded design has two key points. One is 
that the results of an index test should be unknown by the 
clinicians who make the final diagnosis (clinician blinded), 
and the other is that the final diagnosis of subjects should 
be unknown to operator who perform the index test 
determination (operator blinded).

For biomarkers or other laboratory tests, operator-
blinding may have little effect on the final diagnosis. This 
is due to the fact that these are objective results obtained 
from laboratory instruments. However, for some scales 
or questionnaires, the effect of operators cannot be 
neglected. If the operator who records the scale knows the 
final diagnosis of the subjects, they may be more prone to 
categorize the subjects into the case group, leading to an 
overestimation of the diagnostic accuracy of the index test.

Clinician-blinding is another critical issue in designing 
DTA studies. This is especially important in the conditions 
where the diagnostic criteria for the target disease is 
subjective. NT-proBNP for HF diagnosis in dyspnea 
patients is a typical example. If the clinicians who make the 
final diagnosis already know the results and NT-proBNP 
before diagnosis, some of the non-HF subjects with higher 
NT-proBNP may be misclassified as HF, and the diagnostic 
accuracy of NT-proBNP may be overestimated.

Some of biomarkers have been listed as a component 
or item of a diagnostic criterion, such as serum anti-cyclic 
citrullinated peptide (anti-CCP) for rheumatoid arthritis 
(RA) (7) and D-dimer for disseminated intravascular 
coagulation (DIC) (8). In these cases, it is unreasonable 
to evaluate the biomarker’s diagnostic accuracy. In fact, 
if a biomarker has been recommended as a diagnostic 
marker for a given disease by a guideline, it means that its 
diagnostic value is very clear and robust, and the studies 
investigating the diagnostic accuracy of the biomarker may 
lack novelty.

Double blinding is very important when comparing the 
diagnostic marker of two biomarkers in a head-to-head 
manner. In a study comparing the diagnostic accuracy of 
BNP, NT-proBNP, and mid-regional pro-atrial natriuretic 
peptide (MR-proANP) for HF in dyspnea patients visiting 
ED, NT-proBNP and MR-proANP were masked to 
clinicians who made the final diagnosis, while the results 
of the BNP were not masked due to ethical reasons (9). In 
cases like these, it is reasonable to compare the diagnostic 
accuracy of NT-proBNP and MR-proANP, while it is 
unreasonable to compare the diagnostic accuracy of NT-
proBNP and BNP, or MR-proANP and BNP. This is 
because the knowledge of BNP may positively influence the 
diagnosis of HF and bias the diagnostic accuracy in favor of 
BNP (9).

Prespecified threshold

If the index test has categorized data with a clear and well-
defined threshold, a two-by-two table can be constructed 
while sensitivity, specificity, NLR, PLR, PPV, and NPV 
can be easily calculated. However, for continuous data, the 
situation is more complicated, because there is a trade-off 
between sensitivity and specificity. Take NT-proBNP and 
HF diagnosis in dyspnea patients as an example. It is well 
known that HF patients have significantly higher serum NT-
proBNP than non-HF patients. If the threshold is set at a 
low level, the sensitivity would be high while the specificity 
would be low. The sensitivity decreases and the specificity 
increases if the threshold increases. Therefore, it is quite 
challenging for researchers to establish an optimal threshold. 
Receiver operator characteristics (ROC) curves with AUC 
can be used to estimate the overall diagnostic accuracy 
of an index test with continuous distribution. However, 
the clinical interpretation of AUC is not straightforward. 
Some researchers adopt the threshold with the maximum 
Youden index on a ROC curve as a recommenced threshold. 
However, this data-driven strategy may overestimate the 
diagnostic accuracy of an index test (10).

Here, we present two personal opinions concerning 
threshold selection. The first approach is to adopt the 
threshold used in previous studies. Because the threshold 
is prespecified, it has equal probability to positively or 
negatively bias the diagnostic accuracy of an index test. 
Another approach is more complicated, depending the 
clinical settings. If the index test is used for ruling out 
a target disease (e.g., troponin I for ruling out acute 
myocardial infarction, D-dimer for ruling out pulmonary 
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embolism), a prespecified NPV should be defined at a high 
level (e.g., 99.0% or 99.5%). For an index test which aims 
to decrease the risk of further diagnostic tools [e.g., tumor 
markers for decreasing the risk of invasive biopsy (11)], 
the strategy proposed by Pepe et al. is suggested (12). This 
strategy emphasizes adopting a threshold depending on the 
prevalence of the target disease in the study’s cohort, and 
the ratio of benefit associated with the clinical outcomes of 
a positive test in cases [true positive (TP)] to cost associated 
with a positive test in controls [false positive (FP)].

A single reference standard for all subjects

A reference standard is a critical component in a DTA 
study. The basic requirement for a reference is that it 
should correctly differentiate disease and non-disease. 
For some diseases, the reference standards are clear and 
widely accepted, like biopsy for breast cancer. However, for 
some diseases, the diagnosis is more subjective, such as the 
diagnosis of pneumonia in dyspnea patients. Under such 
conditions, an expert committee is usually established to 
make the final diagnosis.

Usually, the reference used in a DTA study should be 
performed in all subjects, regardless of the presence of 
disease. For example, in a study investigating the diagnostic 
accuracy of methylated septin 9 for breast cancer (13), the 
researchers reported the following:

“A total of 86 breast tumor tissue samples (59 breast cancer 
and 27 benign breast tumor patients) confirmed by pathologic 
examinations were obtained from the needle breast biopsy 
collections of Liaocheng People’s Hospital between August 2016 
and June 2017”.

It is clear that all of the participants, regardless of whether 
breast cancer was present, received pathologic examinations, 
and thus this study has no bias in the reference standard. 
However, for some studies, this issue is not clearly reported 
or completed correctly. For example, in a study investigating 
the diagnostic accuracy of prothrombin induced by vitamin 
K absence-II (PIVKA-II) for chronic hepatitis B (CHB)-
related hepatocellular carcinoma (HCC), 134 HCC and 119 
CHB patients without HCC (control group) were enrolled. 
The researcher reported the following:

“ T h e  H C C  s u b j e c t s  w e r e  i n i t i a l l y  d i a g n o s e d  b y 
ultrasonography, computed tomography (CT), magnetic resonance 
imaging (MRI), or selective celiac angiography, and confirmed 
by pathological examination of the liver biopsies. Chronic HBV 
infection was defined as the persistent existence of hepatitis B 
surface antigen (HBsAg) for at least 1 year or HBV DNA 

concentrations more than 105”.
The statement is unclear and it is unknown whether 

the authors exclude HCC patients in the control group 
using the reference standard. CHB patients complicated 
with HCC is very common in clinical practice. Therefore, 
liver biopsy, computed tomography (CT), and magnetic 
resonance imaging (MRI) should also be performed in the 
control group to exclude HCC (14).

A few meaningful statistical methods

As mentioned above, ROC curve analysis is a popular 
method to estimate the diagnostic accuracy of an index test. 
ROC curve is the combination of sensitivity and specificity 
at various thresholds with the AUC reflecting the global 
diagnostic accuracy of an index test.

Currently, several novel statistical methods have been 
developed for DTA studies. Here, we introduce a few of 
them.

Decision curve analysis (DCA)

A ROC curve with a sensitivity and specificity at a certain 
threshold reflects the diagnostic accuracy of an index test; 
however, it cannot conclude whether there is net benefit for 
a participant nor determine how many patients will benefit 
from the index test. DCA is a novel statistical method for 
DTA studies proposed by Vickers et al. in 2006 (15). It 
graphically depicts the net benefit for all subjects at various 
thresholds. Take a recent work concerning diagnostic 
accuracy of urine routine parameters for UTI as an  
example (16). Urine culture is the standard reference 
for UTI diagnosis, but it has some limitations in that it 
is subject to contamination and can be time- and labor-
consuming. Therefore, some researchers suggest using 
urine bacteria for UTI diagnosis. In this study, the 
prevalence of UTI in studies cohort was 16.8% (156/927). 
At a probability of 30%, the net benefit of urine bacteria 
was 0.0419. The reasons for this are explained below.

If the clinicians or patients believe that antibiotic therapy 
should be initiated or urine culture should be performed 
when the probability of UTI is higher than 30%, some 
UTI patients with a probability of more than 30% (TP) 
would benefit. However, for some non-UTI patients with 
a probability of more than 30% (FP), antibiotics therapy 
or urine culture is harmful. Hence, what is key under such 
circumstance is to ascertain whether the benefit is greater 
than the harm for subjects with a probability of more than 
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30%. For an individual, we can calculate the probability 
of harm and benefit according to a formula proposed by 
Vickers  et al. (15). The mathematic basis of the formula is 
beyond the focus of this review. What is important is that 
the net benefit at the probability of 30% is 0.0419. This 
means that, if the clinicians ask 100 suspected UTI patients 
to receive bacteria determination and let the patients with 
a probability of more than 30% receive urine culture or 
antibiotics therapy, a net 4.19 TP patients (UTI patients) 
will be identified, without increasing the number of FP (17).

Diagnostic model

For a given disease, there may be several diagnostic 
markers. Therefore, it is valuable to evaluate whether these 
diagnostic markers, when used together, can improve the 
diagnostic accuracy. Some diagnostic models have been 
proposed to incorporate available diagnostic markers. 
One of the examples is the Risk of Ovarian Malignancy 
Algorithm (ROMA) score for ovarian cancer diagnosis in 
patients with a pelvic mass (18). ROMA score incorporates 
two widely used ovarian cancer diagnostic markers, cancer 
antigen 125 (CA125) and human epididymis protein 4 
(HE4), with a logistic regression model. The probability of 
ovarian cancer can be calculated with the logistic regression 
model, and a ROC curve can be drawn with the probability. 
If the AUC of the probability is significantly higher than 
a single test, it means that the diagnostic accuracy of the 
model is superior to a single test, and combinational use of 
biomarkers is encouraged.

In addition to a logistic regression model, some novel 
machine learning approaches can also be used to build a 
diagnostic model (19-21). However, it should be noted that 
although machine learning represents an advanced tool in 
DTA study, it also has some drawbacks, which may limit its 
clinical applications (22).

Nomograms

A nomogram is usually used to predict the probability of 
survival in prognostic studies. Some researchers also use it 
to graphically calculate the probability of a disease for a given 
patient based on an index test or diagnostic model. In a 
recently published, prospective, multicenter study regarding 
the diagnostic accuracy of alpha-fetoprotein (AFP) and 
PIVKA-II for HCC, the authors constructed a diagnostic 
nomogram using age, gender, ln(AFP) and ln(PIVKA-
II) (23). A nomogram is very straightforward method, and 

it can be easily interpreted. Put simply, the point of each 
potential diagnostic parameter and its total points are 
indicated in the nomogram. The corresponding probability 
of HCC at a total point can be easily calculated in the 
nomogram. For example, if a patient is male (approximately 
5 points), aged more than 65 years (approximately  
20 points), ln(AFP) is 6 (approximately 30 points), and 
ln(PIVKA-II) is 3 (approximately 20 points), his total point 
sum is 75, and the corresponding probability of HCC in the 
nomogram is approximately 80%. An online risk calculator 
can also be built to facilitate the use of a nomogram, like in 
the previous study (23).

Net reclassification index (NRI) and integrated 
discriminatory index (IDI)

NRI and IDI are two widely used statistical methods to 
estimate whether an investigated diagnostic marker provides 
additional diagnostic value beyond traditional clinical 
information (24). For example, in a previous study (25), 
researchers investigated the diagnostic accuracy of soluble 
CD146 (sCD146) for HF in acute dyspnea patients visiting 
ED. Although the researchers proved that sCD146 was a 
useful diagnostic marker for HF, with an AUC of 0.870 and 
comparable to that of NT-proBNP, some were skeptical 
as to whether sCD146 could provide additional diagnostic 
information beyond NT-proBNP. To address this issue, the 
researcher used NRI and IDI to analyze the data.

Table 1 is an example of using NRI and IDI to assess the 
additional diagnostic value of sCD146 beyond NT-proBNP. 
The methods used to calculate category-NRI, continuous 
NRI, and IDI were as follows: when NT-proBNP is used 
alone, the probability of HF can be calculated with a logistic 
regression model (basic model). Next, another logistic 
regression model (new model) can be used to incorporate 
NT-proBNP and sCD146, and another probability can also 
be calculated. The threshold of the category-NRI is set at 
0.20, meaning 0.20 is a threshold to define positive (HF) 
and negative (non-HF) results. The two probabilities in 
basic and new models are used to calculate category-NRI, 
continuous NRI, and IDI in the following fashion.

•	 IDI is the differential value between these two 
probabilities. Therefore, for patient 1 with HF, the 
IDI is 0.26–0.25=0.01. For patient 101 without HF, 
the IDI is 0.12–0.11=0.01.

•	 Continuous NRI is used to estimate whether the 
probability is improved. If the probability has been 
improved in a new model, continuous NRI is labeled 
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as 1; otherwise, it is labeled as –1. Therefore, for 
patient 1 with HF, the continuous NRI is 1; while for 
patient 102 without HF, the continuous NRI is –1.

•	 Two-category NRI is used to estimate whether the 
changes of the probabilities exceed the predefined 
threshold, which here is 0.20. For patient 1 with 
HF, although the probability in the new model is 
increased, both of the probabilities in the basic and 
new model are more than 0.20, indicating that the 
new model does not improve the diagnostic accuracy 
of the basic model. Therefore, the two-category NRI 
is 0. For patient 103 without HF, the probability 
decreased from 0.21 (higher than 0.20) to 0.19 (lower 
than 0.20), indicating that this is a non-HF patient 
who has been misdiagnosed by the basic model and 
has been correctly diagnosed by the new model. 
Therefore, the two-category NRI is 1.

Taking IDI as an example, the overall IDI can be 
calculated using the following formula:

Sum of  IDI in HF Sum of  IDI in nonHFIDI = +
Number of  HF Number of  nonHF

	 [1]

The methods used to calculate continuous or category 
NRI is similar to IDI. A Z test can be used to detect 
whether IDI, continuous NRI, or category NRI is 
significantly higher than 0. IDI and NRI can be easily 
calculated with an R package PredictABEL (26).

Diagnostic scales

In DTA studies, it is valuable to determine whether a novel 

diagnostic marker provides additional diagnostic value 
beyond available conventional information, including 
signs, symptoms, laboratory tests, microbiological findings, 
and imaging characteristics. NRI and IDI can be used 
to address this issue. A basic model can be constructed 
with conventional parameters, and a new model can be 
constructed with a basic model and the index test. With 
these two models, NRI and IDI can be calculated, and 
whether an index test provides additional diagnostic 
information can be verified. However, the basic model has 
two limitations. The first limitation is that the basic model 
may miss some conventional parameters, and thus may 
not reflect the overall diagnostic accuracy of the available 
parameters. The second limitation is the fact that the 
clinical setting is more complicated than a mathematic 
model composed of several parameters or variables. The 
experience or ability of the physicians should be considered 
when making diagnosis.

To overcome the limitations of NRI and IDI, some 
researchers use a diagnostic scale to evaluate whether a 
new test adds additional information beyond conventional 
clinical information. For example, in a study investigating 
NT-proBNP for HF diagnosis in dyspnea patients, the 
researchers asked two physicians to read the medical 
records of all subjects, including laboratory tests (except 
NT-proBNP), history, signs, symptoms, and imaging 
characteristics. Then, these two physicians estimated the 
likelihood of HF in each patient with a scale from 0 to 
100% (27). Scale 0 indicated that the subject definitely 
did not have HF, and scale 100 indicated that the subject 

Table 1 Mathematical basis of the NRI and IDI

Patient ID Diagnosis
Probability in the basic  

model (NT-proBNP)
Probability in the new model  

(NT-proBNP + sCD146)
Continuous  

NRI
Two-category  

NRI (0.20)
IDI

1 HF 0.25 0.26 1 0 0.01

2 HF 0.18 0.19 1 0 0.01

3 HF 0.19 0.23 1 1 0.04

4 HF 0.22 0.18 –1 –1 –0.04

101 Non-HF 0.12 0.11 1 0 0.01

102 Non-HF 0.13 0.21 –1 –1 –0.08

103 Non-HF 0.21 0.19 1 1 0.02

104 Non-HF 0.22 0.23 –1 0 –0.01

NRI, net reclassification index; IDI, integrated discriminatory index; NT-proBNP, N-terminal pro-brain natriuretic peptide; sCD146, soluble 
CD146; HF, heart failure.
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definitely had HF. This scale could reflect the overall 
diagnostic ability of all available information, as well as 
the experience or ability of the common physicians in the 
clinical setting. NRI and IDI were then used to estimate 
whether NT-proBNP provided additional diagnostic 
information beyond the scale. Actually, the researchers 
could also ask other physicians to read all the medical 
records including those for NT-proBNP and then estimate 
the likelihood of HF with a new scale. The AUC of these 
two scales (with or without NT-proBNP) could also be 
compared to address whether NT-proBNP can improve the 
diagnostic accuracy of clinicians.

Conclusions

To ascertain the diagnostic accuracy of a biomarker, it is 
crucial to estimate the diagnostic accuracy of biomarkers 
in studies using rigorous design. In this review, we 
summarized the key information for designing a DTA 
study of biomarkers, and introduced some useful statistical 
methods. These suggestions and statistical methods may 
help researchers in designing better DTA studies.
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