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Editorial

Statistical methods and models in the analysis of time to event data
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Time to event data are common in medical research, where 
outcomes are the time until the occurrence of an event of 
interest that are subject to censoring. The main goal for the 
analysis of time to event data is to investigate the effects of 
covariates on the hazard for an event of interest and estimate 
the survival probability. The article by Zhou et al. (1)  
provides a nice overview on building a clinical prediction 
model on time to event data and assessing the prediction 
accuracy of a clinical prediction model, describing the model 
construction and model validation using R functions (1). The 
article introduces the Cox proportional hazards model (2)  
as a clinical prediction model for time to event data, which 
is the most widely used statistical model in studies of time 
to event data to estimate the effects of covariates on the 
hazard for an event of interest, and describes visualizing 
the survival probability for a patient with specific values 
of covariates using nomogram with R. The article also 
introduces R code to compute the concordance index 
(i.e., C-index) and draw a calibration plot to evaluate the 
discriminatory and calibration accuracy of a Cox regression 
model. However, the limitation of the article is that the 
authors did not describe about checking the proportional 
hazards assumption. In practice, the proportional hazards 
assumption may not be plausible for some applications. 
Thus, it is necessary to assess the proportionality 
assumption since a violation of the assumption may affect 
statistical inference. The most commonly used approaches 
for checking the assumption are to use a test based on the 
Schoenfeld residuals (3), and draw the Schoenfeld residuals 
plot (4) and the 

{ }ˆlog log ( )S t −  

 curves (5), where ˆ( )S t  is the 

Kaplan-Meier estimator (6). A test based on the Schoenfeld 
residuals can be conducted using the function cox.zph() in 
survival package in R, which provides a two-sided P value 
for the test under the null hypothesis of proportionality. 
If a P value is less than the prespecified significance level, 
it indicates a violation of the proportionality assumption. 
The Schoenfeld residuals plot can be drawn using the 
function cox.zph() in R. When a covariate is continuous, if 
a plot of Schoenfeld residuals versus times for the covariate 
shows patterns other than a constant, it indicates that 
there is a departure from the proportionality assumption 
for the covariate. As another graphical check, a plot of 

{ }ˆlog log ( ) − S t  versus log(time) can be used to investigate 
the assumption. If the { }ˆlog log ( ) − S t  curves for each of 
the levels of a covariate are parallel, it indicates that the 
proportional hazards assumption holds for the covariate. 
When the proportional hazards assumption does not hold 
for some covariates, other regression models may be used to 
estimate the effects of covariates on the hazard function for 
an event of interest. For example, an additive hazards model 
(7-9) or accelerated failure time model (10-12) can be used 
as alternatives to the proportional hazards model. 

The clinical prediction model describes the relationship 
between covariates and outcomes of interest in forms of 
mathematical equations. However, in practice, it is often 
very hard to interpret the relationship between covariates 
and outcomes of interest and the effect of covariates 
intuitively. Several methods have been suggested to address 
the issue and a nomogram is one of the most widely used 
methods to visualize the model equations that present the 
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behaviors of covariates in scale. Zhang and Kattan (13) 
describe how to create nomograms for a logistic regression 
model for categorical outcome and for a Cox regression 
model for survival outcome using R. Alternatively, 
presenting several scales for certain combinations of 
covariates of interest dynamically can be more helpful for 
practitioners to interpret the relationship between covariates 
and outcomes of interest and the effect of covariates. The 
DynNom package in R (14) provides DynNom function 
that creates a dynamic nomogram as shown in Figure 1, 
which uses the following example.

library(DynNom)

library(survival)

data(lung)

fit.cox <- coxph(Surv(time, status) ~ age + strata(sex) + 

ph.ecog, data = lung)

DynNom(fit.cox)

Using a dynamic nomogram, one can obtain the estimated 
survival probability with 95% confidence interval for a 
specific set of values of covariates dynamically and compare 
the magnitude of the effect of covariates on the hazard 

function interactively.
In medical research, it is crucial to develop an accurate 

model for prediction since it may be used in clinical 
decision making such as the choice of treatment options. 
This leads to evaluation of the prediction accuracy of a 
clinical prediction model. The prediction accuracy of a 
Cox regression model can be assessed by discrimination 
and calibration. The concordance index (C-index) and 
calibration plots have been widely used to evaluate the 
discriminatory and calibration accuracy of a Cox regression 
model. Zhou et al. (1) introduces C-index as a measure to 
assess the discriminatory ability of a Cox regression model 
and describes two methods for calculating C-index of a Cox 
regression model with R. The article describes evaluation 
of a Cox regression model via external validation and 
introduces R functions for calculating C-index and drawing 
a calibration plot of a Cox regression model in a validation 
dataset using cross-validation.

In medical research, competing risks often occur, 
where individuals may fail from one of several event types. 
The occurrence of competing events may preclude the 
occurrence of the event of interest and vice versa. The 
statistical analysis and interpretation of competing risks 
data differ from those for survival data with only a single 
event type. Zhou et al. (1) introduces Gray’s test (15) and 

Figure 1 Dynamic nomogram for a Cox regression model. 
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a competing risk regression model (16) with R. In the 
presence of competing risks, two important quantities are 
the cause-specific hazard function (17) and cumulative 
incidence function (18), which are nonparametrically 
identifiable probabilities. The cause-specific hazard function 
represents the instantaneous rate of the occurrence of a 
particular event type at a specific time in subjects who have 
not yet experienced any types of events. The cumulative 
incidence function represents the cumulative probability 
of occurring a particular event type by a specific time in 
the presence of other competing events. Many authors 
proposed nonparametric (15,19,20) and semiparametric 
(16,17,21,22) methods to analyze competing risks data, 
focusing these two quantities. Gray (15) proposed a test 
comparing the subdistribution hazards in several groups, 
where the subdistribution hazard is the instantaneous rate 
of the occurrence of a particular event type at a specific 
time given that the particular event type has not occurred 
yet in subjects who are still event free as well as who have 
previously experienced other competing events. Pepe (23)  
proposed a test comparing the cumulative incidence 
functions in two samples. When the cumulative incidence 
functions cross in two samples, Pepe’s test can be used as 
an alternative to Gray’s test since Pepe’s test is sensitive to 
stochastic ordering alternatives of the cumulative incidence 
functions.

In the regression analysis of competing risks data, 
the most commonly used models are the cause-specific 
proportional hazards model (17) and the proportional 
subdistribution hazards model (16). The first approach 
is called the cause-specific hazard approach since the 
cumulative incidence function is modeled via modeling of 
the cause-specific hazard functions. The latter model is 
called the direct approach since the cumulative incidence 
function is modeled directly via a transformation model. 
Both two models assume the proportional hazards model 
but assess the effects of covariates on different hazard 
functions. Thus, the interpretation of the regression 
parameter estimates in the two models is different because 
the cause-specific proportional hazards model models the 
cause-specific hazard function, whereas the Fine-Gray 
model models the subdistribution hazard. The former 
model may be better suited for addressing epidemiological 
questions of etiology, whereas the latter model may be 
better suited for estimating a patient’s clinical prognosis (24).  
The Fine-Gray model is preferable if one is interested 
in investigating the direct effects of covariates on the 
cumulative incidence function for an event of interest. 

Thus, investigators must be aware of the difference between 
the two models and decide which model is better suited to 
their research objectives. Latouche et al. (25) recommended 
to report these two models simultaneously in the analysis of 
competing risks data. 

Statistical methods for the analysis of time to event data 
have been widely adopted in medical researches. Clinical 
investigators need to use appropriate statistical methods to 
their researches and interpret the analysis results correctly.
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