
Page 1 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(4):94 | http://dx.doi.org/10.21037/atm.2019.12.132

A two-circular RNA signature of donor circFOXN2 and 
circNECTIN3 predicts early allograft dysfunction after liver 
transplantation

Kun Wang1,2, Xuyong Wei1,2, Qiang Wei1,2, Di Lu1,2, Wangyao Li1,2, Binhua Pan1,2, Junli Chen3, Haiyang Xie1,2, 
Shusen Zheng1,2,4, Xiao Xu1,2

1Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, 

China; 2Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China; 3China Liver Transplant 

Registry, Hangzhou 310003, China; 4Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310004, China

Contributions: (I) Conception and design: X Xu, S Zheng; (II) Administrative support: X Xu, S Zheng, H Xie; (III) Provision of study materials or 

patients: All authors; (IV) Collection and assembly of data: K Wang, X Wei, Q Wei, D Lu; (V) Data analysis and interpretation: K Wang, W Li, B 

Pan, J Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Xiao Xu, MD, PhD. Professor of surgery, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, 

Zhejiang University School of Medicine,79 Qingchun Road, Hangzhou 310003, China. Email: zjxu@zju.edu.cn.

Background: Early allograft dysfunction (EAD) following liver transplantation is associated with 
poor recipient and graft survival. In recent years, circular RNAs (circRNAs) have emerged as important 
components of endogenous RNAs. This study aims to explore the expression profile and predictive value of 
graft circular RNAs for EAD after liver transplantation.
Methods: RNA sequencing was conducted to identify the circRNA profile in donor liver tissues. 
Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to identify candidate 
circRNAs. A novel model combining circular RNA signature was established to predict EAD based on the 
multivariate analysis. 
Results: A total of 442 circRNAs were differentially expressed between the EAD and non-EAD groups, 
of which, 223 were significantly upregulated and 219 were downregulated in the EAD group (Fold change 
>2, P<0.05). qRT-PCR validation indicated that circFOXN2 and circNECTIN3 levels in the EAD group 
were significantly lower than those in the non-EAD group (P=0.038, 0.024, respectively; n=115). Among 
the 115 recipients, 32 recipients with high circFOXN2 expression were classified as circular RNA signature 
A and the rest recipients with low circFOXN2 expression were categorized into circular RNA signature B 
(n=33, high circNECTIN3 expression) and C (n=50, low circNECTIN3 expression). The incidence rates of 
EAD in signature A, B and C were significantly different (3.1%, 21.2% and 42.0%, respectively; P=0.000). 
According to the multivariate analysis, a novel predictive model for EAD was developed based on CIT 
(P=0.000) and circular RNA signature (P=0.013). The novel model displayed a high predictive value for EAD 
with areas under the curve (AUC) of 0.870 (95% CI: 0.797–0.942). 
Conclusions: Donor circFOXN2 and circNEXTIN3 were associated with the incidence of EAD. The 
novel model combing the two-circular RNA signature had a high predictive value for EAD. 
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Introduction

Liver transplantation is considered to be the radical 
curative therapy for end-stage liver disease (1,2). Although 
perioperative management and surgical techniques have 
greatly improved, there are still some complications 
affecting the prognosis of recipients following liver 
transplantat ion.  The incidence of  early al lograft 
dysfunction (EAD) following liver transplantation varies 
from 20% to 40% according to the liver transplantation 
centre (3-5). EAD significantly affects the survival rates 
of both grafts and recipients. It is important to achieve 
early prediction of EAD. Several studies have attempted 
to predict EAD based on clinical parameters, such as the 
recipient Model for End-stage Liver Disease (MELD) 
score or cold ischemia time (CIT) (6,7). In addition, 
microRNAs (miRNAs) and genes in donor liver tissues 
have been used to predict EAD (8,9).

Circular RNAs (circRNAs) are special endogenous 
RNAs with circular structures.  The formation of 
circRNAs mainly goes through four spliceosome-
dependent, intron-pairing-driven, lariat-driven and 
protein factor-associated circularization paths (10). 
CircRNAs play a key role in regulating gene expression 
by acting as a sponge for miRNAs (11). Due to the 
circular structure, circRNAs are often more stable than 
linear RNA molecules, which make the former a perfect 
candidate as predictive biomarkers. A previous study has 
shown that circRNAs have good predictive value for lung 
adenocarcinoma (12). Other researchers have also found 
the predictive value of circRNA in patients with active 
tuberculosis (13).

However, the expression profile and predictive value of 
graft circular RNAs in EAD are still unclear. In the present 
study, we aim to investigate the expression profile of circular 
RNAs in donor liver tissue and its predictive value for EAD 
after liver transplantation.

Methods

Study population and data collection

A total of 115 liver transplantation recipients between 
January 2015 and December 2017 at the First Affiliated 
Hospital, Zhejiang University School of Medicine, were 
included in this study. This study was approved by the 
hospital ethics committee and complied with the World 
Medical Association’s Declaration of Helsinki revised in 
2013. Informed consent was obtained from all patients. The 

exclusion criteria included recipients younger than 18 years, 
recipients undergoing multiorgan transplantation or re-
transplantation, and recipients with missing essential data 
for analysis. Donor liver tissue was collected and frozen in 
liquid nitrogen before storage. All specimens were stored at 
−80 ℃.

EAD was defined by one or more of the following 
parameters in the revised criteria: (I) total bilirubin (TB) 
level ≥10 mg/dL on postoperative day 7; (II) international 
normalized ratio (INR) ≥1.6 on postoperative day 
7; (III) alanine aminotransferase (ALT) or aspartate 
aminotransferase (AST) levels >3,000 IU/L within the first 
7 postoperative days (3,14). The following clinical data were 
collected: recipient data including age, sex, preoperative 
MELD score, and operative time, and donor data including 
donor age, sex, body mass index (BMI), donor liver 
macrovesicular steatosis and CIT.

CircRNA sequencing

Total RNA was extracted from donor liver tissues using 
TRIzol reagent (Invitrogen) and treated with DNase I 
(DNA free kit, Ambion). The RiboMinus Eukaryote Kit 
(Qiagen) was used to remove ribosomal RNA, and then 
the samples were treated with RNase R (Epicenter). RNA 
sequencing (RNA-seq) libraries were prepared using the 
NEBNext® UltraTM RNA Library Prep Kit and sequenced 
using the Illumina HiSeq 3000 platform at RiboBio Co. 
Ltd., Guangzhou, China (15,16).

Quantitative real-time PCR (qRT-PCR) and Sanger 
sequencing

Total RNA was isolated from donor liver tissues using 
TRIzol reagent (Invitrogen). The concentration and 
purity of RNA were measured using NanoDrop ND-
1000 (Thermo Fisher Scientific, Inc., USA). Reverse 
transcription and qPCR were carried out using a 
Geneseed® II First Strand cDNA Synthesis Kit and qPCR 
SYBR® Green Master Mix (Guangzhou Geneseed Biotech 
Co., China), respectively, according to the manufacturer’s 
instructions on an ABI 7500 Fast Real-Time PCR System 
(Applied Biosystems, CA, USA). The primers were 
synthesized from Geneseed Biotech Co. (Guangzhou, 
China). The data were analysed by the 2−ΔΔCT method (17). 
GAPDH was used as the internal control. The sequences 
of primers were listed in Table S1. The qRT-PCR products 
of circRNAs were inserted into the T vector and analysed 
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using Sanger sequencing.

Functional analysis and ceRNA network construction

Kyoto Encyclopaedia of Genes and Genomes (KEGG, 
https://www.kegg.jp) and Gene Ontology (GO, http://
geneontology.org) were employed to analyse the host genes 
of dysregulated circRNAs. Potential miRNAs targets of 
circRNAs were predicted using RNAhybrid and TargetScan. 
In addition, potential interactions between the miRNAs and 
genes were predicted with miRWalk and TargetScan. The 
circRNA-miRNA-mRNA network was constructed using 
Cytoscape.

Statistical analysis

Continuous parameters in the study were presented as 
the median and interquartile range or mean ± SEM. To 
compare different groups, Student’s t-test and the Mann-
Whitney U test were performed where appropriate. 
Multivariate analysis included variables with a P value <0.05 
using a binary logistic regression method. Youden Index 
was used to select the best cut-off value for EAD. P<0.05 
was considered statistically significant. Statistical analyses 
were performed using GraphPad Prism version 7 (GraphPad 
Software, Inc. La Jolla, CA, USA) and SPSS version 21.0 
(Chicago, IL, USA).

Results

Expression profiles of circRNAs in the EAD and non-EAD 
groups

As shown in the heat map (Figure 1A) and volcano plot 
(Figure 1B), 442 differentially expressed circRNAs were 
observed (fold change >2, P<0.05) in 3 pairs of donor liver 
tissue between the EAD and non-EAD groups. Among 
these circRNAs, 219 were downregulated in the EAD 
group, and 223 were upregulated. The chromosomal 
distribution of differentially expressed circRNAs is 
illustrated in Figure 1C. The top 3 Gene Ontology (GO) 
terms included binding, protein binding and catalytic 
activity among molecular functions; intracellular part, 
organelle and intracellular among cellular components; 
cellular process, metabolic process and organic substance 
metabolic process among biological processes (Figure 2A). 
The top 3 KEGG pathways related to host genes of the 
dysregulated circRNAs included arginine biosynthesis, 

tryptophan metabolism and glyoxylate and dicarboxylate 
metabolism (Figure 2B).

Significantly downregulated circFOXN2 and 
circNECTIN3 in EAD

According to the distribution and degree of difference 
based on raw data analysis, circFOXN2 and circNECTIN3 
were selected for further research. Then, qRT-PCR was 
used to detect the expression levels of circFOXN2 and 
circNECTIN3 in 115 donor liver tissues. The backspliced 
junctions for circFOXN2 and circNECTIN3 in qRT-PCR 
products were confirmed by Sanger sequencing (Figure 3A).  
CircFOXN2 and circNECTIN3 were significantly 
downregulated in the EAD group (circFOXN2: P=0.038, 
Figure 3B; circNECTIN3: P=0.024, Figure 3C).

A two-circRNA signature combing donor circFOXN2 and 
circNECTIN3

According to the Youden index, the cut-off value was set 
as for 1.27 circFOXN2 (log) and 1.66 for circNECTIN3 
(log). We further construct circular RNA signature (A, B 
and C) according to the cut-off value of circFOXN2 and 
circNECTIN3. Among the 115 recipients, 32 recipients 
with high circFOXN2 expression were classified as circular 
RNA signature A. Recipients with low circFOXN2 
expression were categorized into circular RNA signature B 
(n=33, high circNECTIN3 expression) and C (n=50, low 
circNECTIN3 expression). The incidence rates of EAD 
in signature A, B and C were 3.1%, 21.2% and 42.0%, 
respectively (Figure 3D).

A novel predictive model for EAD

The results of univariate analysis of risk factors for EAD 
are demonstrated in Table 1. Preoperative MELD score 
(P=0.000), CIT (P=0.000) and circular RNA signature 
(P=0.000) were significantly different between the EAD 
and non-EAD groups. Furthermore, CIT and circular 
RNA signature were independent risk factors for EAD 
based on multivariate binary logistic regression analysis 
(P=0.000, P=0.013, respectively, Table 2). A novel model 
combing circFOXN2 and circNECTIN3 was constructed 
according to the independent risk factors. Predictive 
model score = −7.390 + 0.404*CIT + 2.318*(Signature B) 
+ 3.111*(Signature C). As is shown in Figure 4, the novel 
model showed an improved predictive value with an AUC 



Wang et al. CircRNA signature for early allograft dysfunction

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(4):94 | http://dx.doi.org/10.21037/atm.2019.12.132

Page 4 of 10

Color Key and 
Histogram

Row Z-Score

−
lo

g1
0(

pv
al

)

C
hr

om
os

om
es

−2 −1

−4 −2

0 1 2

0 2 4

400

200

0

10

8

6

4

2

0

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrY
chrX

C
ou

nt

0 5 10 15 20 25 30

Number of circular RNA

Non-EADEAD

B

C

A

Figure 1 Expression profiles of circRNAs in donor liver tissues. (A) Heat map of differentially expressed circRNAs between the EAD 
and non-EAD groups; (B) volcano plot of differentially expressed circRNAs between the EAD and non-EAD group; (C) chromosomal 
distribution of the differentially expressed circRNAs.
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Figure 2 GO (A) and KEGG (B) analyses of host genes of the differentially expressed circRNAs between the EAD and non-EAD groups.
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Figure 3 Two candidate circRNAs associated with EAD. (A) Sanger sequencing confirmed the qRT-PCR results of circFOXN2 and 
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CircNECTIN3 was downregulated in the EAD group compared with that in the non-EAD group (P=0.024); (D) scattergram of circFOXN2 
and circNECTIN3 expression (log) identified circular RNA signature A, B and C.

of 0.870 (95% CI: 0.797–0.942). 

CircFOXN2/circNECTIN3-miR-135b-5p/miR-149-5p 
network construction

RNAhybrid and TargetScan were employed to predict the 
target miRNAs of circFOXN2 and circNECTIN3. To 
identify the potential targets related to EAD, we selected 
miRNAs associated with ischemia/reperfusion injury (IRI), as 
illustrated in the network. As is shown in the network, hsa-
miR-135b-5p and hsa-miR-149-5p were the potential targets 
of both circFOXN2 and circNECTIN3. Subsequently, the 
target genes of the miRNAs were predicted by miRWalk 
and TargetScan. The circFOXN2/circNECTIN3-miRNA-

mRNA network is shown in Figure 5.

Discussion

EAD is a reversible injury following liver transplantation. 
Many factors contribute to the incidence of EAD, including 
graft IRI, hepatic steatosis, donor BMI, donor age and 
donor serum sodium level (6,18-20). Among these risk 
factors, graft IRI is generally considered one of the most 
important risk factors. Similar results have been found in 
the present study, showing that CIT was an independent 
risk factor for EAD. In addition to the clinical factors, 
Kurian et al. investigated the molecular mechanisms 
underlying EAD, defined relevant pathways (PPARα 
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Table 1 Univariate analysis of risk factors for EAD

Variables EAD, n=29 Non-EAD, n=86 P value

Recipient age (years) 47.38±11.02 51.67±10.77 0.067

Recipient sex 0.588

Male 23 (79.31%) 72 (83.72%)

Female 6 (20.69%) 14 (16.28%)

Preoperative MELD 
score

37.00 (15.00) 21.00 (18.30) 0.000

Operative time (h) 5.43±0.87 5.14±1.11 0.199

Donor age (years) 46.00 (14.96) 42.96 (18.90) 0.203

Donor sex 0.554

Male 25 (86.21%) 70 (81.40%)

Female 4 (13.79%) 16 (18.60%)

Donor BMI (kg/m2) 22.88±2.79 22.59±2.75 0.627

CIT (h) 12.38 (3.40) 7.21 (3.61) 0.000

Macrovesicular 
steatosis

0.341

<20% 26 (89.66%) 83 (96.51%)

≥20% 3 (10.34%) 3 (3.49%)

Two-circular RNA 
signature

0.000

A 1 (3.45%) 31 (36.05%)

B 7 (24.14%) 26 (30.23%)

C 21 (72.41%) 29 (33.72%)

Two-Circular RNA signature A: high circFOXN2 expression; B: 
low circFOXN2 expression and high circNECTIN3 expression; 
C: low circFOXN2 expression and low circNECTIN3 expression. 
EAD, early allograft dysfunction; MELD, Model for End-stage 
Liver Disease; CIT, cold ischemia time; BMI, body mass index. 

Table 2 Multivariate analysis of risk factors for EAD

Risk factors OR (95% CI) P 

CIT 1.498 (1.246–1.800) 0.000

Two-circular RNA signature 0.013

A 1.00

B 22.439 (2.577–195.368)

C 10.154 (1.041–99.006)

Two-Circular RNA signature A: high circFOXN2 expression; B: 
low circFOXN2 expression and high circNECTIN3 expression; 
C: low circFOXN2 expression and low circNECTIN3 expression. 
CIT, cold ischemia time. 
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Figure 4 ROC curve analysis of the novel model combining two-
circRNA signature indicates good predictive value for EAD (AUC: 
0.870; 95% CI: 0.797–0.942).

and NF-κB) and targets (such as CXCL1, IL1, TRAF6, 
TIPARP, and TNFRSF1B) associated with the incidence 
of EAD (9). CircRNAs are often more stable than linear 
RNAs, which makes circRNAs promising biomarkers and 
therapeutic targets (12). However, the expression profile 
and predictive value of circRNAs in EAD remain unknown.

Previous research found that donor biology plays 
an important role in tumour recurrence and new-onset 
diabetes mellitus after liver transplantation (21,22). 
Therefore, donor biology is associated with the outcomes 
after liver transplantation. In this study, graft circRNA 
profiles were established through circRNA sequencing. 
We further identified that circFOXN2 and circNECTIN3 
were significantly downregulated in the EAD group. 
Furthermore, we developed circular RNA signature (A, 
B and C) according to the expression of circFOXN2 
and circNECTIN3. We also constructed a novel model 
combing circular RNA signature to predict EAD with 
good performance. The present study indicates that donor 
biology plays an important role in the development of EAD. 

Previous studies have attempted to predict EAD. Hoyer 
et al. developed an EAD prediction score based on clinical 
variables of donors (6). A nomogram was also constructed 
based on the clinical parameters of donors and recipients 
to predict individual incidence of EAD (7). In addition to 
clinical variables, donor biology has been used to predict 
EAD. Kurian et al. defined a gene expression signature in 
donor liver tissue with high predictive value for EAD (9).  
Additionally, a recent study found that miR-146b-5p can 
act as a biomarker of EAD (8). However, the role of stable 
circRNAs, which are perfect candidate predictive indicators, 
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Figure 5 CircFOXN2/circNECTIN3-miRNA-mRNA network construction. The red dots represent circFOXN2 and circNECTIN3; the 
green triangles represent the predicted miRNAs; and the blue quadrilaterals represent the target genes.

has not been elucidated before. The present study 
demonstrated the expression profile and predictive value of 
circRNAs in donor liver tissues.

In the present study, we selected miRNAs related to 
IRI and constructed a circFOXN2/circNECTIN3-miR-
135b-5p/miR-149-5p network using database prediction. 
CircRNAs can act as miRNA sponges. MiRNAs are small, 
noncoding RNAs that play a pivotal role in the post-
transcriptional regulation of gene expression. To explore the 
potential pathways related to EAD, we selected miRNAs 
associated with IRI to be construct a network. Many 
miRNAs, such as miR-21-3p and miR-490-3p, are involved 
in IRI (23,24). Regarding cardiac IRI, a recent study found 
that miR-149-5p could negatively regulate sphingosine-
1-phosphate receptor 2 levels and improve the outcomes 
of transient middle cerebral artery occlusion in rats (25). 
Xie et al. also demonstrated that miR-135b-5p inhibition 
could protect cardiomyocytes from IRI in a mouse model 
through the JAK2/STAT3 pathway (26). Furthermore, 
Xing et al. found that miR-27a-5p was upregulated during 
hepatic IRI in mice (27). In addition, a previous study 
found that miR-133a-5p reversed the protective effect of 
propofol in a rat hepatic IRI model (28). Moreover, Li et al. 
illustrated that miR-370 levels were significantly increased 
in a mouse hepatic IRI model (29). Similar results have also 
been found in recent research (30). In the present study, 
ceRNA network analysis showed that circFOXN2 and 
circNECTIN3 regulated miR-135b-5p and miR-149-5p, 
which play important roles in IRI. Thus, the circFOXN2/

circNECTIN3-miR-135b-5p/miR-149-5p network 
provides a novel avenue for exploring the incidence of EAD.

Nevertheless, this study had several limitations. First, this 
is a single-centre retrospective study. Second, the sample 
size was relatively small. Further prospective multicentre 
studies with large samples are needed to validate the results.

In conclusion, this study demonstrated the differential 
expression of 442 circRNAs between the EAD and 
non-EAD groups. The novel model combing donor 
circular RNA signature is effective at predicting EAD. 
Additionally, the circFOXN2/circNECTIN3-miRNA-
mRNA network provides potential targets for predicting 
and treating EAD.
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Table S1 sequences of the primers

Primer Sequence (5' to 3')

GAPDH F ATCCTGGGCTACACTGAGCA

GAPDH R AAGTGGTCGTTGAGGGCAAT

CircFOXN2 F CTGCACCAACAGGCTGGAAG

CircFOXN2 R TACTCTTACAGTTCTTGCCA

CircNECTIN3 F TCATCTACATTTCAGGTGCCT

CircNECTIN3 R TCTTCTCCCATGAAATCTGTG
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