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Background: Acute myeloid leukemia (AML) is a heterogeneous clonal disease that prevents normal 
myeloid differentiation with its common features. Its incidence increases with age and has a poor prognosis. 
Studies have shown that DNA methylation and abnormal gene expression are closely related to AML. 
Methods: The methylation array data and mRNA array data are from the Gene Expression Omnibus (GEO) 
database. Through the GEO data, we identified differential genes from tumors and normal samples. Then 
we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses on 
these differential genes. Protein-protein interaction (PPI) network construction and module analysis were 
performed to screen the highest-scoring modules. Next, we used SurvExpress software to analyze the genes 
in the highest-scoring module and selected potential prognostic genes by univariate and multivariate Cox 
analysis. Finally, the three genes screened by SurvExpress software were analyzed using the methylation 
analysis site MethSurv to explore AML associated methylation biomarkers.
Results: We found three genes that can be used as independent prognostic factors for AML. These 
three genes are the low expression/methylation genes ATP11A and ITGAM, and the high expression/low 
methylation gene ZNRF2.
Conclusions: In this study, we performed a comprehensive analysis of DNA methylation and gene 
expression to identify key epigenetic genes in AML.
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Introduction

This study aims to analyze acute myeloid leukemia (AML); 
a group of genetically heterogeneous malignant clonal 
diseases that can block normal myeloid differentiation (1), 
as well as AML which is also the most common type of 
adult leukemia with the poorest prognosis. 

Only in the United States of 2019, there have been 
10,920 deaths, and 21,450 new cases of AML diagnosed (2). 
At present, induction therapy for AML is based primarily 
on cytotoxic drugs that enable complete remission (CR) in 
70% of adult patients (3). However, the likelihood of the 
recurrence rate in AML patients is still high, especially in 
older patients with prognosis of having high-risk factors. 
Yet, the long-term cure rate was lower in the absence of 
allogeneic hematopoietic stem cell transplantation (Allo-
HCT) in adult AML patients with first complete remission 
(CR1) (4). 

With the emergence of various molecular targeted 
therapies for AML in the last two years, there are now 
several new drugs and other clinical trials currently 
underway; however, there is not enough data to know 
which newly approved drugs should be chosen or in which 
order or combination they should be used in (2). New 
early diagnostic biomarkers and therapeutic targets are 
therefore urgently needed to improve the diagnosis and risk 
management of AML in order to reduce the mortality rate 
of AML.

Epigenetic modifications include a class of heritable 
non-genetic changes in gene expression, usually including 
DNA methylation, histone modifications, and chromatin 
remodeling (5). In healthy hematopoietic stem cells, 
epigenetic processes play a key role in cell differentiation 
and hematopoiesis (6). Among them, DNA methylation 
affects the function of key genes. It is closely related to 
tumors by silencing tumor suppressor genes and activating 
oncogenes by high/low methylation (7). Abnormal DNA 
methylation is considered a hallmark of AML and is 
considered a powerful epigenetic marker in early diagnosis, 
prognosis prediction, and treatment decision making (8). 

Abnormal gene expression is closely related to tumor 
prognosis. Studies have shown that NPM1 (9), FLT3 
(10,11), C-KIT (12), AML1-ETO (13), RUNX1 (3,14), TP53 
(3,15), CBFB/MYH11 (13,16), TET2 (17), DNMT3A (18), 
JAK-STAT (19), and CXCR4 (20,21) ,HOXA family (22),  
NAT10 (23) gene are associated with prognosis of AML. A 
few studies have shown altered DNA methylation in cancer, 
but the roles of key differentially methylated genes (DMGs) 

and differentially expressed genes (DEGs) in AML remain 
unclear.

In this study, we performed a comprehensive analysis 
of DNA methylation and gene expression to identify key 
epigenetic genes in AML. The methylation genes and 
differential genes of AML patients and normal individuals 
were downloaded from the GEO database. After data 
preprocessing, we identified differential genes between 
tumors and normal samples and performed KEGG and 
GO analyses on these genes. Protein-protein interaction 
(PPI) network construction and module analysis were then 
performed, and the highest-scoring modules were screened. 
SurvExpress software and analyzed the genes to be assigned 
the highest-scoring module with a P value <0.05 were 
selected to perform survival analysis and risk assessment 
in the cancer dataset. Finally, MethSurv analyzed the 
three genes screened by SurvExpress software to explore 
methylation biomarkers associated with AML survival.

Methods

Microarray data

We extracted gene express ion (GSE114868)  and 
methylation (GSE63409) profiling data from the Gene 
Expression Omnibus (GEO) database at the National 
Center for Biotechnology Information.

The AML-associated dataset GSE63409 submitted by 
Jung N based on the GPL13534 platform was obtained 
from the GEO database and included 15 AML samples and 
5 normal samples. The AML-associated dataset GSE114868 
submitted by Huang H based on the GPL17586 platform 
was obtained from the GEO database and included 194 
AML samples and 20 normal samples (Figure 1).

Identification of DEGs

GEO provides users with a useful tool called GEO2R that 
can be used to analyze microarray data. GRO2R (https://
www.ncbi.nlm.nih.gov/geo/geo2r/) were used to analyze 
gene expression in GSE114868 and GSE63409. Gene 
expression (GSE114868) and methylation (GSE63409) 
data set genes were considered statistically significant as |t| 
≥2.0 and adj P<0.01. Then, we identified hypomethylated/
upregulated genes via overlapping the hypomethylated and 
overexpression gene lists and identified hypermethylated/
downregulated genes via overlapping the hypermethylated 
and low-expression gene lists. Finally, Then, we use the 

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Venn diagram network tool to draw the Venn diagram. 
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

Functional enrichment analyses for module genes

The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
is a database resource for understanding high-level functions 
and utilities of the biological system from molecular-level 
information. The Gene Ontology (GO) could be used to 
perform enrichment analysis. We used DAVID (https://
david.ncifcrf.gov/) to make KEGG pathway analysis and 
GO enrichment analysis, including Biological Process, 
Cellular Component, and Molecular Function for the 
hypomethylated/upregulated genes and hypermethylated/
downregulated genes. 

PPI network construction and module analysis

PPI analysis is used to search core genes and gene modules 
related to carcinogenesis. In this study, the PPI network 
analysis of the hypomethylated/upregulated genes and 
hypermethylated/downregulated genes were performed 
using the search tool for the Retrieval of Interacting Genes 
(STRING) database. The interaction score was set at 0.7. 

Then, MCODE plugin in Cytoscape is used to find clusters 
with the degree cut-off, haircut on, k-core, node score cut-
off, max depth set as 10, 0.2, 2, 0.2 and 100 in PPI network 
and the module with the highest score would be picked out 
to make survival analyses.

Survival analysis and Cox regression, ROC curve

SurvExpress is a comprehensive gene expression database 
and web-based tool that uses biomarker gene lists as 
input to provide survival analysis and risk assessment in 
cancer data sets (24). We selected genes in the highest-
scoring module of the hypermethylated low expression 
and low methylation high expression overlapping genes, 
respectively. The univariate Cox model was used to 
calculate the association between gene expression levels and 
patient overall survival (OS). When the P value was <0.05, 
its modular gene was used as an independent prognostic 
factor for patient survival. AML samples are divided into 
two groups: (I) high-risk group; (II) low-risk group. Survival 
analysis was performed by Kaplan-Meier survival plots, 
log-rank P value, and hazard ratio (HR, 95% confidence 
interval). By comparing the sensitivity and specificity of 
risk-based survival predictions, the accuracy of prognostic 

Figure 1 Graphical abstract.
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performance was assessed using ROC curves of patients 
over time, 10, 30, 50, and 70 months, respectively.

DNA methylation data in MethSurv

MethSurv is used to explore methylation biomarkers 
associated with the survival of various human cancers (25). 
MethSurv is freely available at https://biit.cs.ut.ee/methsurv. 
Through the MethSurv website, we will analyze the DNA 
methylation analysis of the selected AML-related genes in 
the TCGA database.

Results

Identification of DEGs and DMGs in AML

After obtaining DEGs and DMGs, 6,039 upregulated genes 
and 4,730 low-expression genes in GSE114868 were found 
from the gene expression microarray analysis. There were 
1,644 hypermethylated genes and 1,304 hypomethylated 
genes in GSE63409 identified by the gene methylation 
microarray analysis. Further analysis of overlapping genes 

revealed 273 hypomethylated/upregulated genes and 381 
hypermethylated/downregulated genes (Figure 2A,B).

KEGG pathway analysis

KEGG analysis was performed with hypomethylated/
high-expression genes and hypermethylated/low-
expression genes, and the first ten pathways were selected. 
Hypermethylated/low-expression genes were enriched 
in Th1 and Th2 cell differentiation, Epstein-Barr 
virus infection, Endocytosis, Th17 cell differentiation, 
Chemokine signaling pathway, Phagosome, Human 
immunodeficiency virus 1 infection, Toxoplasmosis, Human 
T-cell leukemia virus 1 infection, Human cytomegalovirus 
infection (Figure 3A). The hypomethylated/high-expression 
genes were significantly enriched in the thermogenesis, 
retrograde endocannabinoid signaling, oocyte meiosis, 
transcriptional misregulation in cancer, pathways in cancer, 
parathyroid hormone synthesis, secretion and action, 
glycine, serine and threonine metabolism, cholinergic 
synapse, Cushing syndrome, basal transcription factors 

Figure 2 Identification of aberrantly methylated differentially expressed genes in gene expression datasets (GSE114868) and gene 
methylation datasets (GSE63409). (A) Hypomethylation and upregulated genes; (B) hypermethylation and downregulated genes.

Figure 3 Analysis of the top ten pathways of KEGG for aberrant methylation differentially expressed genes in AML. (A) Hypermethylation 
and downregulated genes pathway names; (B) hypomethylation and upregulated genes pathway names.
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(Figure 3B). 

GO term analysis

GO analysis was performed with hypomethylated/high-
expression genes and hypermethylated/low-expression 
genes, and the first ten pathways were selected. Regarding 
the biological processes (BP), the hypomethylated/
upregulated genes were significantly enriched in regulation 
of methylation-dependent chromatin silencing, positive 
regulation of histone methylation, regulation of histone 
H3-K9 methylation, negative regulation of gene expression, 
epigenetic, L-serine metabolic process, regulation of 
intracellular steroid hormone receptor signaling pathway, 
negative regulation of small GTPase mediated signal 
transduction, regulation of Ras protein signal transduction, 
negative regulation of gene expression, gl ial  cel l 
development (Figure 4A). In the molecular function (MF), 
the hypomethylated/high-expression genes were enriched in 
helicase activity, proton-transporting ATP synthase activity, 
rotational mechanism, protein kinase binding, divalent 
inorganic cation transmembrane transporter activity, 
transcription coactivator activity, phosphatidylethanolamine 
binding, hyaluronoglucosaminidase activity, damaged 
DNA binding,  S-adenosylmethionine-dependent 
methyltransferase activity, RNA binding (Figure 4B). In 
the cellular component (CC), the analysis revealed that 
enrichment mainly occurred at intrinsic component of the 
cytoplasmic side of the plasma membrane, nuclear speck, 
mitochondrial proton-transporting ATP synthase complex, 
mitochondrial matrix, mitochondrial proton-transporting 
ATP synthase complex, coupling factor F(o), cytoplasmic 
vesicle membrane, cytoplasmic ribonucleoprotein granule, 
cytoplasmic vesicle, nuclear body, Cul4A-RING E3 
ubiquitin ligase complex (Figure 4C). 

The BP enriched by the hypermethylated/low-
expression genes included cytokine-mediated signaling 
pathway, protein phosphorylation, positive regulation of 
myeloid leukocyte mediated immunity, phosphorylation, 
N-acetylneuraminate metabolic process, positive regulation 
of NF-kappaB transcription factor activity, positive 
regulation of leukocyte degranulation, regulation of 
interleukin-12 production, regulation of apoptotic process, 
interferon-gamma-mediated signaling pathway (Figure 4D).  
In the MF, the hypomethylated/high-expression genes 
were enriched in protein kinase activity, actin filament 
binding, non-membrane spanning protein tyrosine kinase 
activity, actin-binding, Toll-like receptor binding, protein 

tyrosine kinase activity, PDZ domain binding, protein 
kinase binding, protein kinase A catalytic subunit binding, 
protein phosphatase binding (Figure 4E). In the CC, the 
hypermethylated/low-expression genes were enriched 
in the phagocytic vesicle, phagocytic vesicle membrane, 
tertiary granule membrane, is an integral component of 
endoplasmic reticulum membrane, specific granule, actin 
cytoskeleton, which is integral component of lumenal side 
of endoplasmic reticulum membrane, early endosome, 
tertiary granule, Golgi membrane (Figure 4F).

PPI network construction and module choice

PPI network analysis was performed through the STRING 
database and Cytoscape software. We obtained a PPI 
network map of hypomethylation/upregulation genes and 
hypermethylation/downregulation genes. The PPI network 
map of the hypomethylated/upregulated gene has 256 nodes 
and 176 edges (Figure 5), and the PPI network map of the 
hypermethylated/downregulated gene has 373 nodes and 
309 edges (Figure 6). The above two PPI network diagrams 
were respectively imported into the Cytoscape software to 
construct a module through the MCODE plug-in, in which 
the hypomethylation/upregulation gene was constructed 
into 9 modules, and the hypermethylation/downregulation 
gene was constructed into 12 modules. We selected the 
highest scoring modules (Figure 7A,B).

Survival analysis of genes

To assess whether the identified prognostic markers are 
valuable for predicting patient survival, we focused on the 
genes in the highest-scoring modules. We used SurvExpress 
software to analyze hypomethylated/upregulated, and 
hypermethylated/downregulated genes for univariate 
and multivariate Cox regression analysis. AML samples 
were divided into two groups: (I) high-risk group; (II) 
low-risk group. First, we performed the univariate Cox 
regression analysis of the highest-scoring module gene. The 
hypermethylation/downregulation gene module 1 has 20 
genes, and the hypomethylation/upregulation gene module 
1 contains 7 genes (Table 1). We screened for genes with 
P values <0.05 (ATP11A, ITGAM, ZNRF2). These three 
genes were then subjected to multivariate Cox regression 
analysis and found to have P values <0.05 (Table 2). The 
three genes were independent prognostic factors, and 
then we use three genes to establish a prognostic model 
(Figure 8A,B). The ROC curves assessed the accuracy of the 
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Figure 5 PPI network of hypomethylation/upregulation genes.
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Figure 6 PPI network of hypermethylation/downregulation genes.
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Table 2 Three survival-related genes based on multivariate Cox 
regression analysis

Genes HR 95% CI P value

ATP11A 0.599 0.441–0.813 0.001

ITGAM 1.305 1.144–1.488 <0.001

ZNRF2 0.579 0.408–0.822 0.002
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Figure 8 Multivariate Cox Regression analysis of three genes. (A) Kaplan-Meier survival curves for overall survival outcomes according to 
the risk cutoff point; (B) the heatmap of three independent AML-related prognostic genes. 2 genes were Hypermethylation/downregulation 
genes, and 1 gene were Hypomethylation/upregulation genes; (C) time-dependent ROC curves analysis for survival prediction by the three 
key genes; (D) Box plot of three key genes expression by risk groups.

prognostic model at 10, 30, 50, and 70 months (Figure 8C).  
These three genes were used to evaluate the prognosis 
of AML cytogenetic risk typing and cell morphological 
typing and found that these three genes differed in the 
intermediate/Normal and M2 prognostic analysis (Table 3). 
Finally, we show the expression levels and risk assessment of 
three key genes (Figure 8D).

DNA methylation data in MethSurv

MethSurv is used to explore methylation biomarkers 

associated with the survival of various human cancers. 

MethSurv analyzed DNA methylation in TCGA. We 

performed methylation analysis of three genes (ATP11A, 

ITGAM, ZNRF2) that can be used as independent 
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Table 3 Cytogenetic risk typing and morphological cell typing of these three genes based on multivariate Cox regression analysis in AML

Class HR 95% CI P value

CYTO-RISK-Favorable 2.750 0.570–13.300 0.190

CYTO-RISK-Intermediate/normal 1.750 1.050–2.900 0.029

CYTO-RISK-Poor 1.360 0.570–3.250 0.475

MORPHO-CODE-M0 undifferentiated 1.090 0.300–3.910 0.895

MORPHO-CODE-M1 1.750 0.740–4.100 0.195

MORPHO-CODE-M2 2.850 1.220–6.660 0.010

MORPHO-CODE-M3 3.990 0.410–38.940 0.198

MORPHO-CODE-M4 1.530 0.680–2.440 0.295

MORPHO-CODE-M5 0.880 0.240–3.200 0.849

AML, acute myeloid leukemia.

Table 4 The significant prognostic value of CpG in three key genes

Gene-CpG HR LR test P value

ATP11A-Body-Open_Sea-cg00990020 2.207 <0.001

ATP11A-Body-N_Shelf-cg04656015 2.273 <0.001

ATP11A-Body-N_Shelf-cg24199463 2.224 0.001

ATP11A-Body-S_Shelf-cg04229372 2.130 <0.001

ATP11A-Body-Open_Sea-cg00717219 1.837 0.001

ATP11A-Body-Open_Sea-cg25347801 1.826 0.002

ATP11A-Body-Open_Sea-cg21649349 1.975 0.004

ATP11A-Body-N_Shelf-cg03353885 1.881 0.002

ATP11A-Body-S_Shelf-cg09804528 1.866 0.002

ATP11A-Body-Open_Sea-cg17218041 1.884 0.008

ITGAM-Body-Island-cg05625471 1.558 0.036

ITGAM-Body-Island-cg02256631 1.523 0.045

ZNRF2-Body-Open_Sea-cg07510230 0.581 0.014

ZNRF2-Body-Open_Sea-cg07568841 0.655 0.023

ZNRF2-TSS1500-N_Shore-cg21557180 1.556 0.046

prognostic factors for AML in SurvExpress software. 
In the MethSurv software, we found that the P value of  
73 CpG sites in the hypermethylated/down-regulated 
ATP11A  in AML was <0.05, which we considered 
statistically significant. The top ten sites were shown in  
Table 4. Similarly, the hypermethylation/downregulation gene 
ITGAM has two CpG sites with a P value of <0.05, and the 
hypomethylation/upregulation gene ZNRF2 has three CpG 

sites with a P value of <0.05, which is statistically significant 
(Table 4). We found that the difference in DNA methylation 
between cg00990020 of ATP11A, cg05625471 of ITGAM, and 
cg07510230 of ZNRF2 was most pronounced (Figure 9A,B,C).

Discussion

AML is the most common acute leukemia in adults and is 
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Figure 9 DNA methylation of three key genes in MethSurv. (A) ATP11A; (B) ITGAM; (C) ZNRF2.
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a highly heterogeneous and fatal (1). DNA methylation is 
the most studied epigenetic modification and is essential 
in the promotion of many important BP (7). Abnormal 
DNA methylation can lead to a variety of pathological 
conditions, including carcinogenesis. (8) Certain DNA 
methylation engages in the initial stages of carcinogenesis, 
such as RASSF1A in ovarian cancer (26). In addition, 
DNA methylation is stable over some time and can be 
detected non-invasively in the blood (27). Therefore, DNA 
methylation has the exciting potential to become an early 
diagnostic biomarker for cancer. Multiple studies have 
shown that gene expression abnormalities are closely related 
to AML (10). Identification of novel biomarkers will aid in 
early diagnosis and improved prognosis. In this study, we 
performed a comprehensive analysis of DNA methylation 
and gene expression to identify key epigenetic genes in 
AML.

This study is the first to report bioinformatics studies 
and its association between gene methylation of AML 
and the corresponding mRNA expression. Through 
our research, we found three genes that can be used as 
independent prognostic factors for AML. These three 
genes are the low expression/methylation genes ATP11A 
and ITGAM, and the high expression/low methylation 
gene ZNRF2. ATP11A is an adenosine triphosphate 
binding cassette (ABC) transporter homolog gene and 
belongs to an extended family of ABC transporters that 
confer multidrug resistance to cancer cells. For example, 
in lymphocytic leukemia, cancer cells are resistant by 
increasing ATP11A expression (28). In previous studies, 
it was found that the expression level of ATP11A gene in 
colorectal cancer tumor tissues was significantly higher 
than that in corresponding normal tissues, and it was 
important for the prognosis evaluation of colorectal 
cancer (29). Studies have shown that the ATP11A gene is a 
methylation biomarker for prostate cancer and is expressed 
in patients with metastatic and lethal PCA (30). ITGAM 
is a major non-human leukocyte antigen associated with 
the pathogenesis of autoimmune diseases such as systemic 
lupus erythematosus (SLE) and IgA nephropathy (31).  
Recent reports that SNP rs4597342 in ITGAM 3'UTR 
affect miR-21 binding may be considered a risk factor for 
psoriasis development (32). However, the above two genes 
have not been reported in AML. ZNRF2 is a ubiquitin 
ligase of the RING superfamily. It has been shown that 
membrane-associated E3 ubiquitin ligase ZNRF2 is 
involved in mTor activation and regulation through protein 
interactions, and ZNRF2 depletion reduces cell size and 

cell proliferation (33). ZNRF2 also plays a crucial role in 
tumorigenesis. For example, ZNRF2 enhances the mTor 
and its downstream targets CyclinD1 and CDK in NSCLC 
cells, and the negative correlation between ZNRF2 and 
miR-100 in osteosarcoma specimens, low miR-100 is 
associated with poor prognosis in OS patients (34,35). 
To date, the role of the ZNRF2 gene in AML and how it 
regulates AML through aberrant methylation is unclear. 
These three genes may be good indicators for assessing the 
prognosis of AML. We used these three genes to set up an 
independent prognostic model with high accuracy, which 
can be used to assess the prognosis of patients with AML 
and as a good target for AML treatment.

This study had several limitations: (I) the small number 
of cases evaluated; (II) the results of the study have not been 
validated on clinical samples.

In summary, our research identified many aberrantly 
expressed genes and pathways that can be regulated by 
aberrant methylation in AML through a comprehensive 
analysis of gene expression and methylation microarrays. 
We identified some new markers and pathways through 
multi-database analysis that could be an accurate diagnosis 
and treatment for AML; however, determining the role of 
these identified genes in the AML process requires more 
research.
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