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Background: Pneumonia accounts for the majority of infection-related deaths after kidney transplantation. 
We aimed to build a predictive model based on machine learning for severe pneumonia in recipients of 
deceased-donor transplants within the perioperative period after surgery. 
Methods: We collected the features of kidney transplant recipients and used a tree-based ensemble 
classification algorithm (Random Forest or AdaBoost) and a nonensemble classifier (support vector machine, 
Naïve Bayes, or logistic regression) to build the predictive models. We used the area under the precision-
recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to evaluate 
the predictive performance via ten-fold cross validation. 
Results: Five hundred nineteen patients who underwent transplantation from January 2015 to December 
2018 were included. Forty-three severe pneumonia episodes (8.3%) occurred during hospitalization 
after surgery. Significant differences in the recipients’ age, diabetes status, HBsAg level, operation time, 
reoperation, usage of anti-fungal drugs, preoperative albumin and immunoglobulin levels, preoperative 
pulmonary lesions, and delayed graft function, as well as donor age, were observed between patients with 
and without severe pneumonia (P<0.05). We screened eight important features correlated with severe 
pneumonia using the recursive feature elimination method and then constructed a predictive model based 
on these features. The top three features were preoperative pulmonary lesions, reoperation and recipient age 
(with importance scores of 0.194, 0.124 and 0.078, respectively). Among the machine learning algorithms 
described above, the Random Forest algorithm displayed better predictive performance, with a sensitivity of 
0.67, specificity of 0.97, positive likelihood ratio of 22.33, negative likelihood ratio of 0.34, AUROC of 0.91, 
and AUPRC of 0.72. 
Conclusions: The Random Forest model is potentially useful for predicting severe pneumonia in kidney 
transplant recipients. Recipients with a potential preoperative potential pulmonary infection, who are of 
older age and who require reoperation should be monitored carefully to prevent the occurrence of severe 
pneumonia.
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Introduction

The incidence of rejection has decreased and graft survival 
has increased with the development and administration 
of immunosuppressants to kidney transplant recipients. 
However, immunosuppressants simultaneously create 
risks of infection including nosocomial, opportunistic and 
community-acquired infection (1-3). As Fishman et al. (2,4) 
summarized, immunosuppressive therapies contributed 
to the individual’s risk for infection. Corticosteroids 
contributed to pneumocystis, bacteria, CMV and BK 
polyomavirus nephropathy. Mycophenylate mofetil 
contributed to early bacteria and late CMV infection. 
Calcineurin inhibitors contributed to viral replication, 
gingival infections and intracellular pathogens. Lymphocyte 
depletion induction contributed to herpes virus activation, 
BK polyomavirus nephropathy, late fungal and viral 
infections. A comorbid infection, especially opportunistic 
infection, is very common after solid organ transplantation. 
It’s reported 25.1% recipients developed opportunistic 
infection after kidney or simultaneous pancreas-kidney 
transplant according to a recent study (5). Additionally, 
infection remains the second cause of death after kidney 
transplantation during long-term follow-up in a large recent 
epidemiological study. Among the deceased recipients, 
21% died of infection, second to cardiovascular causes 
(48% of deceased recipients) and pulmonary infection 
accounts for the majority (45%) of infection-related deaths 
after transplantation (6). The incidence rate of nosocomial 
pneumonia was nearly 51/405 (12.6%) (7). Previous studies 
reported a significantly higher mortality rate in nosocomial 
pneumonia than in community-acquired pneumonia 
recipients. The crude mortality rate of nosocomial 
pneumonia was reported to range from 35–58% and from 
3–8% for community pneumonia (8-10). Deceased donors, 
particularly donors whose organs are accepted based on 
expanded criteria, might contribute to an increase in the 
infection risk through intensive immunosuppression or 
donor-derived nosocomial organisms (3). Among the 
immunosuppressants, anti-thymocyte globulin, a widely 
used induction biologic, exerts a lasting T-cell depletion 
effect and affects the B-cells, NK T-cells and regulatory 
T cells (11). The T-cell depletion effect usually lasts a few 

months, with a half-life of approximately 1 month (12).  
Hence, the transplant recipients are in a net state of 
immunosuppression. Nosocomial pneumonia caused by 
bacteria occurs frequently within the first month after 
surgery due to intensive and destructive suppression of 
the immune system, which exposes recipients to various 
pathogens (3). Currently, an effective infection risk 
classification for is not available for transplant recipients, 
especially for nosocomial infection. Other predictive models 
for pneumonia acquired during general abdominal surgery 
are not applicable for kidney transplant recipients due to 
the preoperative pulmonary condition of patients with end-
stage renal disease and the immunosuppressive status of 
allograft recipients (13). The identification of recipients at 
high risk of developing severe pneumonia would effectively 
enable intensive and targeted prophylactic interventions to 
be administered. It may reduce the incidence and mortality 
of severe pneumonia. 

Machine learning, a subfield of artificial intelligence, has 
rapidly developed and probably changes current clinical 
practice. As summarized by Goldenberg et al. (14), most 
machine learning algorithms are viewed as mathematical 
models that map a set of observed variables (i.e., features 
or predictors) into a set of outcome variables (i.e., labels or 
targets). Machine learning is classified into three paradigms 
based on the targets: supervised, unsupervised and 
reinforcement learning. Labels are included in the training 
dataset in supervised learning, but not in unsupervised 
learning. Reinforcement learning does not require any 
data to be provided in advance, but obtains learning 
information and updates model parameters by receiving 
rewards or feedback from the environment. Supervised 
learning algorithms are trained to decrease the predictive 
error between predictive targets and the ground truth. 
These algorithms have been subdivided into two categories 
based on label characteristics: classification (discrete 
classes) and regression (continuous value label). The 
prevailing algorithms include linear and logistic regression 
analyses, a Naïve Bayes classifier, support vector machine 
(SVM), AdaBoost, Random Forest, Decision tree, etc. 
The best algorithm for all cases has not been established. 
The best model usually depends on the sample data set 
and the purpose of the analysis in a particular scenario. 
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Machine learning algorithms display improved predictive 
performance and low error in certain scientific fields (15,16).

In this study, we chose the algorithms with classical methods 
and excellent application practices to design an analytical 
method. Support Vector Machine is an excellent technology 
with independent integrity theory based on a global optimal 
solution (17). Random Forest is a mature technology based 
on the extensive application of integrated algorithms (18). 
Logistic regression is a practical technology with a long 
history based on statistics. Naïve Bayes is an analytical 
method based on conditional probability, which is effective 
in predicting most datasets (19). AdaBoost is an enhanced 
learning algorithm designed to transform weak learners 
into strong learners with a high prediction accuracy (20).  
Therefore, in order to identify severe pneumonia recipients, 
we aim to use these five algorithms to predict severe 
pneumonia episodes in recipients of deceased donor kidney 
transplants during the perioperative period and to compare 
their performance by analyzing our monocentric dataset 
from 2015 to 2018.

Methods

Study population

This study was approved by the research ethics committee 

at the Third Affiliated Hospital of Sun Yat-sen University 
{IRB approval: [2019]02-512-01}. Allograft kidney 
transplantation records were retrospectively reviewed from 
the electronic medical records system of the Third Affiliated 
Hospital of Sun Yat-sen University and our institute’s access 
to the China Organ Transplant Response System (COTRS) 
between January 2015 and December 2018. Five hundred 
thirty-one transplantation records were retrieved. Patients 
who met any of the following criteria were excluded: patients 
who received simultaneous liver and kidney transplantation 
(n=6), pediatric recipients (n=2), a lack of detailed medical 
examination records for the infection evaluation (missing 
values, n=4). Figure 1 displays the screening process. We 
eventually included 519 transplantations from deceased 
donors. Of these transplant recipients, forty-three patients 
(8.3%) suffered severe pneumonia during the perioperative 
period after transplantation. Among the patients with severe 
pneumonia, positive microbial isolation was reported in 
eleven recipients. The major pathogens that were isolated 
are listed in Figure 2. Nine (20.9%) recipients died of severe 
pneumonia or related complications. We reported the data 
in this study in a manner compliant with the RECORD 
statement (an extension of STROBE reporting guidelines 
for a study based on routinely-collected health data) (21). 
All donor sources were deceased citizen donors, since it has 
been the sole legal method for the procurement of solid 

Deceased donor kidney 
transplantations (n=531) 
(1/1/2015–12/31/2018)

Model (n=519)

Exclusion (n=12)
• Liver-kidney Tx (n=6)
• No detail information for 

infection evaluation (n=4)
• Child (n=2)

Infection pathogens culture positive 
of sputum or blood (n=11)

Severe pneumonia (n=43)No severe pneumonia (n=476)

Figure 1 Flow diagram showing the process used to screen recipients of deceased donor kidney transplants. Five hundred thirty-one 
deceased-donor transplantations were identified. Twelve recipients were excluded and 519 transplantations remained. Forty-three of these 
recipients (8.3%) developed severe pneumonia after surgery.



Luo et al. Machine learning predict severe pneumonia in KTx recipients

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(4):82 | http://dx.doi.org/10.21037/atm.2020.01.09

Page 4 of 15

organ transplant from a non-relative in mainland China 
since January 1, 2015. All procured organs were numbered, 
matched and allocated at the China Organ Transplant 
Response System (https://www.cot.org.cn/), which is the 
sole legitimate official site designated by the National 
Health Commission of China.

Data collection and definition of variables

In this study, basic demographics included age, sex, 
blood type, HBsAg status, smoking status, diabetes, 
preoperative dialysis, dialysis periods, donor type, previous 
transplantation history, operation duration, induction 
therapy, rATG dose, IVIg prophylaxis, ganciclovir 
prophylaxis,  preoperative white blood cell  count, 
neutrophil count, lymphocyte count, serum albumin level, 
immunoglobulin level, preoperative chest radioscopic 
screen, delayed graft function, etc. Detailed information for 
the 43 variables are listed in Table S1. Regarding the variable 
of reoperation, reoperation after pneumonia occurrence was 
labeled as no reoperation in this study. Data were obtained 
from the electronic medical records system, laboratory 
report system and Picture Archiving and Communication 
Systems (PACS). The inpatient number was the unique 
identifier. None of the included patients were infected 
with HIV infection. Almost all screened recipients were 
CMV IgG antibody positive after an examination at our 
local clinical practice. Thus, the serum CMV status was not 

evaluated in this study.
Pneumonia was diagnosed according to local hospital-

acquired pneumonia guidelines modified based on IDSA/
ATS 2016 guidelines, in which pneumonia was defined as a 
new lung infiltrate and clinical evidence that the infiltrate 
is of an infectious origin, which includes the new onset 
of fever, purulent sputum, leukocytosis, and a decrease in 
oxygenation (22). Due to the lack of accepted criteria for a 
severe nosocomial pneumonia diagnosis, severe pneumonia 
was defined according to the IDSA/ATS 2007 criteria for 
severe community-acquired pneumonia (23). In this study, 
the minor criterion of uremia in the IDSA/ATS 2007 
guidelines was discarded because patients were diagnosed 
with ESRD. Induction therapy was categorized as the 
presence or absence of lymphocyte depletion. Delayed graft 
function was defined as a requirement for posttransplant 
dialysis (at least one dialysis session during the first  
7 days after transplantation) after excluding dialysis for 
hyperkalemia or fluid overload, etc. (24).

Feature selection

Recursive feature elimination (RFE) selected features by 
recursively considering increasingly smaller feature sets. 
First, the classifier was trained on the set of initial features, 
and the importance of each feature was obtained based on 
feature importance attributes. Then, the least important 
feature was deleted from the current set of features. This 
process was repeated recursively on the pruning set until 
the required number of functions was finally achieved. 
We choose the RFE cross-validation algorithm (25) (see 
Python's Scikit-Learn module), which performed the RFE 
algorithm in the cross-validation cycle, to identify the 
optimal number of important features related to the target 
variables. The selection process is shown in Figure 3.

Model construction

In this study, we chose a tree-based ensemble classification 
algorithm (Random Forest) to build models based on the 
different combinations of variables described above. We 
also used SVM and a Logistic Regression Classifier to 
build a prediction model based on the combination of the 
aforementioned variables. The performance of ensemble 
models and non-ensemble models was compared.

We divided the original data into a 70% training 
set and 30% test set to obtain a reliable evaluation and 
avoid overfitting (26). In the training set, the best model 

Acinetobacter 
baumannii n=3

Streptococcus 
pneumoniae n=1

Pseudomonas 
putida n=1

Pseudomonas maltophilia n=1

Pseudomonas
aeruginosa

n=3

Enterobacter 
cloacae n=2

Isolated pathogens

Figure 2 Main pathogens isolated from the patients with severe 
pneumonia. Eleven of the forty-three recipients had a positive 
specimen culture (blood or sputum).

https://www.cot.org.cn/
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parameters were selected through 10-fold cross validation. 
Then, the model was retrained using the training cohort, 
and the final prediction model was obtained. Finally, using 
the final training model, six independent validations were 
performed on the original data. The detailed process of 
model selection is shown in Figure 3.

Based on the ideas described above, we began to train 
machine learning algorithms (Random Forest Classifier, 
SVM and Logic Regression Classifier). First, preoperative 
pulmonary lesions (preoperative pulmonary radioscopic 
inflammatory lesions), preoperative immunoglobulin 
level, reoperation, recipient age, delayed graft function, 
preoperative albumin level, donor age and rATG dose 
were selected to build the SVM classifier model, Logistic 
Regression classifier model, AdaBoost model, Naïve 
Bayes model and Random Forest classifier, respectively. 
The machine learning algorithm was implemented using 
Python 3.7.4 (https://www.python.org) with Scikit-
learn (https://scikit-learn.org/stable/). The predictive 
performance was compared by calculating the area under 

the receiver operating characteristic curve (AUROC) and 
area under the precision-recall curve (AUPRC) for the 
test dataset (30% of the original cohort, randomly selected 
samples). Considering the imbalance of labels (targets), 
we mainly used the AUPRC to evaluate the predictive 
performance (27).

Statistical analysis

Continuous variables are presented as the means and 
standard deviations or medians and interquartile ranges, 
and categorical variables are presented as frequencies and 
percentages. Differences between groups were analyzed 
using Fisher’s exact probability test for categorical variables 
and Welch’s t-test (or the Wilcoxon rank-sum test) for 
continuous variables. Statistical analyses were performed 
using Stata/IC version 16.0 (College Station, TX, StataCorp 
LLC) and R version 3.6.1 (R Foundation for Statistical 
Computing). A P value <0.05 was considered statistically 
significant.

Figure 3 Feature selection, training and validation processes for the prediction model. The original included cohort was randomly 
subdivided into training (70% of the original cohort) and test cohorts (30% of the original cohort). Feature selection was conducted via 
recursive feature elimination through 10-fold cross-validation (RFECV).

Cohort dataset (n=519)

Training cohort (70%)

Optimal hyper-parameters

10-fold
cross-validation

Model Training:
(Remaining 9 folds except fold i) Fold i

Fold 1 Fold 2 …… Fold 9 Fold 10

i=1, 2, 3, …, 10

Testing cohort (30%)Final predictive model

Model performance

https://www.python.org
https://scikit-learn.org/stable/
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Results

Population demographics

Five hundred nineteen kidney transplantation records were 
included. Among the 519 transplantations, we identified 
forty-three severe pneumonia episodes, according to the 
definition. We included 43 explanatory variables in this 
study. The distribution of patients subdivided by severe 
pneumonia is presented in Table 1. The whole table is 
presented in Table S1. Significant differences in recipient 
age, diabetes status, HBsAg level, preoperative albumin 
and immunoglobulin levels, preoperative pulmonary 
lesions, surgery time, reoperation, anti-fungal drug 
usage and delayed graft function, as well as donor age, 
were observed between patients with and without severe 
pneumonia (P<0.05). A further analysis of recipients who 
died and survived after acquiring severe pneumonia did 
not reveal significant differences in the aforementioned 
features, except for the preoperative serum phosphate level. 
Recipients whose cause of death was severe pneumonia had 
a higher preoperative phosphate level (P=0.044).

Feature importance and selection

According to the RFECV algorithm of 10-fold cross 
validation mentioned in the methods section, the feature 
scores of all variables were calculated in the training cohort 
(Figure 4 shows the feature importance). Among these 
features, the top two variables (preoperative pulmonary 
lesions and reoperation, with importance scores of 0.194 
and 0.124, respectively) were the most important. The next 
echelon of variables included the recipient age, preoperative 
immunoglobulin level, delayed graft function, rATG 
dose, preoperative albumin level, and donor age. All of 
these features displayed a strong correlation with severe 
pneumonia.

In Figure 5, the sensitivity (recall) improved when the 
Random Forest model was used in the training cohort, 
along with the increase of ranked features. When eight 
variables were included, the best AUROC and sensitivity 
were achieved. Meanwhile, the predictive accuracy slightly 
increased from the high baseline performance. The high 
baseline performance was potentially attributed to the highly 
imbalanced datasets. The rapid increase in the sensitivity 
and AUROC with the inclusion of several frontier variables 
implied the importance of the top-ranked features. In this 
study, the important features were preoperative pulmonary 
lesions, reoperation and recipient age.

Model evaluation and comparison

For the selection of a better predictive model, we compared 
several widely applied machine learning algorithms 
including support vector machine, Random Forest, 
Naïve Bayes and AdaBoost, using a receiver operating 
characteristic curve and precision-recall curve (Figure 6). 
Both curves revealed the best predictive performance for 
the Random Forest model, with an AUROC of 0.91 and 
AUPRC of 0.72. Table 2 summarizes the model metrics, 
including specificity, sensitivity, precision (positive 
predictive value, PPV), positive likelihood ratio (LR+, 
higher is better), negative likelihood ratio (LR−, lower is 
better), F1 score (higher is better), AUROC, and AUPRC 
(higher is better). The Random Forest model exhibited 
the highest sensitivity (0.67), PPV (0.85), LR+ (22.33), 
AUROC (0.91), AUPRC (0.72) and lowest LR− (0.34). The 
Naïve Bayes model exhibited the best specificity (0.99). 
The Random Forest model also displayed a good specificity 
(0.97). Figure 7 presents the confusion matrix of each model 
used to predict the test set. The test sample used for model 
evaluation was oversampled from the original test dataset 
(30% of the cohort), with 24 targets and 149 negative labels. 
The predictions of the five machine learning algorithms 
are shown. We also blindly compared the predictive ability 
of professional doctors in our kidney transplantation 
center (Table S2). Two junior doctors presented sensitivity 
and specificity values of 0.23 and 0.92, and 0.28 and 0.97, 
respectively. Two senior doctors presented values of 0.40 and 
0.95, and 0.35 and 0.97, respectively (shown in Figure 6).

Discussion

Infection, particularly pneumonia, is a crucial complication 
occurring after kidney transplantation. Due to the 
requirement for immune suppression, particularly using 
immune induction therapy which made the immune 
system impotence in the first month, mild pneumonia 
may progress to severe pneumonia and even lethal sepsis. 
In our transplantation center, the regular prophylaxis 
used to combat infection was universally performed to 
prevent bacterial, fungal and viral amplification. For the 
prevention of bacterial infections, we regularly prescribed 
cefoperazone or other sensitive antibiotics according 
to the donor condition, local bacterial spectrum (gram-
negative bacteria, GNB, are pathogens that are frequently 
isolated from patients with pneumonia) and perfusate 
culture results. For the prevention of fungal infections, we 
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Table 1 Demographics of the major explanatory variables in kidney transplantation recipients (n=519)

Variables
Severe pneumonia

P value
No (n=476) Yes (n=43)

Preoperative variables

Age 42.84±11.24 50.07±10.60 <0.001

Sex 0.388

Female 143 10

Male 333 33

Blood type 0.928

A 104 8

B 125 11

AB 40 3

O 207 21

Diabetes 0.022

Yes 50 10

No 426 33

HBsAg 0.037

Positive 47 9

Negative 429 34

Dialysis type 0.072

No dialysis 50 1

Hemodialysis 327 28

Peritoneal dialysis 99 14

Dialysis duration 0.12

No dialysis 50 2

≤1 year 255 19

>1 year 171 22

Preoperative albumin 43.8 (40.5–46.8) 41.5 (36.3–45.5) 0.011

Preoperative immunoglobulin 28.2 (24.9–31.35) 29.9 (27.0–33.5) 0.01

Preoperative pulmonary radioscopic inflammatory 
lesion (pulmonary edema excluded) 

<0.001

Yes 41 17

No 435 26

Donor age 40.96±14.45 46.86±12.13 0.005

Intra and postoperative variables

Surgery time (hours) 3.33 (2.94–3.92) 3.70 (3.12–4.27) 0.027

Table 1 (continued)
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regularly used echinocandin (caspofungin or micafungin) 
or other triazole antifungal drugs, according to the culture 
results. Trimethoprim-sulfamethoxazole (TMP/SMZ) 
was prescribed to prevent Pneumocystis carinii pneumonia 
after discharge. Universal cytomegalovirus (CMV) 
prophylaxis treatment starts after surgery or discharge, and 
ganciclovir or valganciclovir are applied to prevent CMV 
replication. Forty-three (8.3%) severe pneumonia episodes 
still occurred, even after this strong prophylaxis. Nine of  
the 43 (20.9%) patients died of sepsis  or related 
complications. This result was consistent with previously 
reported data (10). These findings indicate the importance 
and necessity of identifying transplant recipients at high 
risk of developing severe pneumonia. We also analyzed the 
features of those deceased recipients. A significantly higher 
preoperative serum phosphate level was observed in recipients 
who died of severe pneumonia. The phosphate level reflected 
the adequacy of dialysis to some extent (28). Inadequate 
dialysis correlates with decreased lung function (29) and 
potentially contributes to increase the mortality risk (30).  

In our clinical practice, of course, prophylaxis is one of the 
most effectively protective modalities. When recipients 
were diagnosed with severe pneumonia, we will adopt 
several steps. First, preemptively upgrading antibiotic 
therapy is emerged. Including broad-spectrum antibiotic 
like carbapenems and antifungal therapy. Whether supplied 
antivirus therapy including against CMV or influenza 
was dependent on the signs of viral pneumonia including 
clinical manifestations and interstitial pneumonia lesion in 
radioscopy, as well as for pneumocystis jirovecii. Second, 
oral immunosuppressants were ceased and instead by 
methylprednisolone 40 mg bid. Yang et al. (31) summarized 
their cases and showed no influence on graft function 
and graft survival after transient cease using of oral 
immunosuppressants for pneumonia treatment. Third, 
infection pathogens isolation and multidrug-resistant 
(MDR) identification was critical important. This was 
compliant with the diagnosis and treatment guidelines 
of nosocomial pneumonia. It would effectively guide the 
usage of anti-infection therapy. Fourth, anti-infection 

Table 1 (continued)

Variables
Severe pneumonia

P value
No (n=476) Yes (n=43)

Reoperation <0.001

No 466 36

Yes 10 7

Induction >0.999

T-cell depletion 423 39

Non-depletion 53 4

rATG dose (bolus) 6 (4–8) 6 (6–8) 0.056

Anti-fungi drugs 0.026

Caspofungin 209 25

Micafungin 266 17

Other 1 1

Delayed graft function 0.005

Yes 40 10

No 436 33

Differences test in continuous variables were analyzed using the Wilcoxon rank-sum test; differences in categorical variables were 
analyzed using Fisher’s exact test. WBC, white blood cell; BUN, blood urea nitrogen; CVD, cardiac vascular disease; HDL, high density 
lipoprotein cholesterol; LDL, low-density lipoprotein; IVIg, intravenous immunoglobulin; rATG dose, rabbit anti-human thymocyte globulin 
(Thymoglobulin® 25 mg/bolus), we also used ATG-F: anti-human T lymphocyte rabbit immunoglobulin (Grafalon®, 100 mg converted to 
rATG in two boluses) and ALG: porcine anti-human lymphocyte immunoglobulin (250 mg/bolus, converted to rATG in one bolus).
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Figure 4 Feature importance ranking of the included features. WBC, white blood cell; HDL, high-density lipoprotein; LDL, low-density 
lipoprotein; Tx, transplantation; IVIg, intravenous immunoglobulin.
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supplemental therapy, like IVIg usage, may improve 
recovery. But there is no definite evidence to support it. 
Fifth, monitoring including blood gas, procalcitonin, 
Pneumonia Severity Index (PSI), and other correlated test 
could help to guide the treatment. And the last, also the 
most helpful, was multi-disciplinary team (MDT) including 
respiratory department, infection department and ICU for 
pathogen diagnosis and treatment.

In this monocentric study, we reported the predictive 
performance of machine learning algorithms in identifying 
severe pneumonia after  a  deceased donor kidney 
transplantation. We screened 519 transplantations and 
identified 43 episodes of severe pneumonia. From the 43 
explanatory variables, we selected the eight top-ranked 
variables through RFECV method for model building. 
The Random Forest classifier displayed better predictive 

Figure 5 Classification accuracy, sensitivity (recall) and AUC (roc_auc) of the Random Forest model along with the increase in the number 
of ranked features. When we accumulated eight ranked variables, the highest accuracy, sensitivity and AUC were observed. AUC, area under 
the curve.
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performance than support vector machine, Naïve Bayes, 
AdaBoost and the classical statistical-based logistic 
regression algorithms. It showed an AUROC of 0.91, a 
sensitivity of 0.67, a PPV of 0.85 and an AUPRC of 0.72 
using the top eight features. Meanwhile, the traditional 
logistic regression-based algorithm also showed impressive 
performance compared with other machine learning 
algorithms, including SVM, AdaBoost, Random Forest, and 
Naïve Bayes. The results of this study once again verify its 
good application. 

Based on the Random Forest model, the top two 
important features were preoperative pulmonary lesions 
and reoperation. The next echelon of variables included 
recipient age, preoperative immunoglobulin level, rATG 
dose, delayed graft function and preoperative albumin level, 
the importance of these features was clinically explainable. 
Obviously, the top three features were correlated with 
pneumonia episodes. A potential preoperative pulmonary 
inflammatory lesion tends to indicate a potential 
asymptomatic infection. Immunosuppression might rapidly 
deteriorate the infection status. Reoperation was shown 
to be risk factor for graft survival and early infection 
(32-34). Age is a significant risk factor for postoperative 
pneumonia in patients undergoing noncardiac surgery (13).  
The albumin level is significantly associated with death 
from pneumonia in recipients of kidney transplants 
(9,35). In another study, both baseline and posttransplant 
hypogammaglobulinemia were independent risk factors for 
infection (36). Our results revealed the importance of the 
preoperative immunoglobulin level for predicting severe 
pneumonia. On the other hand, in our dataset, a constant 
rATG dose is not used in clinical practice. We attempted 
to follow the recommendation of a total dose of 6 mg/kg 
divided into three days of administration or even 1.5 mg/kg/d  
for 3–5 days (37), but massive nosocomial pneumonia 

emerged. Thus, we reduced the induction dosage according 
to each recipient’s weight and clinical status after balancing 
the rejection and infection risk (38). Hence, the use of 
the rATG dose as a pneumonia predictor was reasonable. 
Regarding delayed graft function, previous studies had 
indicated a correlation between graft function and infection 
risk (34,39). According to the study by Menezes, DGF 
represents an independent risk factor for surgical site 
infection (34). In clinical practice, patients with DGF are 
susceptible to developing various complications, including 
pulmonary infection. All of the top predictive features 
described above have clinically reasonable explanations.

In recent years, machine learning has rapidly developed 
along with advances in computer science. Machine learning-
based data mining coexists with traditional statistical 
methods in medical research. Machine learning focuses on 
prediction, while traditional statistical methods are mainly 
used to analyze the causal inference by combining clinical 
characters and designations. The development of machine 
learning algorithms contributes to its increasing application 
in industry and other scientific fields. Compared with 
traditional statistical predictive models, machine learning 
algorithms show better predictive performance, particularly 
for highly dimensional massive data, which traditional 
statistical models are unable to analyze. In the present study, 
we used several prevailing algorithms to identify severe 
pneumonia episodes after kidney transplantation during 
perioperative period. Our raw dataset showed an obvious 
imbalance with 43 target events (severe pneumonia) and 476 
negative samples. This type of imbalance is very common in 
clinical research. Thus, we adopted ten-fold cross-validation 
and an oversampling method to improve the model stability 
and generalization and to reduce the effect of the imbalance.

For model selection, the AUROC is a general metric. 
However, AUROC is not a unique reference. In clinical 

Table 2 Summary of the comparison of model performance using the test dataset

Models Specificity Sensitivity Precision LR+ LR− F1 score AUROC AUPRC

Logistic regression 0.94 0.46 0.73 7.67 0.57 0.71 0.86 0.55

SVM 0.98 0.21 0.75 10.50 0.81 0.62 0.82 0.60

Random Forest 0.97 0.67 0.85 22.33 0.34 0.83 0.91 0.72

Naive Bayes 0.99 0.08 0.68 8.00 0.93 0.53 0.65 0.33

AdaBoost 0.92 0.54 0.72 6.75 0.50 0.73 0.84 0.44

SVM, support vector machine; LR+, positive likelihood ratio, LR−, negative likelihood ratio; AUROC, area under the receiver operating 
characteristic curve; AUPRC, area under the precision-recall curve.
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practice, model selection depends on the clinical objective. 
For example, when a certain target should be completely 
identified due to its particularity, such as serious lethality, 
a model with high sensitivity (recall) may be more 
appropriate. When a relatively high sensitivity is required, a 
ROC with lower false positive rate (1-specificity) or higher 
positive predictive value (PPV) may be more appropriate. 

Thus, the ROC shape is also a reference. For machine 
learning, the AUPRC and F1 score are practical metrics, 
particularly for an imbalanced dataset (27). In the present 
study, we selected a model with a high sensitivity and PPV 
due to the importance of severe pneumonia. AUPRC would 
be a good metric and the ROC shape could be referenced. 
Based on this requirement, we preferred the Random 

Figure 7 Confusion matrix of the predictive models using the test dataset (oversampling). The test sample was oversampled from the 
original test dataset (30% of the cohort). The true label of the longitude number indicated the ground targets and negative labels (1 and 0 
mapped recipients with and without severe pneumonia, respectively). Predicted label of the transverse number indicated predicted labels for 
each algorithm (1 and 0 mapped predicted recipients with and without severe pneumonia, respectively). Among the five machine learning 
algorithms, the Random Forest algorithm produced the best prediction.
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Forest model rather than a logistic regression model. The 
Random Forest model was deemed an evergreen in machine 
learning algorithms. Numerous similar medical studies have 
indicated the superiority and stability of the Random Forest 
model (27,40).

This study has some limitations. First, all of the 
aforementioned models were based on a retrospective 
cohort that may have some level of bias. A prospective 
external  va l idat ion cohort  i s  needed for  further 
confirmation. Second, our study was devoted to the 
predictive performance rather than a statistical inference. 
Thus, conclusions of conclude causality or risk factors were 
unable to be determined using machine learning models. 
Third, our raw dataset had a limitation of a small sample 
size and target imbalance. We used the oversampling 
method to generate new synthetic samples from the severe 
pneumonia recipients, which might affect the validity of the 
model. Finally, some features would potentially improve 
the prediction performance, such as HLA mismatch, 
warm and cold ischemia time and obesity, which require 
further exploration. Predictive models with large number 
of explanatory features are not very concise for clinical 
applications, but might be useful in a highly informationized 
medical facility. 

Conclusions

Machine learning algorithms exhibit an improved 
predictive performance for severe pneumonia episodes 
during perioperative periods after kidney transplantation. 
Among these algorithms, the Random Forest model shows 
the highest sensitivity, AUROC and AUPRC. Further 
prospective multicenter studies with multiple datasets are 
needed to confirm our results and to reduce the influence of 
the imbalance in the target variables.

Acknowledgments

We acknowledge colleagues from Fane Data Technology 
Corporation for providing technical support in machine 
learning model building.
Funding: This study was supported by the National Natural 
Science Foundation of China (81470977 and 81970652), 
Ten-Five Project of the Third Affiliated Hospital of Sun 
Yat-sen University (SW201904), The Third Affiliated 
Hospital of Sun Yat-Sen University Clinical Research 
Program (YHJH201906), and Guangzhou Science and 
Technology Plan Projects (201803010016).

Footnote

Conflicts of Interest: The authors declare no conflicts of 
interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. This study was 
approved by the research ethics committee at the Third 
Affiliated Hospital of Sun Yat-sen University {IRB approval: 
[2019]02-512-01}. All organs were obtained from donations 
by deceased citizens. The research is compliant with the 
Declaration of Helsinki and Declaration of Istanbul.

References

1. O'Shea DT, Humar A. Life-threatening infection in 
transplant recipients. Crit Care Clin 2013;29:953-73.

2. Fishman JA. Opportunistic infections--coming to the 
limits of immunosuppression? Cold Spring Harb Perspect 
Med 2013;3:a015669.

3. Fishman JA. Infection in solid-organ transplant recipients. 
N Engl J Med 2007;357:2601-14.

4. Fishman JA, Issa NC. Infection in organ transplantation: 
risk factors and evolving patterns of infection. Infect Dis 
Clin North Am 2010;24:273-83.

5. Helfrich M, Dorschner P, Thomas K, et al. A retrospective 
study to describe the epidemiology and outcomes 
of opportunistic infections after abdominal organ 
transplantation. Transpl Infect Dis 2017;19:e12691.

6. Kinnunen S, Karhapaa P, Juutilainen A, et al. Secular 
Trends in Infection-Related Mortality after Kidney 
Transplantation. Clin J Am Soc Nephrol 2018;13:755-62.

7. Yang Y, Ren L, Zhang Y, et al. Changes in biochemical 
parameters on the first day after kidney transplantation: 
risk factors for nosocomial infection? Chin Med J (Engl) 
2010;123:563-8.

8. Cervera C, Agusti C, Angeles Marcos M, et al. 
Microbiologic features and outcome of pneumonia 
in transplanted patients. Diagn Microbiol Infect Dis 
2006;55:47-54.

9. Dizdar OS, Ersoy A, Akalin H. Pneumonia after kidney 
transplant: incidence, risk factors, and mortality. Exp Clin 
Transplant 2014;12:205-11.

10. Hoyo I, Linares L, Cervera C, et al. Epidemiology of 
pneumonia in kidney transplantation. Transplant Proc 
2010;42:2938-40.



Luo et al. Machine learning predict severe pneumonia in KTx recipients

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(4):82 | http://dx.doi.org/10.21037/atm.2020.01.09

Page 14 of 15

11. Mohty M. Mechanisms of action of antithymocyte 
globulin: T-cell depletion and beyond. Leukemia 
2007;21:1387-94.

12. Bunn D, Lea CK, Bevan DJ, et al. The pharmacokinetics 
of anti-thymocyte globulin (ATG) following intravenous 
infusion in man. Clin Nephrol 1996;45:29-32.

13. Arozullah AM, Khuri SF, Henderson WG, et al. 
Development and validation of a multifactorial risk index 
for predicting postoperative pneumonia after major 
noncardiac surgery. Ann Intern Med 2001;135:847-57.

14. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial 
intelligence and machine learning in prostate cancer. Nat 
Rev Urol 2019;16:391-403.

15. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et 
al. Diagnostic Assessment of Deep Learning Algorithms 
for Detection of Lymph Node Metastases in Women With 
Breast Cancer. JAMA 2017;318:2199-210.

16. Meyer A, Zverinski D, Pfahringer B, et al. Machine 
learning for real-time prediction of complications in 
critical care: a retrospective study. Lancet Respir Med 
2018;6:905-14.

17. Huang S, Cai N, Pacheco PP, et al. Applications of 
Support Vector Machine (SVM) Learning in Cancer 
Genomics. Cancer Genomics Proteomics 2018;15:41-51.

18. Marchese Robinson RL, Palczewska A, Palczewski J, 
et al. Comparison of the Predictive Performance and 
Interpretability of Random Forest and Linear Models on 
Benchmark Data Sets. J Chem Inf Model 2017;57:1773-92.

19. Zhang Z. Naive Bayes classification in R. Ann Transl Med 
2016;4:241.

20. Zhang PB, Yang ZX. A Novel AdaBoost Framework With 
Robust Threshold and Structural Optimization. IEEE 
Trans Cybern 2018;48:64-76.

21. Benchimol EI, Smeeth L, Guttmann A, et al. The 
REporting of studies Conducted using Observational 
Routinely-collected health Data (RECORD) statement. 
PLoS Med 2015;12:e1001885.

22. Kalil AC, Metersky ML, Klompas M, et al. Management of 
Adults With Hospital-acquired and Ventilator-associated 
Pneumonia: 2016 Clinical Practice Guidelines by the 
Infectious Diseases Society of America and the American 
Thoracic Society. Clin Infect Dis 2016;63:e61-e111.

23. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious 
Diseases Society of America/American Thoracic Society 
consensus guidelines on the management of community-
acquired pneumonia in adults. Clin Infect Dis 2007;44 
Suppl 2:S27-72.

24. Schröppel B, Legendre C. Delayed kidney graft function: 

from mechanism to translation. Kidney Int 2014;86:251-8.
25. Darst BF, Malecki KC, Engelman CD. Using recursive 

feature elimination in random forest to account for 
correlated variables in high dimensional data. BMC Genet 
2018;19:65.

26. Luo W, Phung D, Tran T, et al. Guidelines for Developing 
and Reporting Machine Learning Predictive Models in 
Biomedical Research: A Multidisciplinary View. J Med 
Internet Res 2016;18:e323.

27. Chiew CJ, Liu N, Wong TH, et al. Utilizing Machine 
Learning Methods for Preoperative Prediction of 
Postsurgical Mortality and Intensive Care Unit Admission. 
Ann Surg 2019. [Epub ahead of print].

28. Perl J, Dember LM, Bargman JM, et al. The Use of a 
Multidimensional Measure of Dialysis Adequacy-Moving 
beyond Small Solute Kinetics. Clin J Am Soc Nephrol 
2017;12:839-47.

29. Zhang P, Wu HM, Shen QY, et al. Associations of 
pulmonary function with serum biomarkers and dialysis 
adequacy in patients undergoing peritoneal dialysis. Clin 
Exp Nephrol 2016;20:951-9.

30. Szeto CC, Wong TY, Chow KM, et al. Impact of dialysis 
adequacy on the mortality and morbidity of anuric Chinese 
patients receiving continuous ambulatory peritoneal 
dialysis. J Am Soc Nephrol 2001;12:355-60.

31. Yang B, Ding X, Xie J, et al. Transient stopping 
immunosuppressive agents during the post-transplant 
pulmonary infection does not affect the long-term 
outcome of renal transplantation. Zhong Nan Da Xue Xue 
Bao Yi Xue Ban 2015;40:380-6.

32. Freire MP, Antonopoulos IM, Piovesan AC, et al. 
Amikacin prophylaxis and risk factors for surgical site 
infection after kidney transplantation. Transplantation 
2015;99:521-7.

33. Soong RS, Chan KM, Chou HS, et al. The risk factors for 
early infection in adult living donor liver transplantation 
recipients. Transplant Proc 2012;44:784-6.

34. Menezes FG, Wey SB, Peres CA, et al. Risk factors for 
surgical site infection in kidney transplant recipients. 
Infect Control Hosp Epidemiol 2008;29:771-3.

35. Lee JH, Kim J, Kim K, et al. Albumin and C-reactive 
protein have prognostic significance in patients 
with community-acquired pneumonia. J Crit Care 
2011;26:287-94.

36. Fernández-Ruiz M, Lopez-Medrano F, Varela-Pena P, 
et al. Monitoring of immunoglobulin levels identifies 
kidney transplant recipients at high risk of infection. Am J 
Transplant 2012;12:2763-73.



Annals of Translational Medicine, Vol 8, No 4 February 2020 Page 15 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(4):82 | http://dx.doi.org/10.21037/atm.2020.01.09

37. Stevens RB, Mercer DF, Grant WJ, et al. Randomized trial 
of single-dose versus divided-dose rabbit anti-thymocyte 
globulin induction in renal transplantation: an interim 
report. Transplantation 2008;85:1391-9.

38. Wong W, Agrawal N, Pascual M, et al. Comparison of 
two dosages of thymoglobulin used as a short-course 
for induction in kidney transplantation. Transpl Int 

2006;19:629-35.
39. Mourad G, Dussol B, Daugas E, et al. Is renal allograft 

dysfunction a risk factor for severe infection in kidney 
transplant recipients? Transplant Proc 2012;44:2821-3.

40. Lau L, Kankanige Y, Rubinstein B, et al. Machine-
Learning Algorithms Predict Graft Failure After Liver 
Transplantation. Transplantation 2017;101:e125-32.

Cite this article as: Luo Y, Tang Z, Hu X, Lu S, Miao B, Hong 
S, Bai H, Sun C, Qiu J, Liang H, Na N. Machine learning 
for the prediction of severe pneumonia during posttransplant 
hospitalization in recipients of a deceased-donor kidney 
transplant. Ann Transl Med 2020;8(4):82. doi: 10.21037/
atm.2020.01.09



Supplementary 

Table S1 Demographics of the whole 43 explanatory variables in kidney transplantations (grouped by severe pneumonia)

Variables
Severe pneumonia

P value
No (n=476) Yes (n=43)

Preoperative variables

Age 42.84±11.24 50.07±10.60 <0.001

Sex 0.388

Female 143 10

Male 333 33

Blood type 0.928

A 104 8

B 125 11

AB 40 3

O 207 21

Smoking 0.634

Yes 14 2

No 462 41

Hypertension 0.866

No 153 13

Yes 323 30

Diabetes 0.022

Yes 50 10

No 426 33

HBsAg 0.037

Positive 47 9

Negative 429 34

CVD 0.544

No 468 42

Yes 8 1

Dialysis type 0.072

No dialysis 50 1

Hemodialysis 327 28

Peritoneal dialysis 99 14

Dialysis duration 0.12

No dialysis 50 2

≤1 year 255 19

>1 year 171 22

Previous transplantation 0.626

Yes 15 0

No 461 43

Preoperative WBC 6.63 (5.53–7.83) 6.80 (5.68–8.66) 0.251

Preoperative neutrophil 4.56 (3.68–5.64) 4.73 (4.12–6.01) 0.167

Preoperative lymphocyte 1.32 (1.02–1.64) 1.32 (1.01–1.89) 0.567

Preoperative platelet 195.5 (157.5–249.5) 202 (176–272) 0.326

Preoperative Hb 111 (98–124) 107 (97–123) 0.541

Preoperative glucose 5.18 (4.72–6.00) 5.31 (4.84–6.65) 0.306

Preoperative BUN 21.56 (16.78–27.20) 21.75 (17.96–27.34) 0.931

Preoperative SCr 991 (787–1,192) 978 (856–1,168) 0.75

Preoperative uric acid 419.45 (334.55–497.65) 406.5 (326.4–486.7) 0.749

Preoperative albumin 43.8 (40.5–46.8) 41.5 (36.3–45.5) 0.011

Preoperative Immunoglobulin 28.2 (24.9–31.35) 29.9 (27.0–33.5) 0.01

Preoperative inorganic phosphorus 1.80 (1.46–2.24) 1.75 (1.53–2.00) 0.659

Preoperative total cholesterol 4.35 (3.72–5.19) 4.54 (3.98–5.49) 0.075

Preoperative triglyceride 1.43 (1.01–2.11) 1.61 (1.13–2.66) 0.105

Preoperative HDL 1.07 (0.87–1.32) 0.97 (0.82–1.17) 0.096

Preoperative LDL 2.35 (1.85–2.96) 2.62 (1.95–3.17) 0.146

Preoperative pulmonary radioscopic 
inflammatory lesion (pulmonary edema 
excluded) 

<0.001

Yes 41 17

No 435 26

Donor age 40.96±14.45 46.86±12.13 0.005

Dnor sex 0.148

Female 91 4

Male 384 39

Donor kidney 0.203

Right 240 17

Left 235 26

Donor terminal SCr 119 (77–212) 145 (71–217) 0.687

Intra and postoperative variables

Surgery time (hours) 3.33 (2.94–3.92) 3.70 (3.12–4.27) 0.027

Reoperation <0.001

No 466 36

Yes 10 7

Induction >0.999

T-cell depletion 423 39

Non-depletion 53 4

rATG dose (bolus) 6 (4–8) 6 (6–8) 0.056

rATG dose category 0.36

No rATG 53 4

<6 boluses 89 6

6 boluses 199 15

>6 boluses 135 18

Simulect

Yes 91 8 >0.999

No 385 35

IVIg prophylaxis 0.638

Yes 65 4

No 411 39

Ganciclovir 0.871

Yes 286 25

No 190 18

Anti-fungi drugs 0.026

Caspofungin 209 25

Micafungin 266 17

Other 1 1

Alprostadil 0.248

No 66 3

Yes 410 40

Delayed graft function 0.005

Yes 40 10

No 436 33

Differences test in continuous variables were analyzed using the Wilcoxon rank-sum test; differences in categorical variables were 
analyzed using Fisher’s exact test. WBC, white blood cell; BUN, blood urea nitrogen; CVD, cardiac vascular disease; HDL, high density 
lipoprotein cholesterol; LDL, low-density lipoprotein; IVIg, intravenous immunoglobulin; rATG dose, rabbit anti-human thymocyte globulin 
(Thymoglobulin® 25 mg/bolus), we also used ATG-F, anti-human T lymphocyte rabbit immunoglobulin (Grafalon®, 100 mg converted to 
rATG in two boluses) and ALG, porcine anti-human lymphocyte immunoglobulin (250 mg/bolus, converted to rATG in one bolus).

Table S2 Predictions of kidney transplantation professional doctors

Professional doctors Severe pneumonia predictions Sp No sp Sensitivity Specificity Precision

S.Doc.A Pred sp 17 26 0.40 0.95 0.40

Pred no sp 26 450

J.Doc.B Pred sp 10 37 0.23 0.92 0.21

Pred no sp 33 439

S.Doc.C Pred sp 15 15 0.35 0.97 0.50

Pred no sp 28 461

J.Doc.D Pred sp 12 14 0.28 0.97 0.46

Pred no sp 31 462

S.Doc, senior doctor; J.Doc, junior doctor; sp, severe pneumonia; pred, predicted.
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