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Abstract: Propensity score analysis (PSA) is widely used in medical literature to account for confounders. 
Conventionally, the propensity score (PS) is calculated by a binary logistic regression model using time-fixed 
covariates. In the presence of time-varying treatment or exposure, the conventional method may cause bias 
because subjects with early and late exposure are treated as the same. In effect, subjects who are treated latter 
can be different from those who are treated early. Thus, the conventional PSA must be modified to address 
this bias. In this paper, we illustrate how to perform analysis in the presence of time-dependent exposure. We 
conduct a simulation study with a known treatment effect. In the simulation study, we find the PSA method 
that directly adjust PS estimated by either a binary logistic regression model or a Cox regression model using 
time-fixed covariates still introduce significant bias. On the other hand, the time-dependent PS matching can 
help to achieve a result approaching the true effect. After time-dependent PS matching, the matched cohort 
can be analyzed with conventional Cox regression model or conditional logistic regression (CLR) model with 
time strata. The performance is comparable to the correctly specified Cox regression model with time-varying 
covariates (i.e., adjusting the exposure in a multivariable model as a time-varying covariate). We further develop 
a function called TDPSM() for time-dependent PS matching and it is applied to a real world dataset.
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Introduction

Propensity score analysis (PSA) is widely used in medical 
literature. In observational studies, the causal inference 
cannot be easily made due to multiple measured and/or 
unmeasured confounding factors. The causation between 
exposure (A) and outcome (Y) is explored in counterfactual 
framework so that the allocation of treatment (i.e., the 

treatment a subject actually receives) is independent of 
potential outcome Ya  conditional on confounders (L) such 
as the severity of illness and patients’ preference: |aY A L⊥ .  
The treatment effect can then be estimated in the strata 
with equal probability of receiving treatment. Here comes 
the idea of propensity score (PS) which is typically estimated 
by regressing the treatment on pre-treatment covariates 
using binary logistic regression models. After PS matching, 
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the matched cohort is considered as that generated from 
randomized experiments in which the treatment allocation 
is independent of any pre-treatment covariates.

However, PS is generated for each individual at study 
entry without considering its time-dependent property. In 
effect, there are many interventions that are not given at the 
start of a study but may be given at any time during study 
period. For example, in a study exploring the association of 
tracheal intubation and survival in in-hospital cardiac arrest, 
the tracheal intubation (exposure) can happen at any time 
after cardiac arrest and intubation may not occur if return 
of spontaneous circulation (ROSC) or termination of efforts 
occurs first (1). If the duration of resuscitation is long 
enough, a patient is very likely to be intubated. Thus, the 
comparison between intubated and non-intubated subjects 
is essentially comparing the survival outcome for those with 
long versus short resuscitation time. Short resuscitation 
time can be the result of early ROSC or termination of 
efforts. To avoid such bias, time-dependent PS matching 
can be performed by iteratively matching the treated 
subjects to the “at-risk” controls across all time strata.

This article aims to provide a step-by-step tutorial on 
how to perform analysis for time-dependent treatment. We 
will show how the conventional PSA ignoring the time-
to-exposure property of the treatment can bias the result, 
and then highlight the time-dependent PS matching for 
the analysis of such data. Specifically, we provide a function 
TDPSM() to perform time-dependent PS matching. 
Alternative methods such as Cox regression with time-
varying covariate, adjustment with PS are also shown 
for comparison. Comparisons among these methods are 
performed by simulation. Finally, we illustrate how to use 
the TDPSM() in real world data.

Working example

Mathematics underlying survival data simulation

We need to spend a little time to review mathematics 
underlying the survival analysis.  Assume that the 
survival time T follows an exponential distribution, the 
baseline cumulative density function can be written as 
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−= − = − , where λ is a constant term. The 
function behaves reasonably that when t tends to 0, F0(t) 
tends to 0, as it should be (e.g., the cumulative probability 
of the event is small). When t tends to infinity, F0(t) tends 
to 1 (e.g., the event will eventually happen). Following 
this assumption, other important functions can be easily 

derived. The probability density function f0(t) is the first 
order derivative of the F0(t) w.r.t. t: f0(t) = F0'(t)= λe−λt.  
The survivor function is S0(t) = 1−F0(t)=e−λt; and the hazard 
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cumulative hazard function is H0(t) = λt. The above equations 
define as the baseline function that all covariates are zero. 
The hazard function in the presence of covariates can be 
expressed as h(t) = λeβx. Since h(t) = λeβx is independent of t, 
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= = = − , where U follows a uniform 
distribution on the interval from 0 to 1, which is consistent 
with the survivor function S(t) (2). Simulation of longitudinal 
data with time dependent exposure is well described in Xu’s 
article (3). We adapted their approach as follows:

Next, we are going to simulate a dataset with time-
varying exposure and survival outcome. 

(I)	 Generate three confounders with standard normal 
distribution.

n = 2000  #The sample size

set.seed(223)

for (ii in 1:3) {

    assign(paste("X", ii, sep = "_"), rnorm(n))

}

X = cbind(X_1, X_2, X_3)

The sample size is 2000 and we also set a seed for 
reproducibility. In the for loop, three covariates 
X_1, X_2 and X_3 are generated.

(II)	 Generate the potential exposure time S given X1, 
X2 and X3 from an exponential distribution with 
rate 0 1 1 2 2 3 3α α X α X α Xe + + + , where (a0,a1,a2,a3) = (1,1,1,1), 

and ( )
0 1 1 2 2 3 3α α X α X α X

log U
S

λe + + += − .

lambda = 1

alpha_0 = 1

alpha_1 = 1

alpha_2 = 1

alpha_3 = 1

ExpLin <- cbind(1, X) %*% c(alpha_0, alpha_1, 

    alpha_2, alpha_3)

S = -log(runif(n))/(lambda * exp(ExpLin))

(III)	 Generate the event time T given X_1,X_2,X_3 and 
Z1(t) = I(t > S), where I(·) is the indicator function, 
according to a Cox model with hazard function
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where h0(t) =1, β takes on the value of −0.5, and(β1,β2,β3) = 
(1,1,1). For the ease of annotation, we can write β'X = β1X1 + 
β2X2 + β3X3 as the linear predictor of time-fixed covariates The 
integration of h(t) w.r.t. t gives the cumulative hazard function
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This gives the survival function
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By sampling X and u~U(0,1), substituting u for S(t)  
and rearranging with simple algebra gives the following 
equation for T. (4)
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where β'X = β1X1 + β2X2 + β3X3, and u~U(0,1). This is 
effectively a piecewise exponential distribution, with 
different rates on the two intervals (0,S) and (S,∞). The 
above mathematical equations can be coded as follows:

for (ii in 1:3) {

    assign(paste("beta", ii, sep = "_"), 

        1)

}

beta_t = -0.5

U = runif(n)

LinFix <- X %*% c(beta_1, beta_2, beta_3)

EventT <- ifelse(-log(1 - U) < lambda * exp(LinFix) * 

    S, -log(1 - U)/(lambda * exp(LinFix)), 

    (-log(1 - U) - lambda * exp(LinFix) * 

        S + lambda * exp(LinFix + beta_t) * 

        S)/(lambda * exp(LinFix + beta_t)))

(IV)	 Generate censoring time CensorT as Uniform 
(0,b), where b =0.8 is chosen so that a pre-specified 
percentage of censoring is achieved. Then all 
simulated variables are merged into a data frame.

options(width = 50)

CensorT <- runif(n, min = 0, max = 0.8)

# merge into a data frame

dt <- data.frame(EventT = pmin(EventT, CensorT), 

    EventFlg = EventT < CensorT, X_1, X_2, 

    X_3, ExposeFlg = -log(1 - U) >= lambda * 

        exp(LinFix) * S & CensorT > S)

dt$ExposeT <- pmin(dt$EventT, S)

head(dt, 5)

##       EventT EventFlg         X_1        X_2

## 1 0.07963784    FALSE  0.93208196 -1.3232478

## 2 0.04824934    FALSE -1.03154448 -0.5216332

## 3 0.13187827     TRUE -0.09910448  0.1234164

## 4 0.05206076     TRUE  0.29929004  1.7372739

## 5 0.23296485    FALSE  0.80511751  0.6064613

##          X_3 ExposeFlg    ExposeT

## 1 -0.2277021     FALSE 0.07963784

## 2 -0.8751707     FALSE 0.04824934

## 3  2.0982547      TRUE 0.03277726

## 4  0.2783973      TRUE 0.03840657

## 5 -0.3938989      TRUE 0.02207852

dt$id <- 1:n

table(dt$ExposeFlg)

## 

## FALSE  TRUE 

##  1116   884

table(dt$EventFlg)

## 

## FALSE  TRUE 

##  1291   709

The dt is the prototype of a data set for survival analysis 
with time-dependent exposure. EventT is the observed 
time until censoring or the event of interest (i.e., mortality, 
recurrence and development of complications) occurs. 
EventFlg is whether a subject is right censored FALSE or 
event occurs TRUE. X_1 to X_3 are time-fixed covariates. 
ExposeFlg is exposure status and ExposeT is the time on 
which a subject is exposed. Note that the time-dependent 
exposure is a stochastic process (counting process) that 
equals zero from t0 until exposure, then it equals to one 
until the end of observation.

Alternative method to generate a data frame with counting 
process

Another way to generate simulated dataset with time-
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dependent exposure is to loop through individual subjects. 

We adapt code used in the genTDCM() function in the 

genSurv package (5,6).

mat <- matrix(ncol = 8, nrow = 1)

for (k in 1:n) {

    status <- 1

    u <- U[k]

    z1 <- X[k, ]

    c <- CensorT[k]

    if (u < 1 - exp(-lambda * S[k] * exp(LinFix[k]))) {

        t <- -log(1 - u)/(lambda * exp(LinFix[k]))

        z2 <- 0

    } else {

        t <- -(log(1 - u) + lambda * S[k] * 

            exp(LinFix[k]) * (1 - exp(beta_t)))/(lambda * 

            exp(LinFix[k] + beta_t))

        x12 <- S[k]

        z2 <- 1

    }

    time <- min(t, c)

    ifelse(t > c, status <- 0, status <- 1)

    if (u < 1 - exp(-lambda * S[k] * exp(LinFix[k]))) {

        aux1 <- c(k, 0, time, status, z1, 

            0)

        mat <- rbind(mat, aux1)

    } else {

        if (c > x12) {

            aux1 <- c(k, 0, x12, 0, z1, 0)

            mat <- rbind(mat, aux1)

            aux2 <- c(k, x12, time, status, 

                z1, 1)

            mat <- rbind(mat, aux2)

        } else {

            aux1 <- c(k, 0, time, status, 

                z1, 0)

            mat <- rbind(mat, aux1)

        }

    }

}

data <- data.frame(mat, row.names = NULL)

names(data) <- c("id", "start", "stop", "event", 

    "X_1", "X_2", "X_3", "tdcov")

data <- data[-1, ]

row.names(data) <- as.integer(1:nrow(data))

head(data)

##   id      start       stop event         X_1

## 1  1 0.00000000 0.07963784     0  0.93208196

## 2  2 0.00000000 0.04824934     0 -1.03154448

## 3  3 0.00000000 0.03277726     0 -0.09910448

## 4  3 0.03277726 0.13187827     1 -0.09910448

## 5  4 0.00000000 0.03840657     0  0.29929004

## 6  4 0.03840657 0.05206076     1  0.29929004

##          X_2        X_3 tdcov

## 1 -1.3232478 -0.2277021     0

## 2 -0.5216332 -0.8751707     0

## 3  0.1234164  2.0982547     0

## 4  0.1234164  2.0982547     1

## 5  1.7372739  0.2783973     0

## 6  1.7372739  0.2783973     1

The generated data is the same as dt, except that dt is not 
expanded. The variable tdcov corresponds to the ExposeFlg. 
In the next chunk, we are going to expand the dt with the 
tmerge() function so that each subject can have multiple 
intervals and thus takes multiple rows.

Effect estimates using Cox regression model 
with time-varying exposure

Because the exposure in the example is time-varying, i.e., 
subjects can receive treatment at different observation 
period, the treatment effect can be estimated by using the 
coxph() function (7). The following chunk first splits the 
variables into those that are time-varying (dtTV) or time-
fixed (dtBase), and then generate the counting process table 
with tmerge() function.

dtBase <- dt[, c(1:5, 8)]

dtTV <- dt[, 6:8]

library(survival)

dtLong <- tmerge(dtBase, dtBase, id = id, 

    endpt = event(time = EventT, as.numeric(EventFlg)))

dtLong <- tmerge(dtLong, dtTV, id = id, Expose.flg = 

tdc(ExposeT, 

    as.numeric(ExposeFlg)))

dtLong$Expose.flg <- as.numeric(!is.na(dtLong$Expose.flg))

head(dtLong)

##       EventT EventFlg         X_1        X_2

## 1 0.07963784    FALSE  0.93208196 -1.3232478

## 2 0.04824934    FALSE -1.03154448 -0.5216332

## 3 0.13187827     TRUE -0.09910448  0.1234164
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## 4 0.13187827     TRUE -0.09910448  0.1234164

## 5 0.05206076     TRUE  0.29929004  1.7372739

## 6 0.05206076     TRUE  0.29929004  1.7372739

##          X_3 id     tstart      tstop endpt

## 1 -0.2277021  1 0.00000000 0.07963784     0

## 2 -0.8751707  2 0.00000000 0.04824934     0

## 3  2.0982547  3 0.00000000 0.03277726     0

## 4  2.0982547  3 0.03277726 0.13187827     1

## 5  0.2783973  4 0.00000000 0.03840657     0

## 6  0.2783973  4 0.03840657 0.05206076     1

##   Expose.flg

## 1          0

## 2          0

## 3          0

## 4          1

## 5          0

## 6          1

The reformatted data frame is the same as the data 
generated above, with tstart and tstop corresponding to the 
start and stop variables in the data, respectively. Next, we will 
fit a Cox model with time-varying exposure.

modCoxTV <- coxph(Surv(tstart, tstop, endpt) ~ 

    X_1 + X_2 + X_3 + Expose.flg, data = dtLong)

library(tableone)

## Warning: package 'tableone' was built under R

## version 3.5.2

ShowRegTable(modCoxTV, exp = F)

##            coef [confint]       p     

## X_1         0.92 [0.83, 1.01]   <0.001

## X_2         0.89 [0.80, 0.98]   <0.001

## X_3         0.94 [0.85, 1.04]   <0.001

## Expose.flg -0.42 [-0.62, -0.23] <0.001

The estimated treatment effect is −0.42 (P<0.001), 
which has little biased, and importantly the corresponding 
confidence interval includes the true effect of −0.5.

PSA by considering exposure as a binary variable

Conventionally, patients are simply divided into those 
exposed and non-exposed groups without considering 
the time-to-exposure property. In this scenario, PS 
can be generated by regressing the exposure status 
Z1(t) on baseline covariates X .  Here we define the 

   

1 1 1 2 2 3 3 0PS X X Xψ ψ ψ ψ= + + +  as a linear combination of 
covariates, which is monotone function of the probability 
of treatment exposure. Finally, the treatment effect can be 
estimated by adjusting for this PS1.

PSmodLogit <- glm(ExposeFlg ~ X_1 + X_2 + 

    X_3, dt, family = "binomial")

# propensity score for each subject

psLogit <- predict.glm(PSmodLogit)

psLogit[1:10]

##          1          2          3          4 

## -0.7100094 -1.7237368  1.0244820  1.1132018 

##          5          6          7          8 

##  0.2938331  0.8558305  0.1828180 -0.5405188 

##          9         10 

## -0.4656803  0.5068986

EffectMod <- coxph(Surv(EventT, EventFlg) ~ 

    ExposeFlg + psLogit, data = dt)

ShowRegTable(EffectMod, exp = F)

##               coef [confint]       p     

## ExposeFlgTRUE -1.83 [-2.02, -1.65] <0.001

## psLogit        1.97 [1.85, 2.08]   <0.001

The estimated coefficient for the exposure is −1.83 (95% 
CI: −2.02 to −1.65), which is significantly downward biased 
comparing to the true effect of −0.5. PS can be used to match 
subjects with similar probability of receiving treatment exposure 
(8,9). Let’s see how the estimated treatment effect differs from 
the true one when the time-to-exposure is ignored. Here we 
use the MatchIt package to perform PS matching (10).

library(MatchIt)

m.out <- matchit(ExposeFlg ~ X_1 + X_2 + 

    X_3, data = dt, method = "nearest", distance = "logit")

m.data <- match.data(m.out)

ShowRegTable(coxph(Surv(EventT, EventFlg) ~ 

    ExposeFlg, data = m.data), exp = F)

##               coef [confint]       p     

## ExposeFlgTRUE -0.32 [-0.47, -0.17] <0.001

The results show that the estimated treatment effect is 
slightly upward biased comparing to the true effect.

PS generated by Cox regression model

In this instance, the PS is estimated by regressing the time 
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to exposure on X with Cox regression model. The Cox 
regression model gives estimated coefficients 0φ , 1φ , 2φ  
and 3φ . Here we define    

2 1 1 2 2 3 3 0PS X X Xφ φ φ φ= + + +  as a 
linear combination of covariates with estimated coefficients 
obtained from the Cox regression model. Strictly speaking, 
the PS2 cannot be called a PS because PS should be the 
probability of receiving treatment given covariates. PS2 is a 
surrogate for PS. The Cox regression model concerns the 
time-to-exposure feature in the estimation of PS2. Then 
the treatment effect is estimated in multivariate model by 
adjusting for the PS2.

PSmodCox <- coxph(Surv(time = ExposeT, ExposeFlg) ~ 

    X_1 + X_2 + X_3, data = dt)

psCox <- predict(PSmodCox, type = "lp")

EffectMod <- coxph(Surv(EventT, EventFlg) ~ 

    ExposeFlg + psCox, data = dt)

ShowRegTable(EffectMod, exp = F)

##               coef [confint]       p     

## ExposeFlgTRUE -1.83 [-2.01, -1.65] <0.001

## psCox          1.21 [1.14, 1.28]   <0.001

The results show that the coefficient for the exposure is 
−1.83, which is an underestimation of the true treatment 
effect. The reason is probably that adjusting for PS2 directly 
in the outcome model is subject to model misspecification 
and thus fail to recover true effects. This lead us to consider 
PS matching, a non-parametric technique to reduce model 
dependence (8,10).

Time-dependent PS matching

The PS is estimated by Cox proportional hazard regression 
model, regressing time-to-exposure on time-fixed and 
time-varying covariates (e.g., only time-fixed covariates 
Xs are available in our example). Then the matching can 
be performed by sequential matching or simultaneous 
matching (11). Here we implement the sequential 
matching algorithm. The sequential matching takes place 
within risk set Rt at time t; Rt consists of all patients at 
risk of exposure at t. The matching procedure proceeds 
chronologically for each of the risk sets. There can be 
several subjects being treated at each risk set, and these 
patients compete with each other for matching controls. 
Note that the at-risk subjects being matched include those 
who are not exposed before or within the time interval t, 
and thus they also include those who are exposed latter. 

Remember that the matching should not depend on future 
data. The optimal matching can be easily performed by 
using the optmatch package (12). Then, matched individual 
subjects are removed from later risk sets Rt+1,t+2,..., and the 
process continues with the next risk set Rt+1 (11).

PSmodCox <- coxph(Surv(time = ExposeT, ExposeFlg) ~ 

    X_1 + X_2 + X_3, data = dt)

surObj <- survfit(PSmodCox, newdata = dt)

PScore <- data.frame(Time = surObj$time, 

    surObj$cumhaz)

The above code chunk regresses the time to exposure 
on covariates Xs and estimates cumulative hazard for each 
individual over all time points that are experienced by 
sample patients. The survfit() function generates values for 
creating survival curves from previously fitted Cox model 
PSmodCox (13). Thus, the resulting PScore has the dimension 
of 2,000×2,001 with rows and columns corresponding to the 
time points and individual subjects, respectively. The values 
in the matrix are cumulative hazards. Next, let’s reshape the 
matrix for further matching.

PScoreTolong <- reshape(PScore, direction = "long", 

    varying = paste("X", 1:2000, sep = ""), 

    sep = "", v.names = "cumhaz", timevar = "PtID")

dtScore <- merge(PScoreTolong[, -4], dt, 

    by.x = "PtID", by.y = "id")

dim(dtScore)

## [1] 4000000      10

head(dtScore)

##   PtID         Time       cumhaz     EventT

## 1    1 0.0000549661 0.000000e+00 0.07963784

## 2    1 0.0001406952 6.982241e-05 0.07963784

## 3    1 0.0001826458 6.982241e-05 0.07963784

## 4    1 0.0002024824 6.982241e-05 0.07963784

## 5    1 0.0002539862 6.982241e-05 0.07963784

## 6    1 0.0003042782 1.407800e-04 0.07963784

##   EventFlg      X_1       X_2        X_3

## 1    FALSE 0.932082 -1.323248 -0.2277021

## 2    FALSE 0.932082 -1.323248 -0.2277021

## 3    FALSE 0.932082 -1.323248 -0.2277021

## 4    FALSE 0.932082 -1.323248 -0.2277021

## 5    FALSE 0.932082 -1.323248 -0.2277021

## 6    FALSE 0.932082 -1.323248 -0.2277021

##   ExposeFlg    ExposeT
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## 1     FALSE 0.07963784

## 2     FALSE 0.07963784

## 3     FALSE 0.07963784

## 4     FALSE 0.07963784

## 5     FALSE 0.07963784

## 6     FALSE 0.07963784

The reshape() function is employed to convert wide 
to long format (14). Then the long format data frame is 
merged with the original data frame dt. The resulting dtScore 
has 4,000,000×7 dimension. The matching procedure have 
to proceed at a specified time interval; thus the entire follow 
up time is divided into 10 equally spaced intervals (e.g., 
each interval contains equal number of subjects). We create 
a new variable TimeStrata to store the information.

# Create time invertal for matching

strataNo = 10

breaks <- quantile(PScore$Time, seq(0, 1, 

    length.out = strataNo + 1))

dtScore$TimeStrata <- cut(dtScore$Time, breaks = breaks, 

    labels = 1:10, include.lowest = T)

dtScore$StrataCut <- NA

for (ii in 1:10) {

    dtScore$StrataCut <- ifelse(dtScore$TimeStrata == 

        ii, breaks[ii + 1], dtScore$StrataCut)

}

dtScore$ExposeFlgStrata <- ifelse(dtScore$ExposeFlg, 

    dtScore$ExposeT <= dtScore$StrataCut, 

    dtScore$ExposeFlg)

The dtScore must be formatted for matching procedure. 
Each individual subject has 2,000 rows with each 
representing a unique follow up time point. We only need 
to keep one row with the maximum cumulative hazard for 
each combination of PtID and TimeStrata, which can be 
easily performed by using the ddply() function.

library(plyr)

dtScoreStrata <- ddply(dtScore, .(PtID, TimeStrata), 

    function(xx) {

        xx[xx$cumhaz == max(xx$cumhaz), ][1, 

            ]

    })

library(lattice)

densityplot(~X_1 | TimeStrata, group = ExposeFlgStrata, 

    dtScoreStrata, xlab = "X_1", auto.key = T)

The density plot shows that the distribution of X_1 is 
different between the treated and the controls (Figure 1). 
Let’s see how to match them (i.e., select control subjects 
with similar cumulative hazard to the treated in each risk 
set) with sequential matching.

# match

library(optmatch)

## Warning: package 'optmatch' was built under R

## version 3.5.2

## The optmatch package has an academic license. Enter re-

laxinfo() for more information.

dtFull <- dtScoreStrata

DtMatched <- NULL

for (ii in 1:strataNo) {

    dtStrata1 <- dtFull[dtFull$TimeStrata == 

        ii, ]

    if (sum(dtStrata1$ExposeFlg) != 0) {

        mahal.match <- pairmatch(match_on(ExposeFlgStrata ~ 

            cumhaz, data = dtStrata1), data = dtStrata1, 

            controls = 1)

        DTwithGrp <- cbind(dtStrata1, matches = mahal.match)

        dtMatched <- DTwithGrp[!is.na(DTwithGrp$matches), 

            ]

        dtFull <- dtFull[!(dtFull$PtID %in% 

            dtMatched$PtID), ]

        DtMatched <- rbind(DtMatched, dtMatched)

    } else {

        next

    }

}

The sequential matching proceeds iteratively from 
TimeStrata = 1 to 10, thus we used a for loop to perform 
the task. Each TimeStrata is considered as a risk set, within 
which the exposed subjects is matched to the controls. 
Recall that we have estimated cumulative hazard for the 
controls at each time strata. Here the control subjects are 
those that are not exposed to the treatment before or within 
that TimeStrata, which can also include subjects who are 
exposed at latter time. In our example, equal number of 
controls are selected to match the treated subjects; but the 
treat/control ratio can be 1: n . Then the matched samples 
are removed from the latter risk set. In above chunk, the 
dtFull begins with the full dataset and the number of rows 
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is reducing with each iteration. In contrast, the DtMatched 
begins with nothing but the matched pairs are appended to 
it with each loop.

# the distribution of cumulative hazard

# between the two groups

densityplot(~X_1 | TimeStrata, group = ExposeFlgStrata, 

    DtMatched, xlab = "X_1", auto.key = T)

ModPSM <- coxph(Surv(EventT, EventFlg) ~ 

    ExposeFlgStrata, data = DtMatched)

ShowRegTable(ModPSM, exp = F)

##                     coef [confint]       p     

## ExposeFlgStrataTRUE -0.48 [-0.65, -0.31] <0.001

The result shows that the matched pairs have similar density 
distribution for X_1 (Figure 2) and the estimated coefficient 
(−0.48) is unbiased to the true effect size, and importantly 
the corresponding confidence interval includes the true 
effect. This method outperforms all previous methods in 
term of absolute bias.

Conditional logistic regression (CLR) model after 
sequential matching

Alternatively, the CLR model can be used to estimate the 

association between exposure and survival outcome after 
sequential matching (15). Recall that CLR is a specialized 
type of logistic regression usually employed when exposed/
treated subjects with particular features are each matched 
with n control subjects with similar features. In our example, 
the exposed subjects were matched to control subjects with 
similar cumulative hazard within each TimeStrata. The 
matched dataset is stored in the data frame DtMatched.

library(survival)

ModCLR <- clogit(EventFlg ~ ExposeFlgStrata + 

    strata(TimeStrata), data = DtMatched)

ShowRegTable(ModCLR, exp = F)

##                     coef [confint]       p     

## ExposeFlgStrataTRUE -0.42 [-0.66, -0.18]  0.001

The output shows that the estimated treatment effect is 
comparable to that estimated using Cox regression model 
after sequential matching.

Simulation study to compare PSs generated 
by treating treatment as binary and time-to-
exposure variable

In the simulation study we compare two methods (i.e., those 

Figure 1 Density plot showing distribution of X_1 in treated and control groups before matching across time strata.
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Figure 2 Density plot showing distribution of X_1 in treated and control groups after matching across time strata.

with and without considering the time-to-exposure property 
of the treatment) to calculate the PS, as the time-to-exposure 
property is always ignored in the literature, introducing the 
immortal time bias (16). After the comparison, we show the 
equivalence of time-dependent PS matching method and Cox 
regression model with time-varying covariates. The former 
is recommended as the first choice for such study design, 
because it also allows time-varying covariates to be included 
for the estimation of PS. Firstly, we define a function for the 
time-dependent PS matching.

TDPSM <- function(dt, ExposeT, ExposeFlg, 

    id, Cov, strataNo = 10, StrataFlg = T) {

    n = nrow(dt)

    names(dt)[names(dt) %in% id] <- "id"

    names(dt)[names(dt) %in% ExposeT] <- "ExposeT"

    names(dt)[names(dt) %in% ExposeFlg] <- "ExposeFlg"

    PSmodCox <- coxph(formula(paste("Surv(t ime = 

ExposeT,ExposeFlg) ~", 

        paste(Cov, collapse = "+"))), data = dt)

    surObj <- survfit(PSmodCox, newdata = dt)

    PScore <- data.frame(Time = surObj$time, 

        surObj$cumhaz)

    PScoreTolong <- reshape(PScore, direction = "long", 

        varying = paste("X", 1:n, sep = ""), 

        sep = "", v.names = "cumhaz", timevar = "PtID")

    dtScore <- merge(PScoreTolong[, -4], 

        dt, by.x = "PtID", by.y = "id")

    if (StrataFlg) {

        breaks <- quantile(PScore$Time, seq(0, 

            1, length.out = strataNo + 1))

        dtScore$TimeStrata <- cut(dtScore$Time, 

            breaks = breaks, labels = 1:strataNo, 

            include.lowest = T)

    } else {

        breaks <- c(0, sort(unique(dtScore$ExposeT)))

        strataNo = length(breaks) - 1

        dtScore$TimeStrata <- cut(dtScore$Time, 

            breaks = breaks, labels = 1:strataNo, 

            include.lowest = T)

    }

    

    dtScore$StrataCut <- NA

    for (ii in 1:strataNo) {

        dtScore$StrataCut <- ifelse(dtScore$TimeStrata == 

            ii, breaks[ii + 1], dtScore$StrataCut)

    }

    dtScore$ExposeFlgStrata <- ifelse(dtScore$ExposeFlg, 

        dtScore$ExposeT <= dtScore$StrataCut, 
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        dtScore$ExposeFlg)

    dtScoreStrata <- ddply(dtScore, .(PtID, 

        TimeStrata), function(xx) {

        xx[xx$cumhaz == max(xx$cumhaz), ][1, 

            ]

    })

    

    dtFull <- dtScoreStrata

    DtMatched <- NULL

    for (ii in 1:strataNo) {

        dtStrata1 <- dtFull[dtFull$TimeStrata == 

            ii, ]

        if (sum(dtStrata1$ExposeFlg) != 0) {

            mahal.match <- pairmatch(match_on(ExposeFlgStrata ~ 

                cumhaz, data = dtStrata1), 

                data = dtStrata1, controls = 1)

            DTwithGrp <- cbind(dtStrata1, 

                matches = mahal.match)

            dtMatched <- DTwithGrp[!is.na(DTwithGrp$matches), 

                ]

            dtFull <- dtFull[!(dtFull$PtID %in% 

                dtMatched$PtID), ]

            DtMatched <- rbind(DtMatched, 

                dtMatched)

        } else {

            next

        }

    }

    return(DtMatched)

}

The above chunk defines a function TDPSM() which 
receives a dataframe containing time-dependent exposure, 
covariates and survival outcome. The strataNo argument 
defines the number of strata for continuous recorded 
data. However, for follow up data at several fixed time 
points, the number of strata is not needed and we need 
to set StrataFlg = F to switch off the strataNo argument. 
The following chunk is to repeat the computation for a 
number of times (ii =100) to see whether time-dependent 
PS method is superior to the conventional PS method by 
treating treatment as a binary variable.

library(genSurv)

library(plyr)

library(optmatch)

library(MatchIt)

dtCov <- data.frame()

for (ii in 1:100) {

    n = 2000

    for (ii in 1:3) {

        assign(paste("X", ii, sep = "_"), 

            rnorm(n))

    }

    X = cbind(X_1, X_2, X_3)

    lambda = 1

    alpha_0 = 1

    alpha_1 = 1

    alpha_2 = 1

    alpha_3 = 1

    ExpLin <- cbind(1, X) %*% c(alpha_0, 

        alpha_1, alpha_2, alpha_3)

    S = -log(runif(n))/(lambda * exp(ExpLin))

    for (ii in 1:3) {

        assign(paste("beta", ii, sep = "_"), 

            1)

    }

    beta_t = -0.5

    U = runif(n)

    LinFix <- X %*% c(beta_1, beta_2, beta_3)

    EventT <- ifelse(-log(1 - U) < lambda * 

        exp(LinFix) * S, -log(1 - U)/(lambda * 

        exp(LinFix)), (-log(1 - U) - lambda * 

        exp(LinFix) * S + lambda * exp(LinFix + 

        beta_t) * S)/(lambda * exp(LinFix + 

        beta_t)))

    CensorT <- runif(n, min = 0, max = 0.8)

    # merge into a data frame

    dt <- data.frame(EventT = pmin(EventT, 

        CensorT), EventFlg = EventT < CensorT, 

        X_1, X_2, X_3, ExposeFlg = -log(1 - 

            U) >= lambda * exp(LinFix) * 

            S & CensorT > S)

    dt$ExposeT <- pmin(dt$EventT, S)

    dt$id <- 1:n

    # survival analysis with time-varying

    # covariate

    dtBase <- dt[, c(1:5, 8)]

    dtTV <- dt[, 6:8]
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    dtLong <- tmerge(dtBase, dtBase, id = id, 

        endpt = event(time = EventT, as.numeric(EventFlg)))

    dtLong <- tmerge(dtLong, dtTV, id = id, 

        Expose.flg = tdc(ExposeT, as.numeric(ExposeFlg)))

    dtLong$Expose.flg <- as.numeric(!is.na(dtLong$Expose.flg))

    modCoxTV <- coxph(Surv(tstart, tstop, 

        endpt) ~ X_1 + X_2 + X_3 + Expose.flg, 

        data = dtLong)

    Covtrue <- coef(modCoxTV)["Expose.flg"]

    # PS binary adjustment

    PSmodLogit <- glm(ExposeFlg ~ X_1 + X_2 + 

        X_3, dt, family = "binomial")

    psLogit <- predict.glm(PSmodLogit)

    CovbiAdj <- coef(coxph(Surv(EventT, EventFlg) ~ 

        ExposeFlg + psLogit, data = dt), 

        exp = F)[1]

    # PS binary outcome matched

    m.out <- matchit(ExposeFlg ~ X_1 + X_2 + 

        X_3, data = dt, method = "nearest", 

        distance = "logit")

    m.data <- match.data(m.out)

    CovbiMat <- coef(coxph(Surv(EventT, EventFlg) ~ 

        ExposeFlg, data = m.data), exp = F)

    # time-dependent PS

    DtMatched <- TDPSM(dt = dt, ExposeT = "ExposeT", 

        ExposeFlg = "ExposeFlg", id = "id", 

        Cov = c("X_1", "X_2", "X_3"))

    CovPStd <- coef(coxph(Surv(EventT, EventFlg) ~ 

        ExposeFlgStrata, data = DtMatched))

    triCov <- c(Covtrue, CovbiAdj, CovbiMat, 

        CovPStd)

    dtCov <- rbind(dtCov, triCov)

    cat(".")

}

## ............................................................................................
........

names(dtCov) <- c("coefT", "coefPSbiAdj", 

    "coefPSbiMat", "coefPStd")

sapply(dtCov, summary)

##              coefT coefPSbiAdj coefPSbiMat

## Min.    -0.7657473   -2.097617 -0.41360403

## 1st Qu. -0.5932910   -1.954420 -0.27906475

## Median  -0.5087681   -1.890186 -0.19954484

## Mean    -0.5181903   -1.883439 -0.21359265

## 3rd Qu. -0.4457967   -1.822158 -0.15428498

## Max.    -0.2778042   -1.692134  0.02120892

##           coefPStd

## Min.    -0.6333721

## 1st Qu. -0.5441774

## Median  -0.4999176

## Mean    -0.4962544

## 3rd Qu. -0.4460087

## Max.    -0.3577452

The above output shows that the coefficients obtained 
by survival model with time-varying covariate and by time-
dependent PS matching are very close to the true value of 
-0.5. However, the coefficient obtained by treating exposure 
as binary variable is much greater than the true value, 
suggesting bias with this method. In the absence of time-
varying covariates as in our example, both methods can 
be considered equivalently. However, time-dependent PS 
matching is recommended in the presence of time-varying 
covariates determining the hazard of exposure.

Application of time-dependent PS matching to 
the Kawasaki dataset

The Kawasaki dataset is a cohort of children with Kawasaki 
disease, which has been described elsewhere (17). A random 
sample of 500 cases is used for the illustration purpose. 
In the study we intend to explore whether time-varying 
standard treatment as represented by treat and treattime 
can help to ameliorate the coronary artery lesion (CAL). 
CAL is recorded as a time-to-event outcome with 1 stands 
for lesion presence and 0 otherwise. ytime represents the 
observation time. Other time-fixed covariates included:
	agemonth: age in month at presentation;
	gender: 0 for female and 1 for male;
	bithweight2: birth weight in kilogram;
	BMI: body mass index;
	feverday: duration of fever in days at presentation;
	keshi: whether there is transferring between 

departments;
	Kdgroup: 1 for complete and 0 for incomplete Kawasaki;
	preHB, prePLT, and preALB are laboratory findings for 

hemoglobin, platelet and albumin, respectively.

dtKD <- read.csv("https://raw.githubusercontent.com/zh-

zhang1984/big-data-clinical-trial-column/master/dtKD.csv")

Cov <- names(dtKD)[c(3:7, 10:15)]
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library(survival)

library(plyr)

library(optmatch)

DtMatched <- TDPSM(dt = dtKD, id = "ID", 

    ExposeT = "treattime", ExposeFlg = "treat", 

    StrataFlg = F, Cov = Cov)

CoxMod <- coxph(Surv(time = ytime, event = y) ~ 

    ExposeFlgStrata, data = DtMatched)

ShowRegTable(CoxMod, exp = F)

##                     coef [confint]      p     

## ExposeFlgStrataTRUE -0.05 [-0.54, 0.45]  0.859

The result shows that there is no evidence to conclude 
that the outcome of patients between standard versus non-
standard treatment is different. Readers can try to estimate 
the treatment effect with Cox regression model by treating 
the exposure as a time-varying covariate.

Conclusions

The article provides a comprehensive tutorial about the 
statistical tools to analyze survival data with time-varying 
exposures. We firstly simulate a dataset with time-varying 
exposure as a working example. Several approaches are 
performed to estimate the association between the exposure 
and survival outcome. Through simulation study, we found 
that the conventional PSM without considering the time-
to-exposure property significantly biased the true effect 
because it did not take the time component into account. 
Multivariate adjustment with linear predictors from Cox 
and logistic regression model are also unable to estimate 
the true effect unbiasedly. Including time-varying exposure 
in a Cox regression model or creating matched cohort by 
time-dependent PS matching are recommended to reduce 
potential confounding bias. However, we still recommend 
the time-dependent PS matching approach because it also 
allows the inclusion of time-varying covariates affecting 
the hazard of exposure and also does not rely on strong 
model assumptions. After sequential matching with time-
dependent PS, the treatment effect can be consistently 
identified by Cox regression model or CLR model.
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