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Editorial Commentary
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Assessing oncological disease progression is a major part of 
radiologists’ work. Today, such assessment is usually done 
by either eyeballing or few 2D diameter measurements. 

A common protocol for assessing disease progression 
is The Response Evaluation Criteria in Solid Tumours 
(RECIST), updated in 2009 (RECIST 1.1). It includes 
instructions about the use of diameter measurements for 
evaluation of tumour burden. The RECIST criteria have 
gained widespread adoption and are widely used particularly 
in oncology clinical trials (1-3). The RECIST 1.1 requires 
one diameter measurements of up-to 5 target lesions total, 
up-to 2 lesions per organ. It also includes the assessment 
of non-target lesions, basically eyeballing of disease 
progression.

In neuro-oncology, disease progression is assessed 
using Response Assessment in Neuro-Oncology (RANO) 
criteria (4,5). The RANO criteria are widely used in clinical  
trials (6). They are also increasingly used in routine clinical 
practice (7). These criteria rely mainly on the assessment 
of disease progression by MRI. They enable qualitative and 
quantitative evaluation of tumour burden before, during, 
and after therapy. In RANO, a measurable tumour is 
measured using two diameters. These include the maximal 
diameter of the tumour and a second perpendicular 
diameter.

RECIST, RANO and other radiology protocols operate 
under similar assumptions. These assumptions are that few 
2D diameters can accurately represent tumour burden. 

Moreover, in RECIST, the summation of several diameters 
from different lesions aims to represent the whole-body 
tumour burden. These assumptions come from necessity. 
Providing a few 2D diameter measurements can be done 
quickly by radiologists. However, whole-body volumetric 
measurements of tumour burden are not humanly 
feasible. Several factors make precise manual volumetric 
measurements un-feasible.  Firstly,  the number of 
oncological scans is rising. Secondly, lesions can appear in 
complex 3D shapes. And lastly, oncological studies can have 
numerous metastases. Several previous works compared 2D 
measurements and volumetric measurements. These works 
showed that volumetric measurements are more reliable and 
accurate than 2D measurements (8-10).

A newly published paper in Lancet Oncology by Dr. Philipp 
Kickingereder et al., addresses automatic brain lesions 
quantification (11). Their work, “Automated quantitative 
tumour response assessment of MRI in neuro-oncology with 
artificial neural networks: a multicentre, retrospective study”, 
presents a deep learning model for automatic quantification 
of brain lesions.

Deep learning is a family of algorithms which made a 
major impact on industry, academia, and public attention in 
the last few years. These algorithms are based on artificial 
neural networks (ANNs). Deep learning is considered a 
subclass of artificial intelligence (AI) (12,13).

A major focus of deep learning is the analysis of images, 
which is termed computer vision. Convolutional neural 
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networks (CNNs) are the main deep learning algorithms 
used for computer vision. CNN are a type of ANN, aimed 
at recognizing repeating patterns. The hypothesis in the 
basis of CNN is that images contain multiple repeating 
patterns.

CNN were developed in the 1980s and 1990s (14,15). 
Yet, CNN made a major impact on the world in 2012. 
In that year, a CNN algorithm won the 2012 ImageNet 
challenge (16). ImageNet is a repository of millions of 
labeled images (17). These images are of world objects such 
as animals, humans and animate objects. In the ImageNet 
challenge, algorithms try to classify these millions of images 
into their respective 1,000 labels. In 2012, Krizhevsky and 
Hinton et al. won the ImageNet challenge using a CNN 
that showed remarkable abilities in image classification (16). 
An article in the Economist stated that, “Suddenly people 
started to pay attention, not just within the AI community 
but across the technology industry as a whole.” (18). 

Figure 1 shows Google Trends and PubMed searches 
for the term “Deep Learning”. Data is from the timeframe 
1/2009–11/2019. The date of the ImageNet 2012 challenge 
is marked on the graph. Google searches for “Deep 
Learning” started an exponential rise at the end of 2012. 
This rise reached a plateau around 2017. PubMed “Deep 
Learning” publications began to rise exponentially at the 
end of 2015. This signifies a lag of about three years from 

the rise in Google search.
Since 2012, CNN algorithms continue to improve, 

reaching human level in several image analysis tasks. A more 
recent deep learning advancement are generative adversarial 
networks (GANs) (19). These networks are a type of deep 
learning models aimed at generating “fake” realistically 
looking images. GAN are now at the center of public 
attention due to “deepfake” digital media manipulations. 
“deepfake” uses GAN to generate “fake” images of  
humans (20). GAN has recently been introduced into the 
medical field. For example, GAN have been used to transfer 
between imaging modalities (21,22). A work by Ben-Cohen 
et al. utilized GAN to produce “virtual PET” images from 
CT images (21).

Another important application of deep learning from 
recent years is natural language processing (NLP). NLP 
enables the conversion of human language into structured 
data. Similarly to images, text contains repeating patterns. 
This is why CNN has been successfully utilized for text 
analysis. In 2018, innovations in deep learning NLP led 
to the claim “NLP’s ImageNet moment has arrived” (23). 
Deep learning for NLP is increasingly being utilized in 
medical research (24) and industry.

The study mentioned above by Kickngereder et al. 
presents an example of using CNN for a computer 
vision task. In their work, the authors built a CNN for 
segmenting the borders of brain tumours. Segmentation is 
one of three major computer vision tasks. The other two 
being image classification and detection (13). In image 
classification, the network classifies an entire image. For 
example the network will classify either “image of a normal 
brain” vs. “image of a brain tumor”. In image detection, 
the network locates an object in the image, usually with a 
box-plot. In image segmentation, the network delineates 
the pixel-wise borders of an object; usually a lesion (such 
as a brain tumor), or an organ. The authors used the most 
common CNN architecture for segmentation, which is 
called U-Net (25).

The authors trained their CNN on MRI data from 
455 patients with brain tumours. These patients were 
being treated at Heidelberg hospital. The authors tested 
the model on 2,034 MRI scans from 532 patients at  
34 different institutions. Their model showed high 
precision. It had DICE coefficients of 0.91 for contrast-
enhanced T1 weighted sequences and 0.93 for T2 weighted 
sequences. Moreover, the model better predicted the time 
to disease progression than RANO measurements. The 
neural network’s hazard ratio for disease progression was  
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Figure 1 The figure presents a comparison between Google 
Trends and PubMed publications for the search term “Deep 
Learning”. Data is from the timeframe 1/2009 – 11/2019. The 
ImageNet 2012 challenge is marked on the x-axis.
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2.59 compared to a hazard ratio of 2.07 for RANO. The 
authors concluded that CNN enabled objective and 
automated assessment of tumour response in neuro-
oncology at high throughput. They stated that their model 
could serve as a blueprint for the application of CNN to 
improve clinical decision making (11). 

As stated, the CNN was trained on 455 scans from one 
medical center and tested on 2,034 scans from multiple 
centers. When training CNN, the convention is to use 
a larger portion of the data for training. This is because 
networks improve in relation to the amount of training 
data. So, it will be interesting to evaluate training the CNN 
on the larger multi-center dataset. 

A possible use of Kickngereder et al. work is the 
standardization of MRI disease progression assessment. 
Thus, the fact that the authors published their code in the 
open-source XNAT framework is important. Nevertheless, 
there is a significant gap between open-source codes 
and clinical use. And so, as stated by the authors, further 
prospective clinical evaluation is needed. 

Algorithms such as Kickngereder et al. can improve 
patient care by performing tasks that are not humanly 
feasible. This should come as no surprise. Although human 
brains can perform trillions of calculations per second, some 
tasks are better done by computers; for example, algebraic 
calculations of very large numbers or accessing millions of 
lines in a spreadsheet. Automatic volumetric segmentation 
of tumours seems to also be such a task.

Future works should apply the present model to whole-
body tumour burden quantification. This could improve 
the currently used RECIST criteria. Moreover, volume is 
not the only feature that can be extracted from radiology 
studies. Other features, such as intensity and texture, have 
been used in radiomics. Future algorithms could improve 
prediction of disease progression using “deep-radiomics”, 
utilizing CNN to learn hidden patterns in the scans. 
Another venue for research could be the development of 
networks that integrate clinical data to the imaging data. 
Lastly, sub-analyses should be performed on different kind 
of oncological diseases.

Deep learning innovations of recent years are in the 
progress of making a major impact on human society. In 
the field of oncological-radiology, they have the potential to 
improve patient care by facilitating precision medicine.
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