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Background: To develop a deep learning (DL) method based on multiphase, contrast-enhanced (CE) 
magnetic resonance imaging (MRI) to distinguish Liver Imaging Reporting and Data System (LI-RADS) 
grade 3 (LR-3) liver tumors from combined higher-grades 4 and 5 (LR-4/LR-5) tumors for hepatocellular 
carcinoma (HCC) diagnosis. 
Methods: A total of 89 untreated LI-RADS-graded liver tumors (35 LR-3, 14 LR-4, and 40 LR-5) were 
identified based on the radiology MRI interpretation reports. Multiphase 3D T1-weighted gradient echo 
imaging was acquired at six time points: pre-contrast, four phases immediately post-contrast, and one 
hepatobiliary phase after intravenous injection of gadoxetate disodium. Image co-registration was performed 
across all phases on the center tumor slice to correct motion. A rectangular tumor box centered on the tumor 
area was drawn to extract subset tumor images for each imaging phase, which were used as the inputs to a 
convolutional neural network (CNN). The pre-trained AlexNet CNN model underwent transfer learning 
using liver MRI data for LI-RADS tumor grade classification. The output probability number closer to 1 or 
0 indicated a higher possibility of being combined LR-4/LR-5 tumor or LR-3 tumor, respectively. Five-fold 
cross validation was used for training (60% dataset), validation (20%) and testing processes (20%). 
Results: The DL CNN model for LI-RADS grading using inputs of multiphase liver MRI data acquired 
at three time points (pre-contrast, arterial, and washout phase) achieved a high accuracy of 0.90, sensitivity of 
1.0, precision of 0.835, and AUC of 0.95 with reference to the expert human radiologist report. The CNN 
output of probability provided radiologists a confidence level of the model’s grading for each liver lesion.
Conclusions: An AlexNet CNN model for LI-RADS grading of liver lesions provided diagnostic 
performance comparable to radiologists and offered valuable clinical guidance for differentiating 
intermediate LR-3 liver lesions from more-likely malignant LR-4/LR-5 lesions in HCC diagnosis.
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Introduction

Imaging plays a critical role in hepatocellular carcinoma 
(HCC) diagnosis. The American Association for the Study 
of Liver Diseases guidance statement (1) recommends 
diagnostic evaluation for HCC with either multiphase 
computed tomography (CT) or multiphase magnetic 
resonance imaging (MRI) and the use of the Liver Imaging 
Reporting and Data System (LI-RADS®) (2). LI-RADS 
provides standardized criteria for performing, interpreting, 
and reporting multiphase CT and MRI exams for HCC 
diagnosis. It is consistent with the guidelines of the 
National Comprehensive Cancer Network (3) and is easily 
convertible to the Organ Procurement and Transplantation 
Network classes (4) utilized by liver transplant centers in 
the United States. According to the LI-RADS diagnostic 
algorithm, a liver lesion in a high-risk patient (history of 
cirrhosis, chronic HBV infection, and current or prior 
HCC) is assigned a LI-RADS (LR) category reflecting 
the likelihood of being HCC: LR-1 to LR-5. Grades of 
LR-1 and LR-2 are definitely benign and probably benign, 
respectively. LR-3 indicates intermediate probability of 
HCC, LR-4 indicates high probability of HCC without 
certainty, and LR-5 indicates definite certainty of HCC.

 Differentiation between LR-3 and combined LR-4/5 
lesions is important because management options for LR-3 
lesions are less invasive than those for LR-4 and LR-5. Many 
LR-3 lesions are benign hyperenhancing pseudolesions 
which can be followed for stability with imaging (5), 
whereas 80% of biopsied LR-4 lesions are HCC, and 68% 
of untreated LR-4 lesions become LR-5 lesions within two 
years. LR-4 lesions may be biopsied, while an LR-5 score 
indicates HCC diagnostic certainty and biopsy is usually 
not needed before treatment (1). Percutaneous liver lesion 
biopsies are not always performed in LR-4/LR-5 patients 
because of the risk of accidental tumor cell seeding along 
the biopsy needle tract and other complications. Thus, in 
clinical practice, the radiologist-determined LI-RADS score 
is often considered as the ground truth or gold standard for 
liver lesion characterization in high-risk patients, leading to 
HCC treatment intervention without biopsy confirmation. 
This approach emphasizes the importance of accurate 
imaging characterization.

 Compared with CT, MRI diagnosis of HCC is more 
accurate and does not expose patients to harmful radiation 
(1,6-8). Multiphase contrast-enhanced (CE) MRI with 
intravenous gadoxetate disodium injection can achieve a 
92% staging accuracy (6). An expert consensus statement 

and meta-analysis studies recommended state-of-the-
art MRI as the most accurate imaging method for HCC 
diagnosis (9-11). Accurate LI-RADS liver lesion scoring 
performed on CE MRI requires comprehensive evaluation 
of liver lesion imaging features, notably: tumor size, arterial 
phase non-rim hyper-enhancement, washout, threshold 
growth, and presence of a capsule. Given the technical 
complexity in performing and interpreting multiparametric 
CE MRI for liver tumor LI-RADS scoring, this advanced 
imaging is usually conducted at expert academic centers 
rather than smaller community hospitals or outpatient 
imaging centers.

Deep learning (DL) methods empowered with 
convolutional  neural  network (CNN) algorithms 
have shown promise in medical imaging for disease 
detection (12-14), tissue segmentation (15,16), and lesion 
classification (17,18). These methods are able to excavate 
hidden or high-dimensional quantitative imaging features 
that currently elude identification by human experts such 
as radiologist physicians. DL-extracted imaging features 
are found to be more robust and generalizable than 
manually-extracted analytical features (19). DL methods 
have been used for differentiation of liver masses on 
dynamic CE CT images (20) and for classification between 
HCC and intrahepatic cholangiocarcinoma (21). However, 
to our knowledge, a DL method has not been reported for 
LI-RADS grading based on MRI data. 

 Various CNN architectures pre-trained using a large 
scale of annotated images of real-world objects have been 
exploited in the medical imaging field through transfer 
learning (22,23) to improve the prediction performance 
when dealing with relatively scarce data. Deep CNNs 
such as ResNet (24) and GoogleNet (25) demonstrated 
promising classification performance in the ImageNet 
Large-Scale Visual Recognition Challenge (26) and have 
been used in the detection and grading of brain tumors 
based on multiparametric MRI data (27,28). Nonetheless, a 
deep and complex CNN may be unsuitable for classification 
tasks using insufficient and scarce datasets due to the 
overfitting problem (29). In contrast, CNN models with 
a less depth and less-complex architecture have proven to 
be more robust in solving medical imaging problems (30). 
The AlexNet model contains a traditional architecture with 
8 layers, which has less depth but improved generalization 
performance compared with other models (31). Therefore, 
in this study, we modified the commonly used AlexNet 
CNN for tumor grade classification.

 The purpose of our study was to develop a DL method 
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based on multiphase CE MRI data to distinguish LR-3 
liver lesions (intermediate chance of malignancy) from a 
combined group of LR-4 and LR-5 lesions (high chance 
of malignancy), using the expert radiologist report as the 
reference standard. The hypothesis was that the DL-
driven LI-RADS grading system can provide diagnostic 
performance comparable to experienced radiologists and 
provide valuable guidance to radiologists.

Methods 

Dataset

This retrospective study was approved by Rush University 
Medical Center institutional review board and written 
informed consent was waived. By searching the electronic 
health record system at Rush University Medical Center, 
we identified 89 untreated liver tumors in 59 patients 
with suspected HCC who underwent baseline MRI with 
corresponding LI-RADS grades. The study radiologist 
reviewed and annotated a total of 35 LR-3, 14 LR-4, and 
40 LR-5 classified liver tumors, as reported by reading 
radiologists. The LI-RADS grades confirmed by the study 
radiologist were used as the reference standard.

Multi-phase contrast enhanced MRI 

A dynamic multiphase three-dimensional (3D) T1-
weighted (T1W) gradient-echo sequence was acquired 
before and after contrast administration (0.1 mL/kg Eovist® 
Gadoxetate Disodium) with an injection rate of 2 mL/sec. 
Images were recorded at six time points (TPs) including 
a pre-contrast phase (TP1) and five post-contrast phases 
(TP2-TP6). We collected four immediate post-contrast 
acquisitions which included the early arterial, late arterial, 
portal venous, and transitional phases. The hepatic arterial 
phase was typically acquired around 30 seconds after an 
injection started. The next three post-contrast acquisitions 
were acquired every 30 seconds to evaluate lesion contrast 
enhancement and washout dynamics. The last time point 
of the immediate post-contrast acquisitions represented 
the washout phase of the lesion, which corresponded 
approximately to a late portal venous phase or transitional 
phase. The final acquisition was during the hepatobiliary 
phase at 20 minutes after injection. 

Image co-registration across acquisitions at different 
time points was performed through projective geometric 
transformation based on multiple paired control points that 

identified the same feature or landmark in the images using 
the ‘fitgeotrans’ function of the Matlab software (Image 
Processing Toolbox, Matlab, MathWorks, Inc., Natick, 
Massachusetts, United States). For each liver lesion/tumor, 
a center image slice with the best lesion delineation was 
selected by the study radiologist, on which one region-
of-interest (ROI) was placed around the tumor area and 
the other ROI on adjacent liver tissue. The ROIs were 
then copied onto the same slice position of the multiphase 
images. Averaged signal intensities of the tumor and 
liver ROIs (Stumor and Sliver), and the signal ratio ∆S = 
(Stumor − Sliver)/Sliver were calculated. Of the multiple MRI 
acquisitions obtained at different TPs, the two clinically-
important imaging phases demonstrating maximum liver 
lesion enhancement (TPme) and maximum lesion washout 
(TPmw) were identified as those with the largest ∆S and 
smallest ∆S values, respectively. Lastly, a rectangular tumor 
bounding box centered on the liver lesion (and including 
1–2 cm of surrounding liver tissue) was drawn to extract a 
subset tumor images for each image phase. The workflow 
of the DL LI-RADS grading system is illustrated in  
Figure 1A.

DL CNN model

Image augmentation
Each subset tumor image was rotated by degrees of {−60, 
−30, 30, 60}, and flipped both horizontally and vertically. 
The original subset tumor images and rotated images were 
zero-padded to the same matrix size of 100×100. As a result, 
a total of 7 images for each subset tumor image were used 
as inputs to the CNN. This step of image augmentation 
increased the sample size of the training dataset to avoid the 
potential overfitting problem. 

Model architecture
AlexNet is a well-known CNN architecture pre-trained 
with the quality-controlled and annotated real-world 
images from ImageNet Large Scale Visual Recognition 
Challenge database (26). It consists of 8 trainable layers: 
5 convolutional layers plus 3 fully connected layers. The 
activation function Rectified Linear Unit (ReLU) is applied 
in each layer to accelerate the convergence of gradient 
descent. The model also consists of non-trainable layers 
including pooling layers to reduce the dimension of the 
parameters and dropout layers to alleviate the overfitting 
problem. The last fully connected layer outputs a probability 
number ranging from 0 to 1 for each liver lesion, with a 
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number closer to 1 indicating a higher probability that the 
lesion represents an LR-4/LR-5 tumor, whereas a number 
closer to 0 indicates a greater probability of being an LR-3 
tumor. Thus, a liver lesion with a probability number closer 
to 1 was more likely malignant and a lesion with number 
closer to 0 was less likely malignant. The architecture of the 
CNN model is illustrated in Figure 1B.

Training, validation, and testing dataset
Five-fold cross validation was used for training, validation, 
and testing processes. Each fold contained 60% of the 
total number of liver tumors as a training dataset, 20% as 
a validation dataset, and the remaining 20% as a testing 
dataset. The batch size was set to be 8 images in each 
iteration of the training process. The number of epochs was 
originally set to be 200 and then reduced to 53 with an early 
stop, where the training process stopped if the performance 
of a validation dataset started to degrade. The training 
and testing processes were conducted using the Python 
programming language (version 3.6) on a single GPU 
(Nvidia GeForce 2080Ti) workstation with training time 
per fold averaging 18 minutes.

Transfer learning
Transfer learning was used to fine-tune the weights of the 
AlexNet model parameters with liver MRI images as the 
inputs. The initial weights of AlexNet pre-trained with the 
ImageNet dataset were kept fixed in the five convolutional 
layers, whereas the weights of the three fully connected 
layers were fine-tuned using the liver MRI training dataset. 
Next, all eight of the trainable (convolutional and fully 
connected) layers were fine-tuned together using the liver 
MRI validation dataset. AlexNet model performance was 
evaluated using the liver MRI testing dataset. The model’s 
performance both with and without transfer learning was 
also evaluated.

Cyclical learning rate
To increase the speed of convergence with fewer epochs 
and to avoid local minima, the optimal learning rate was 
determined by the approach of a cyclical learning rate 
algorithm (32). First, a random learning rate was assigned 
for one epoch of training and the loss function was 
calculated on a validation dataset. The loss values were 
plotted as a function of the corresponding learning rates 

Figure 1 The design of the DL LI-RADS grading system using contrast enhanced multiphase liver MRI. (A) The workflow of the DL-
driven LI-RADS grading system; (B) AlexNet model architecture used for CNN-based image feature extraction and classification. DL, deep 
learning; LI-RADS, Liver Imaging Reporting and Data System; CNN, convolutional neural network.
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that were randomly assigned for each epoch of training. 
The minimal and maximal boundaries of the learning rate 
were determined from the loss value curve, where the 
minimal boundary represented the point where the loss 
started to decrease, and the maximal boundary represented 
the point where the loss started to increase (Figure 2A). 
After the learning rate boundaries were chosen, the optimal 
learning rate was determined dynamically during the full 
training process along with multiple epochs, where the 
learning rate oscillated cyclically within the minimal and 
maximal boundaries (Figure 2B). The rising course of the 
oscillation helped the training loss jump out of the local 
minimum, while the declining course helped alleviate the 
overfitting problem. 

Performance evaluation
The optimal acquisition scheme was determined by 
separately using four different combinations of image 
phases as inputs to the CNN and comparing the model 
performances. Combination 1 (C1) dataset: all phases 
acquired at six time points (TPs); Combination 2 (C2) 

dataset: pre-contrast (TP1), arterial phase (TP2), and 
washout phase (TP5); Combination 3 (C3) dataset: C2 plus 
the hepatobiliary phase (TP6); and Combination 4 (C4) 
dataset: pre-contrast (TP1), maximum enhancement phase 
(TPme), and maximum washout phase (TPmw). For each 
combination dataset, images acquired at the chosen TPs 
were concatenated into multiple channels as the inputs to 
the CNN classifier. 

The confidence level of the classification outcomes 
generated by the CNN model was defined as the probability 
of being LR-3 or combined LR-4/LR-5 for any given 
tumor. The probability threshold used for classification 
between LR-3 and combined LR-4/LR-5 tumors was set 
to be 0.5. The tumor with a probability score <0.5 was 
classified as LR-3, whereas a probability score >0.5 was 
classified as LR-4/LR-5. Probability scores between 0.4 and 
0.6 indicated less confidence in the classification outcomes 
and suggested further evaluation by study radiologists based 
on other clinical and imaging information. 

Statistical analysis

The mean accuracy, precision, sensitivity, and F1 score 
for differentiation between LR-3 and combined LR-4/
LR-5 liver lesions were calculated for each of the five 
cross-validation testing datasets. The receiver operating 
characteristic (ROC) analysis and the area under the receiver 
operating characteristic curve (AUC) were calculated to 
evaluate the performance of the CNN classifier. McNemar’s 
test was performed to compare the accuracy and sensitivity 
of the C1-C4 models, and between C2 models with and 
without transfer learning. The P values were adjusted for 
multiple comparisons using false discovery rate. A P value 
<0.05 was considered statistically significant. In addition, 
a confusion matrix was generated for each cross-validation 
process, which presented the number ratio of lesions that 
were correctly or incorrectly classified by CNN in either 
the LR-3 or LR-4/LR-5 category.

Results

The classification performance using datasets acquired 
from different combinations of MRI imaging phases are 
shown in Table 1. Among the four combinations (C1–
C4), the C2 scheme (with the three time points of pre-
contrast, arterial phase, and washout phase) provided 
the best performance with the highest accuracy (0.900), 
precision (0.835), sensitivity (1.0), F1 score (0.909), and 

Figure 2 The cyclical learning rate algorithm for determining the 
optimal learning rate of the CNN model. (A) Loss value curve as 
a function of randomly selected learning rate. The red dot is the 
minimal boundary where the loss begins to drop. The yellow dot 
is the maximal boundary where the loss begins to increase. (B) The 
process of determining the optimal learning rate during the full 
training process. The learning rate oscillates cyclically between the 
minimal and maximal boundaries along a triangular waveform. 
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AUC (0.95). McNemar’s test showed that the accuracy 
of C2 was significantly higher than C1, C3, and C4 with 
all P values =0.02. The sensitivity of C2 was significantly 
higher than C4 with P value of 0.01. However, there was no 
significant difference in sensitivity between C2 and C1 or 
C3 with P value of 0.16 and 0.21, respectively. Neither the 
use of all six time points (C1) nor addition of hepatobiliary 
phase (C3) to the C2 dataset improved the performance of 
the CNN classifier. The transfer learning approach greatly 
improved the classification outcomes when comparing the 
performances of the C2 dataset with and without transfer 
learning (P value =0.02 for both accuracy and sensitivity 
comparisons). The sensitivity of CNN using the C2 
dataset with transfer learning reached 1.0, indicating that 
all liver lesions in the combined LR-4/LR-5 group were 
correctly classified by the CNN as compared to a human 
radiologist gold standard. Similarly, the confusion matrix, 
which provided the number ratio of correctly-classified 
and misclassified CNN-predicted LI-RADS grades with 
reference to radiologist-determined LI-RADS grades, 
demonstrated that none of the LR-4/LR-5 lesions were 
classified as LR-3 in all five folds of validation (Figure 3). 
The AUC of ROC curve using the C2 dataset was 0.95±0.2 
(mean ± standard deviation) across all five folds of validation 
(Figure 4).

 The certainty score (i.e., probability) of the classification 
result for any given tumor in each cross-validation testing 
dataset was calculated (Figure 5). A probability higher 
than 0.6 or lower than 0.4 indicated more certainty in the 
CNN classification, whereas a probability falling between 
0.4 and 0.6 indicated a less reliable classification. Overall, 
none of the LR-4/LR-5 lesions were misclassified as LR-3 
lesions, in concordance with the high certainty scores and 
suggested the great sensitivity of this model. A total of 
four LR-3 lesions were misclassified as LR-4/LR-5, two of 

which showed a probability number (0.52 and 0.56) falling 
in the uncertain area, prompting further evaluation by the 
radiologist. The other two misclassified LR-3 lesions had a 
relatively higher probability number (0.86 and 0.66). 

Discussion

This study is the first to implement a CNN DL model 
based on multiphase CE MRI images to facilitate LI-RADS 
HCC grading of clinically-relevant lesions (LR-3 and LR-4/
L4-5), which achieved a high accuracy of 0.90, sensitivity 
of 1.0, and AUC of 0.95 with reference to the expert 
radiologist report. Images acquired at three time points 
(pre-contrast, arterial phase, and washout phase) as CNN 
inputs provided the best performance with significantly 
higher accuracy, whereas including the other three time 
points did not improve performance. This result suggests 
that fewer dynamic acquisitions during contrast injections 
are needed than typically performed in current clinical 
practice. Reducing the number of CE MRI acquisitions 
needed can beneficially shorten MRI exam time, leading 
to a decrease in patient motion artifacts associated with 
uncomfortable, mandatory patient breath-holding during 
imaging. The hepatobiliary phase acquired at 20 minutes 
after the contrast injection did not contribute to the LI-
RADS classification performance of the CNN model, 
indicating that acquisition of this delayed phase may not be 
necessary for the purpose of LI-RADS grading.

 Tumor size is an important factor in the diagnosis 
of HCC. In this study, the average tumor diameter was 
14.7±4.7 mm for LR-3 lesions and 22.6±11.8 mm for LR-
4/5 lesions. Although tumor size was not used as a manually 
extracted feature for the CNN model, DL networks are 
capable of extracting discriminant features such as size and 
shape from the inner layers of the network by learning 

Table 1 The classification performance of the CNN model using datasets acquired at different combinations of image phases

Dataset Accuracy Precision Sensitivity F1 score AUC

C1 (all 6 phases) 0.833 0.800 0.889 0.842 0.92

C2 (pre, arterial, washout) 0.900 0.835 1.0 0.909 0.95

C3 (C2 + hepatobiliary phase) 0.833 0.803 0.889 0.843 0.92

C4 (pre, me, mw) 0.789 0.814 0.756 0.780 0.91

C2 without transfer learning 0.767 0.777 0.778 0.767 0.90

pre, pre-contrast; arterial, arterial phase; washout, washout phase; me, maximum enhancement phase; mw, maximum washout phase; 
CNN, convolutional neural network; AUC, area under the receiver operating characteristic curve.
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the abstract and useful relationships between the input 
data and features (33). This CNN model demonstrated 
a sensitivity of 1.0, indicating that not a single high-
grade (LR-4 or LR-5) liver lesion was misdiagnosed as 
the lower LR-3 grade, which can help minimize delayed 
diagnosis and treatment of the higher-grade HCC lesions. 
However, misclassification occurred in four radiologist-
determined low-grade lesions in this study. The probability 
score proposed in this study provided radiologists and 
clinicians a confidence level for each lesion classification 
that facilitates clinical decision making and flags uncertain 
cases requiring further human radiologist review. The 
probability of two of the misclassified lesions (0.53 and 0.59) 
suggested uncertainty (i.e., low confidence level) in the 
CNN classification and therefore required re-evaluation by 
radiologist. These two lesions were originally graded by the 
reading radiologists as LR-3 because of their small size and 
hyper-enhancement on arterial phase while lacking tumor 
washout compared to liver tissue. CNN classification of 

a lesion as a higher grade than indicated in the radiology 
report prompted additional radiologist review to reduce 
misdiagnosis. The other two misclassified LR-3 tumors 
had a relatively high probability number (0.86 and 0.66). 
Interestingly, the tumor with a very high probability (0.86) 
was re-classified as a LR-5 tumor later in a 6-month follow-
up MRI exam. The study radiologist reviewed this case 
carefully based on the LI-RADS guideline and suspected 
that suboptimal timing of arterial phase acquisition and 
severe motion artifact in the venous phase images may have 
misled the interpreting radiologist’s judgement of this lesion 
as LR-3. Or, the CNN identified some as-yet-unknown 
feature of the lesion resulting in a higher-grade LI-RADS 
score. It is noteworthy that the CNN model successfully 
predicted the ‘true’ grade of LR-5 for this lesion with a high 
confidence level under the limited conditions of suboptimal 
image quality. The last misclassified LR-3 lesion by the 
CNN with the probability of 0.66 was confirmed by the 
study radiologist as an LR-3 lesion because the lesion was 

Figure 3 The confusion matrix describes CNN classification model performance using C2 dataset in each fold of cross-validation. The 
number ratio of correctly classified and misclassified CNN-predicted grades is listed with reference to each radiologist-determined LI-
RADS grade. LI-RADS, Liver Imaging Reporting and Data System; CNN, convolutional neural network.
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small, arterial-phase hyper-enhancing, and demonstrated 
no washout in later phases. The over-estimation of higher-
grade tumor by the CNN model was hypothesized to 
be secondary to the presence of heterogenous, nodular, 
cirrhotic liver parenchyma in this patient, which also 

presents a diagnostic challenge for human radiologists. The 
radiologist should be aware of this confounding factor and 
re-evaluate the CNN outcomes. 

One general problem with DL networks is the “black 
box” problem. Unlike analytical imaging features used 
in traditional machine learning, DL-extracted imaging 
features are difficult for humans to interpret, and precisely 
how predicted outcomes and conclusions are drawn by DL 
networks can evade our understanding. Data inputs and 
probability outputs are processed inside the “black box” of 
the DL networks without complete human understanding 
of which features are used for CNN predicted outcomes, 
making it difficult to identify failures of the DL tool. For 
future study, a graphical Class Activation Map (CAM) (34) 
will be generated and overlaid upon actual MRI images to 
highlight potential ‘hotspot’ liver lesions for the radiologist 
to review at the time of MRI interpretation. This additional 
context can improve physician performance, minimize 
human “missed diagnosis” of liver lesions, and improve 
patient care. Further, the CAM can yield insights into which 
features the “black box” CNN DL network model uses to 
creat its prediction outcomes. This CAM ‘evidence map’ 
may also provide information for tvalidating the reliability 
of such CNN DL network methods.

 Another promising future study will be to add non-
imaging data to the CNN model inputs to improve model 
performance, such as relevant patient clinical and laboratory 
information. For example, blood testing for known liver 
tumor marker serum alpha fetoprotein (AFP) may improve 
model performance, as higher AFP levels can predict the 
presence of HCC. Liver function tests (LFTs) are a suite of 
blood tests which may be helpful CNN inputs, as LFTs often 
help diagnose hepatocellular diseases. The Child-Pugh score 
based on clinical and laboratory data assesses the prognosis of 
chronic liver diseases or cirrhosis and helps guide treatment 
planning. Evidence of a patient’s liver morphology obtained 
from imaging, including liver nodularity, heterogeneity, and 
size, is also clinically important and may help improve the 
CNN model performance. Patient clinical information, such 
as a history of known liver cirrhosis and other risk factors 
of hepatitis virus infection and non-alcoholic steatohepatitis 
(NASH), can be utilized as inputs to the CNN model to 
further improve performance. 

 Compared with AlexNet, both ResNet and GoogleNet 
are larger networks with special and deep architectures 
of more than one hundred layers. With a limited number 
of training datasets, large networks are usually prone to 
the problem of overfitting (35). AlexNet performs well 

Figure 4 ROC curve of CNN classification performance using the 
C2 dataset. The AUC was 0.95±0.2 (mean ± standard deviation) 
across five-fold validations. CNN, convolutional neural network; 
AUC, area under the receiver operating characteristic curve.

Figure 5 The probability of classification result for any given tumor 
in each cross-validation testing dataset. Black dots represent correctly-
classified LR-4/LR-5 lesions. Blue triangles represent correctly-
classified LR-3 lesions. Red triangles represent misclassified LR-3 
lesions. Probability numbers shown in the vertical axis closer to 1 or 0 
indicate higher possibilities of being LR-4/LR-5 or LR-3, respectively. 
The shaded area between 0.4 and 0.6 represents the uncertain area 
where the classification result is considered as not reliable if the 
probability number falls in this range.
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in image classification with fewer layers and alleviates the 
overfitting problem by adding dropout layers (36) and data 
augmentation (37). In addition, transfer learning played 
an important role in a small size dataset by refining the 
AlexNet model through learning discriminant features 
from the MRI dataset in fully connected layers, which 
helped reduce overfitting and further improve the model 
performance as shown in Table 1. 

 Due to the greater technical complexity of multiparametric 
liver MRI acquisition and interpretation, imaging studies for 
HCC diagnosis are usually conducted at academic centers 
with liver MRI expertise and are not easily confirmed in 
community hospitals with fewer MRI technical, radiologic, 
and clinical expertise. MRI datasets in this study were 
acquired from different MRI scanners and platforms with 
slightly different protocols; as a result, this DL model is 
robust and generalizable for larger, more-varied imaging 
datasets which should help the validation of the model 
through multi-institutional studies. The DL methods should 
be validated with rigorous, continuous clinical studies using 
independent and multi-institutional patient cohorts prior to 
implementation in clinical practice. The authors anticipate 
that this DL-driven, automated LI-RADS grading system 
can provide valuable guidance to radiologists, and reduce 
intra- and inter-reader variability with the ultimate goal of 
improving cancer diagnosis, treatment, and patient care.

There are several limitations of this study. Two-
dimensional (2D) image co-registration for pre-selected 
tumor image slices acquired at multiple image phases was 
performed by manually identifying the landmarks on each 
image slice. After co-registration, a rectangular tumor box 
was drawn manually. Researchers are currently working 
on developing volumetric tumor segmentation and ROI 
extraction methods using specific CNN models to automate 
and accelerate these processes. Lastly, larger and more 
diverse imaging datasets are needed to enable validation and 
deployment of these tools in multi-institutional studies.

In conclusion, the DL-driven LI-RADS grading system 
developed in this study provided diagnostic performance 
comparable to experienced radiologists and provided 
valuable guidance to radiologists by differentiating LR-3 
liver tumors from a group of higher-grade, combined LR-4/
LR-5 liver lesions. Accurate LI-RADS scoring is essential 
for accurate diagnosis and treatment of patients with HCC.
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