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Abstract: There is a high risk of injury from damage to the force-bearing tissue of the tendon. Due to 
its poor self-healing ability, clinical interventions for tendon injuries are limited and yield unsatisfying 
results. Tissue engineering might supply an alternative to this obstacle. As one of the key elements of 
tissue engineering, various cell sources have been used for tendon engineering, but there is no consensue 
concerning a single optimal source. In this review, we summarized the development of tendon tissue from 
the embryonic stage and categorized the used cell sources in tendon engineering. By comparing various 
cell sources as the candidates for tendon regeneration, each cell type was found to have its advantages 
and limitations; therefore, it is difficult to define the best cell source for tendon engineering. The 
microenvironment cells located is also crucial for cell growth and differentiation; so, the optimal cells are 
unlikely to be the same for each patient. In the future, the clinical application of tendon engineering might 
be more precise and customized in contrast to the current use of a standardized/generic one-size-fits-all 
procedure. The best cell source for tendon engineering will require a case-based assessment.
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Introduction

Tendons are unique connective tissues that not only connect 
the muscles and bones, but they are also important for 
maintaining posture and locomotion through transmitting 
muscle-contraction force to the skeleton. The tendon 
is composed predominantly of tenocytes surrounded by 
extracellular matrices (ECM) such as collagen I fibers, 
proteoglycans, and glycoproteins. It forms a solid structure 
and can support high repetitive mechanical loading (1). 

However, tendon tissue has poor healing ability and limited 
regenerative ability; the damage may become irreversible, 
and the healing process will be difficult, leading to chronic 
disability. Although the current wide use of topical or 
systemic anti-inflammatory drugs can reduce the perception 
of pain, and surgical repair of ruptured tendons through 
autograft or allograft seems to maintain the physiological 
function of the tendon (2), the functional, structural, and 
biochemical properties of the damaged tendon cannot be 
fully restored to an uninjured status (3). In addition, the 
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repair process may induce the formation of scar tissue (4),  
of which the tensile strength is only one-third that of 
an undamaged tendon, which can be a triggering factor 
for a large number of cases of secondary damage (5). 
Furthermore, autograft may cause donor site morbidity, 
while allograft may elicit an immune rejection (6). 

Therefore, tissue engineering has been explored in an 
attempt to improve tendon healing and eventually reach a 
complete biological repair. A classic tissue engineering (7)  
technique is to culture seed cells in an engineered 
structure that is made of a biodegradable scaffold with the 
supplementation of growth factors or either mechanical 
or chemical factors to promote cell proliferation and 
differentiation in vitro before it is transplanted into the 
damaged site in vivo. Subsequently, the scaffold could be 
substituted by a newly formed organization that can replace 
damaged tissues and ultimately reconstitute the tissue 
functions (8). In tendon tissue engineering, cells also play a 
vital role in producing ECM for the reconstruction of the 
tendon tissue structure (9). Thus, the source of the seed cells 
becomes one of the key points in tendon tissue engineering. 
To find more potential candidates suitable for tendon tissue 
engineering, we explore the embryological origin of the 
limb tendons, analyze the developing processes of tendons, 
and summarize the availability of various types of seed cells 
using tendon tissue engineering.  So, at the beginning of the 
article, we will reconstruct the development of the tendon 
from the embryo to maturity and explain the availability of 
these cells.

Embryological origin and development of tendons

Human embryonic development begins with the cleavage 
of the fertilized egg. It then divides into many smaller 
cells leading to the formation of the blastula. Through 
the cell movements of gastrulation, the embryo is 
rearranged to form the three main germ layers: the 
ectoderm, mesoderm, and endoderm. The mesoderm 
then gives rise to chordamesoderm, paraxial mesoderm, 
intermediate mesoderm, and lateral plate mesoderm. With 
the establishment of body axes and formation of the neural 
tube, limb buds arise from lateral plate mesoderm at the 
appropriate levels along the ventral domain of the body (10).  
The early limb bud has two major components: an outer 
layer of ectodermal epithelial cells, and a core of loose 
undifferentiated mesenchymal cells derived from the 
lateral plate mesoderm (11,12). The skeletal elements 
and connective tissues (including tendon structure) of the 

limb develop from these mesenchyme cells, but the limb 
muscles are derived from the somites which stem from the 
region of paraxial mesoderm and migrate into the limb 
bud. Therefore, the origin of tendon tissue is the same as 
that of bones, cartilage, and any other connective tissues, 
but not muscle. Analysis of the expression of scleraxis (Scx), 
a tendon specific transcription factor, revealed that the 
limb tendon progenitors originate from the subectodermal 
mesenchyme in proximomedial domains of the limb  
bud (13). Regulated by multiple morphogens and growth 
factors, three pairs of tendon primordium appear in a 
proximo-distal sequence in the developing limb (14,15). 
Proximal and intermediate tendon primordium appears the 
earliest on the dorsal side around limb junction. Following 
closely, intermediate tendon primordium appears on the 
ventral side around intermediate limb junction. The ventral 
proximal tendon primordium forms after the appearance 
of ventral intermediate tendon primordium. Subsequently, 
distal tendon primordium appears at both the dorsal and 
ventral sides of the distal limb. After the stimulation of 
growth factors and mechanical stress (16), the three pairs of 
tendon primordium will then differentiate into adult tendon 
structure in a proximal-to-distal sequence in the developing 
limb (Figure 1).

Various types of seed cells for tendon tissue 
engineering

Based on the process of limb tendon development, 
tenocytes originate from mesenchymal stromal cells (MSCs), 
which are also progenitor cells of skeletal elements and 
other connective tissues. Limb bud MSCs are derived from 
the lateral plate mesoderm of the embryo. These cells at 
different stages of tendon differentiation are candidate types 
of seed cells in tendon tissue engineering. 

In the process of tendon development, tenocytes are 
the terminal product and the major component of the 
tendon’s structure. Dermal fibroblasts belong to the class 
of mesenchymal cells, which are differentiated from MSCs. 
As dermal fibroblasts are labile cells and have the same 
precursors as tenocytes, they can be used in tendon repair (17). 

Tenocytes are derived from tendon progenitor cells, 
which are called tendon-derived stem cells (TDSCs) (18).  
TDSCs are a type of stem cell  that possess some 
characteristics of multipotent stem cells (19). Defined by 
the specific stem-cell niche, MSCs can be classified into 
bone marrow-derived mesenchymal stromal cells (BMSCs), 
adipose-derived stem cells (ADSCs), TDSCs, and other 
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sources of MSCs (20). These MSC-derived stem cells 

can be differentiated into tenocytes under appropriate 

stimulation in vitro. 

Another available cell type is pluripotent stem cells, 
which can differentiate into all types of cells constituting 
the human body. These include embryonic stem cells (ESCs) 
and induced pluripotent stem cells (iPSCs), which can be 
derived from differentiated human dermal fibroblasts (21). 

In summary, the available seed cells for tendon tissue 
engineering include ESCs, iPSCs, MSCs (included BMSCs, 
ADSCs, and TDSCs), dermal fibroblasts, and tenocytes, as 
summarized in Figure 2. Next, we will discuss the respective 
advantages and disadvantages of these different cell types.

Comparison between different cell types

The cells in the human body can be divided into two 
categories based on their differentiation status (Table 1). 
One is differentiated cells, such as tenocytes and dermal 
fibroblasts, which lack self-renewal capability in vivo. 
Differentiated tenocytes and dermal fibroblasts can be 
expanded in vitro in the presence of serum but have a 
limited expansion capacity. Culturing in vitro with the 
supplementation of growth factors may activate their 
ability of proliferation, but these cells still lack the capacity 
of differentiating into other cell types. Besides, their 
phenotype may change, which will cause a deficiency 
in their functions with increasing passaging (18). The 

Figure 1 The process of human limb tendon development.
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other is stem cells, which can replicate themselves as well 
as differentiate into specialized cells under appropriate 
conditions (22). At the same time, their ability to proliferate 
and differentiate is difficult to control in vivo, which makes 
them susceptible to forming of tumor and undesired tissue 
cells during differentiation. 

Differentiated cells

Tenocytes

Tenocytes are highly specialized mesenchyme-derived cells 
with important roles in synthesizing ECM and maintaining 
tendon structures in vivo (23). Cao et al. constructed tissue-
engineered artificial tendons for the first time (24), but 
they also indicated that tenocytes are relatively difficult to 
grow and expand in vitro. Furthermore, some researchers 
indicated that with increased passaging, the gene expression 
of tendon-associated proteins such as collagen type I (col I),  
collagen type III (col III), tenascin, and tenomodulin 
(TNMD) exhibited a trend of decrease (25). In addition, 
there is also a change in the tenocyte cell phenotype, 
represented by more rounded cell morphologies instead 
of longer and thicker configurations (18). Thus, many 
researchers have explored the strategies to promote 
proliferation and at the same time, support a stable 
phenotype of tenocytes. At present, it has been reported 
that thyroid hormone T3, transforming growth factor 
(TGF)-b1, glycine, platelet-rich plasma, and insulin-
like growth factor 1 could enhance the proliferation and 
differentiation capacity of tenocytes, as well as stimulate the 
secretion of ECM (23,26-29). Mechanical force can also 
regulate tenocyte differentiation (30).

Dermal fibroblasts

Dermal fibroblasts are terminally differentiated cells that 

originate from mesoderm. In vitro, dermal fibroblasts 
exhibit similar cell morphology as tenocytes and mainly 
produce col I and col III. Compared with tenocytes, the 
harvest of dermal fibroblasts is less defective as only an 
easily accessible, small piece of skin is needed. Also, the cell 
expansion is less likely during in vitro culture (31). It has 
been revealed that there is no difference in their gross view 
between neo-tendon tissues engineered by human dermal 
fibroblast or tenocytes. There was also no difference found 
in the histologic structure, collagen superstructure, or 
mechanical property under the static strain in vitro (32-34).  
Therefore, researchers have used dermal fibroblast-
engineered tendon to repair animal tendon defect, and 
the results are satisfactory in that the tensile stiffness and 
maximum load are expressly higher than those of non-
dermal fibroblast scaffolds (35-38). 

When dermal fibroblasts and tenocytes are compared, 
both or ig inate  from mesoderm and have s imi lar 
morphologies (36), and it was determined that dermal 
fibroblasts were more advantageous compared to tenocytes. 
First, dermal fibroblasts have good proliferative capacity 
and self-renewal potential (39). Second, dermal fibroblasts 
have been shown to be easy to harvest with no major tissue 
defects at the donor site since the skin can regenerate in 
a short time (40). In contrast, tenocytes are more difficult 
to collect because the density of tenocytes in a tendon 
is low, and there is an issue of donor site morbidity (41). 
However, dermal fibroblasts have a disadvantage in that 
they may produce fibrotic ECM which is involved in scar  
formation (42) (Table 2). 

Stem cells

According to the differentiation potential, stem cells can 
be divided into distinct kinds of cell types. Pluripotent 
stem cells can differentiate into all cell types of all organs, 

Table 1 Relative comparison between two human cell types using tissue engineerin 

Cell types Category Advantage Disadvantage

Differentiated 

cells

Tenocytes, dermal 

fibroblasts 

Low risk of teratoma  

and ectopic tissue formation

Terminal differentiated cells 

Limited proliferation rate 

Phenotype change and functional loss during expansion in vitro

Stem cells ESCs, MSCs Proliferative capacity 

Multidirectional differentiation potential

Teratoma and ectopic tissue formation

ESCs, embryonic stem cells; MSCs, mesenchymal stromal cells.
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like ESCs and iPSCs (43). Multipotent stem cells can 
develop into many cell types within a particular lineage. 
For instance, the MSCs can give rise to bone cells, cartilage 
cells, adipose cells, and tendon cells. As ESCs have 
unlimited self-renewal potential and can differentiate into 
cells of all three embryonic germ layers (44), the risk of 
developing teratoma is expected to increase (45).

Meanwhile, considering that ESCs originate from 
the blastocyst, the harvest of human ESCs requires the 
destruction of the embryos, which may give rise to ethical 
concerns (46). iPSCs derived from differentiated cells may 
obviate these ethical issues. But, as they are pluripotent stem 
cells, the problem of forming teratoma during proliferation 
and differentiation remains unsolved. Furthermore, there 
are serious problems in the process of inducing iPSC 
formation (47).

By contrast, MSCs are more safe due to their limited 
proliferation capacity and the restricted multilineage 
differentiation potential of cells of the mesodermal lineage 
(48,49). The use of MSCs also bypasses certain ethical 
obstacles as they are adult stem cells that can be harvested 
from non-embryonic sources (50). However, it has been 

accepted that MSC expansion in culture results in their 
accelerated aging, which will cause the deficiency of 
proliferation and multilineage differentiation potential 
(51,52) (Table 3). 

ESCs

ESCs can give rise to all tissues derived from the three 
germ layers (53). Because of this, ESCs hold great 
promise as seed cells for tendon tissue engineering (54).  
Thus,  how to differentiate them into the tendon 
lineage has become a key point. Some researchers have 
investigated a stepwise differentiation approach by first 
inducing human ESCs to differentiate into MSCs, and 
subsequently allowing the MSCs to form tendon-like 
tissues. The results in vivo and in vitro showed that human 
ESC-derived MSCs exhibited tenocyte-like morphology 
and positively expressed tendon-related gene markers 
such as Scx, col I and col III, as well as other mechano-
sensory structures and molecules (55,56). Moreover, 
the formation of teratomas could be avoided if ESCs 
are induced into MSCs before the transplantation (55).  

Table 2 Comparison between two differentiated cells types 

Cell types Advantage Disadvantage

Tenocytes Major cell type in the tendon 
Produce ECM for tendon function maintenance

Low cell number in the tendon 
Donor site morbidity

Dermal fibroblasts Easy to harvest from skin punch biopsy 
Production similar to the tenocyte

Not tenocyte 
Unstabled phenotype 
Scar formation

ECM, extracellular matrix.

Table 3 Comparison between stem cells 

Cell types Category Advantages Disadvantages

ESCs – Unlimited proliferative ability 
Pluripotent

Risk of teratoma formation 
(Ethical issue with the use of embryos for cell isolation 
The challenge to acquire patients’ own ESCs

iPSCs – Unlimited proliferative ability 
Pluripotent 
No ethical concern for tissue source

Risk of teratoma formation 
Genotype change in the transfection process 
Low efficiency of the transfection process 
Less reported in tendon regeneration

MSCs BMSCs 
ADSCs 
TDSCs

Low cancerization rate 
Easily available tissue source for cell isolation 
No ethical concern for tissue source

Senescence and loss of stem cell characteristics as the 
number of passages increase in vitro

ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stromal cells; BMSCs, bone marrow-derived 
mesenchymal stromal cells; ADSCs, adipose-derived stem cells; TDSCs, tendon-derived stem cells.
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In addition, they demonstrated that the use of dynamic 
mechanical stress (1 HZ, 10% for 2 h/day) and bone 
morphogenetic protein (BMP)12 and BMP13 could 
promote differentiation of human ESCs into tenocytes 
(57-60).

iPSCs

The use of ESCs may be limited due to the need to 
sacrifice an embryo, which has aroused some ethical 
controversy. The discovery of iPSCs resolves the ethical 
problem of using ESCs, and recently, researchers were 
able to generate iPSCs from terminally differentiated 
cells (21,61). However, as their iPSCs were generated 
using retroviruses or lentiviruses (62), it might cause 
mutagenesis that would pose a risk for adverse effects in 
therapy (63). The efficiency of the transfection process 
also remains low. Thus, for the purpose of the safety of cell 
transplantation therapy, mRNA-delivered transcription 
factors have been applied to generate integration-free 
iPSCs (64,65). While these studies address some of the 
issues raised by the use of iPSCs in regenerative medicine, 
it has not been reported in tendon tissue engineering. For 
now, iPSCs are being used as a potential seed cell source 
for tendon regeneration research.

MSCs

MSCs are non-hematopoietic adult stem cells derived from 
the mesoderm germinal layer that can differentiate into 
mesenchymal-derived cell types and have the ability to self-
renew (66). The membrane surface of MSCs expresses 
several antibodies, such as stromal cell antigen-1, CD271, 
stage-specific embryonic antigen-4, CD146, and so on, 
which can be considered as specific markers of MSCs 
(67,68). MSCs were initially isolated from bone marrow as 
precursors of stromal elements (69). From recent research, 
it is now clear that MSCs can be isolated from a wide range 
of adult and perinatal mesenchymal tissues, including those 
of bone, synovial membranes, periosteum, adipose tissue, 
tendons, skeletal muscles, and others (70). The use of MSCs 
for tendon repair has been extensively explored and may 
promote tendon regeneration.

BMSCs 
The BMSCs have active self-proliferative and multi-
differentiate capacity. The use of autologous BMSCs in 
the animal model could induce matrix production and 

organization of injured tendon as well as restore histological 
structure and function (71). Because of the easy isolation 
from bone marrow and the enrichment of colony-forming 
units, BMSCs have become an attractive cell source for 
tissue engineering approaches. However, BMSCs may 
differentiate into osteoblasts instead of the expected 
tenocyte lineage when transplanted into the injured tendon, 
and form ectopic bone in vivo (72,73). To overcome such 
issue, a number of approaches are presently being developed 
to navigate the tenogenic differentiation of BMSCs (74). 
They have shown that cyclical uniaxial stretching and 
BMP14, TGF-β, connective tissue growth factor (CTGF), 
vascular endothelial growth factor (VEGF), and myostatin 
can initiate and maintain highly efficient growth and 
differentiation of BMSCs towards tenocytes in vitro (75-80).  
Furthermore, Zhang et al. (78) and Xie et al. (81) used a 3D 
culture environment combined with BMSCs sheets that 
have therapeutic effects on improving the healing quality of 
the tendon in vivo. 

ADSCs
ADSCs are advantageous in tissue engineering due to their 
multipotency, high proliferation, easily isolated amounts 
of cells from the subcutaneous tissue, and low donor site 
morbidity (82,83). ADSCs have been regarded as one type of 
seed cell for tendon tissue engineering that can differentiate 
into tenocytes in vivo and increase the tensile strength of 
the repaired tendon (84,85). However, their innate tendency 
towards adipogenesis may hinder the application of ADSCs 
in tendon regeneration (1,86). For this purpose, intense 
research was conducted to overcome this obstacle. Yu et al.  
confirmed that hypoxia or activating the expression of 
hypoxia-inducible factor-1 could improve the tenogenesis 
of ADSCs (87). Additionally, several studies have indicated 
that the supplementation of growth factors could improve 
cell proliferation of ADSCs and promote tendon repair 
efficiency (88-90). Tendon ECM components (91)  
and TNMD (92) enhance the proliferation and tenogenesis 
of ADSCs. Physical stimulation such as uniaxial tensile 
cyclic loading (2% strain and 0.1 Hz frequency) (93) and 
extracorporeal shock waves in tenogenic medium (94) can 
also boost the differentiation of human ADSCs toward 
tendon-like cells.

TDSCs 
TDSCs isolated from human tendons have general stem 
cell characteristics such as clonogenicity, multipotency, and 
self-renewal capacity (95,96). TDSCs can spontaneously 
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regenerate  tendon- l ike  t i s sue  s t ructures  in  v ivo  
and avoid differentiating into other kinds of cell lines. 
Extensive progress and deep insights have emerged in 
the study of these cells for tendon tissue engineering and  
regeneration (19). ECM (97), biglycan (98), hepatocyte 
growth factor (99), and mechanical stimulation (100) 
that can promote TDSCs proliferation and tenogenic 
differentiation in vitro have been verified in research. 
CTGF and ascorbic acid can enhance the survival time, 
proliferation, and migration abilities of TDSCs in vivo (101).  
Recently, Zhang et al. demonstrated that genetic alterations 
of TDSCs following culture expansion could be prevented 
by pretreating TDSCs with histone deacetylase inhibitor, to 
retain their ability to accelerate tendon repair in vivo (102).  
Furthermore, Yin et al. identify a subpopulation of nestin+ 
TDSCs which exhibited a superior tenogenic capacity 
compared with nestin- counterparts (103). This study not 
only redefines the subpopulation of tendon stem cells but 
also provides new insights into a novel cell line for tendon 
tissue engineering.

Other sources of MSCs 
Moshaverinia et al. tested the capacity of encapsulated dental 
MSCs to differentiate into tendon tissue in vitro and in 
vivo. Their findings indicate that periodontal ligament and 
gingival tissue-derived MSCs can be considered as suitable 
stem cell sources for tendon engineering (104). Chen et al.  
explored dental pulp stem cells (DPSCs) for potential 
application in tendon tissue engineering and found that 
mature tendon-like tissue was formed after transplantation 
of DPSCs in a special fiber scaffold constructs under 
mechanical loading in a mouse model (105). 

Comparison of the potential of various types of MSCs 
for tendon tissue engineering
MSCs can be harvested from various sources, such as 
bone marrow, adipose fat, and tendon tissue. They have 
paracrine effects, including immunomodulation, promoting 
angiogenesis, or suppressing inflammation and immune cell 
functions through secretory factors (106). BMSCs were the 
first discovered MSCs and the most widely used seed cells in 
tissue engineering. They are easy to harvest through bone 
marrow aspiration, but their limitations include relatively 
small quantities of viable cell yield through an invasive 
method, which cause many complications on the donor 
site and ectopic ossification after transplantation in vivo  
(107,108). ADSCs can be obtained from liposuction 
aspirates, which is less invasive and involves lower risk. 
With the relatively large storage of adipose tissue in vivo, 
a mass of ADSCs can be isolated and expanded in vitro 
(109,110). However, the main disadvantage of ADSCs 
is their tendency to undergo adipogenesis in vivo (111). 
TDSCs express higher tendon-related markers and 
differentiation factors than BMSCs and ADSCs (112,113), 
but the main drawback of TDSCs is that their isolation will 
lead to the injury of the donor site (114). Overall, there is 
not enough data from practical research on TDSCs to make 
firm or extensive conclusions (Table 4). 

Conclusions

Tendons are an important component in the musculoskeletal 
system. Due to the limited regenerative ability of tendons, 
the healing process after an injury is slow, and the functions 
of the tendon are likely to be compromised. This results in 

Table 4 Comparison between MSCs 

Cell types Advantage Disadvantage

BMSCs Extensive research history 
A large number of research results  
are available for reference

Ectopic bone formation in vivo 
Small quantity of viable cell yield in vitro 
Harvested by an invasive method with many complications on donor site

ADSCs High cell yield and excellent expansion ability 
Harvest through liposuction aspirates with  
less trauma and at lower risk

Ectopic adipose formation

TDSCs Lineage superiority 
Express higher tendon-related gene markers 
and differentiation factors

Donor site morbidity 
Less practical research data

Other sources 
of MSCs

New source Lack of research data

BMSCs, bone marrow-derived mesenchymal stromal cells; ADSCs, adipose-derived stem cells; TDSCs, tendon derived stem cells.
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a serious decline in the quality of life of patients. Cell-based 
tendon tissue engineering is a promising research area that 
aims to deliver adequate, regeneration-competent cells to 
the injured tendon and ultimately promote the restoration 
of its functions (20). This review provides an overview of 
tendon tissues from an embryonic stage and discusses the 
relative merits of each of the candidates that could be used 
as cell sources for tendon regeneration. Depending on the 
characteristics of each cell type, the researchers tested the 
most appropriate mechanical stimulation conditions and 
selected the different biological factors for improving the 
healing quality of the damaged tendon and reducing the 
adverse reactions during use (Table 5). Some major findings 
are described below: Mechanical stimulation will enhance 
the tenocyte differentiation in different cell types. Growth 
factors can promote cell proliferation in differentiated cells. 
However, in stem cells, growth factors not only enhance 
tenogenic differentiation but also increase the rate of cell 
growth. Furthermore, cell ECM also can accelerate cell 
proliferation and the tenogenesis of MSCs. Therefore, 
the results of these studies may provide new concepts or 
methods in clinical treatment to improve the level of tendon 
repair in patients. Doctors can select different cells to treat 
tendon disease by measuring a patient’s expression level of 
growth factors, tendon transcription factors, the expression 
of collagen and cytoskeletal proteins in the extracellular 
matrix, and the microenvironment of the tendon. Clinical 
treatment of tendon injury can also provide an appropriate 
cell plan by avoiding the drawbacks of these seed cells. 
Massive ectopic ossification and fatty vesicles forming in 
the tendinopathy indicate that BMSCs and ADSCs are not 
the best choices in the treatment of tendinopathy (115). 
In addition, scar formation and disorganization of fibers at 
tendon damage or stump are factors to be considered when 
selecting candidate cells. 

Since there is such a large variety of individual 
complexity for each of the patients undergoing clinical 
treatment, it is difficult to define optimal cell sources in 
tendon engineering. There are various types of tendon 
damage, including tendon rupture, tear, degeneration, 
tendinopathy, etc., which might change the cellular status 
at the damage site (116), and eventually affect the treatment 
outcomes. Furthermore, stem cell quality varies widely for 
different individuals. Therefore, there is no best cell source 
for tendon engineering in general. The determination 
of the most suitable cell source should be based on a 
comprehensive assessment of each patient. In the future, 
clinical treatment of tendon injury by tissue engineering 
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should be customized designed on a case-by-case basis to 
achieve the best clinical outcomes. 
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