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Background: To identify prognostic hub genes which associated with tumor microenvironment (TME) in 
lower grade glioma (LGG) of central nervous system.
Methods: We downloaded LGG patients gene transcriptome profiles of the central nervous system in The 
Cancer Genome Atlas (TCGA) database. Clinical characteristics and survival data through the Genomic 
Data Commons (GDC) tool were extracted. We used limma package for normalization processing. Scores 
of immune, stromal and ESTIMATE were calculated using ESTIMATE algorithm. Then, box plots 
were applied to explore the association between immune scores, stromal scores, ESTIMATE scores and 
histological type, tumor grade. Kaplan-Meier (K-M) analysis was utilized to explore the prognostic value 
of scores. Furthermore, heatmaps and volcano plots were applied for visualizing expression of differential 
expressed-gene screening and cluster analysis. Venn plots were constructed to screen the intersected 
differentially expressed genes (DEGs). In addition, enrichment of functions and signaling pathways and Gene 
Set Enrichment Analysis (GESA) of the DEGs were performed. Then we used protein-protein interaction 
(PPI) network and Cytoscape software to identify hub genes. We evaluated the prognostic value of hub genes 
and risk score (RS) calculated based on multivariate cox regression analysis. Finally, relationships of hub 
genes with the TME of LGG patients were evaluated based on tumor immune estimation resource (TIMER) 
database.
Results: Gene expression profiles and clinical data of 514 LGG samples were extracted and the results 
revealed that higher scores were significantly related with histological types and higher tumor grade 
(P<0.0001, respectively). Besides, higher scores were associated with worse survival outcomes in immune 
scores (P=0.0167), stromal scores (P=0.0035) and ESTIMATE scores (P=0.0190). Then, 785 up-regulated 
intersected genes and 357 down-regulated intersected genes were revealed. Functional enrichment analysis 
revealed that intersected genes were associated with immune response, inflammatory response, plasma 
membrane and receptor activity. After PPI network construction and cytoHubba analysis, 25 tumor immune-
related hub genes were identified and enriched pathways were identified by GSEA. Besides, receiver 
operating characteristic (ROC) curves showed significantly predictive accuracy [area under curve (AUC) 
=0.771] of RS. Furthermore, significant prognostic values of hub genes were observed, and the relationships 
between hub genes and LGG TME were demonstrated.
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Introduction

Glioma is neoplasm of the central nervous system (CNS), 
derived from transformed neural stem cells or progenitor 
cells (1). According to histopathological characteristics, 
the World Health Organization (WHO) classifies glioma 
into two categories: low-grade glioma (LGG, grade I 
and II), which is well differentiated and slow-growing; 
and high-grade glioma (HGG, grade III and grade IV), 
which is poorly differentiated or anaplastic, and most of 
them seriously infiltrate the brain parenchyma. LGG is a 
fatal disease that predisposes to young people (mean age  
41 years), with an average survival time of about 7 years, 
and all LGGs will eventually develop into HGG (2). 
Interestingly, in addition to conventional surgical treatment, 
LGG has limited sensitivity to radiation and chemotherapy 
(3-6). Since immune checkpoint therapies such as 
nivolumab have developed rapidly in LGG in recent years, 
tumor microenvironment (TME) has attracted increasing 
attention as a crucial cellular milieu for immune cells, 
stromal cells and extracellular matrix molecules (7,8).

TME is a cellular environment in which neoplastic foci 
are located. It consists of endothelial cells, inflammatory 
mediators, mesenchymal cells, along with immune cells 
and stromal cells (8). Among them, immune cells and 
stromal cells are two major non-tumor components, which 
are of great significance in the diagnosis and prognosis of 
cancers. LGG tumor cells form a complex milieu of the 
tumor microenvironment, which ultimately promotes the 
adaptability of the transcriptome of tumor cells and disease 
progression (8). On the other hand, studies have shown that 
TME can have an important impact on tumor malignancy 
and clinical prognosis by regulating gene expression (9-14).

To further investigate the molecular biological properties 
of TME, algorithms that use gene expression data of 
The Cancer Genome Atlas (TCGA) database, which is 
a comprehensive genome-wide gene expression profile 
established to classify and detect genomic abnormalities 

in a large number of populations worldwide, have been 
developed (12,15-17). For example, an algorithm called 
ESTIMATE that uses expression data to estimate stromal 
cells and immune cells in malignant tumors has been 
designed by Yoshihara et al. (12). In this algorithm, the 
expression characteristics of specific genes in immune cells 
and stromal cells are analyzed to calculate immune and 
stromal scores in order to predict the invasion of non-tumor 
cells. Recent reports showed that ESTIMATE was applied 
in researches of prostate cancer (18), breast cancer (19) 
and colon cancer (20). However, characteristics of TME 
evaluated by ESTIMATE were not observed in LGG.

To  g e t  m o r e  i n s i g h t s ,  w e  e x t r a c t e d  a  l i s t  o f 
microenvironment-related genes that predicted poor 
prognosis in patients of LGG by using the TCGA database 
of LGG cohorts and the immune scores derived from 
ESTIMATE algorithm (12), what is more important, we 
developed a risk scoring system to assess the prognostic 
value of central genes. In addition, the correlation between 
central genes and immune infiltration has also been 
explored.

Methods

TCGA and ESTIMATE data collection

We downloaded gene transcriptome profiles of patients 
with LGG of the central nervous system in The Cancer 
Genome Atlas (TCGA) database (https://portal.gdc.cancer.
gov/). RNA expression for LGG Multiforme was obtained 
by using IlluminaHiSeq (version: 2017-10-13). After that, 
we download the survival data through the Genomic Data 
Commons (GDC) tool from TCGA. Sex, histological 
type and tumor grade were extracted. Limma package 
was used for normalization processing (21). Scores of 
immune, stromal and ESTIMATE were calculated using 
ESTIMATE algorithm (https://sourceforge.net/projects/
estimateproject/). 

Conclusions: We identified 25 TME-related genes which significantly associated with overall survival in 
patients with central nervous system LGG from TCGA database.
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Correlation analysis and survival analysis

We performed unpaired t test and ordinary one-way analysis 
of variance to explore the association between immune 
scores, stromal scores, ESTIMATE scores and histological 
type, tumor grade. Kaplan-Meier (K-M) analysis with log-
rank test was based on survival package (22,23). P value 
<0.05 was considered as statistically significant in mentioned 
analyses.

Heatmaps, clustering analysis and DEGs

Immune scores and stromal scores were divided into high-
level groups and low-level groups according to the median 
scores, respectively. Limma package with the standard 
of |log(FC)| >1 and False Discovery Rate (FDR) <0.05 
were used for standardization of transcriptome data (21). 
Heatmaps (|log(FC)| >1 and FDR <0.05) and volcano 
plots (cut |log2FC|=1 and cut P=0.05) based on pheatmap 
package, ggplot2 package and clustering analysis were 
applied for visualizing expression of differential expressed-
gene screening and cluster analysis. We obtained the 
intersected differentially expressed genes (DEGs) among 
immune scores and stromal scores which exhibited by 
VennDiagram package (24). 

DEGs enrichment analysis and GSEA 

Online tool DAVID (The Database for Annotation, 
Visualization and Integrated Discovery, https://david.ncifcrf.
gov/) was exploited to construct the gene ontology (GO) 
categories by biological processes (BP), cellular components 
(CC) and molecular functions (MF) (25). Besides, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis was 
performed based on org.Hs.eg.db package, clusterProfiler, 
org.Hs.eg.db, enrichplot, and ggplot2 packages. The 
q-value <0.05 was considered as significance. In addition, 
‘c2.cp.kegg.v6.2.symbols.gmt gene sets’ was set as gene set 
database, ‘Illumina_Human.chip’ was set as chip platform, 
FDR <0.25, |enriched score| >0.35, and gene size ≥35 
during Gene Set Enrichment Analysis (GESA) process (26).

PPI network construction and hub genes selection

We constructed protein-protein interaction (PPI) network 
from STRING database (version 11.0, minimum required 
interaction score: 0.9) and Cytoscape software (version 3.7.1) 
(27,28). We used the inside-software plugin cytoHubba 

for hub genes identification and top 10 nodes ranked 
by every algorithm were enrolled in gene selection (29).  
Genes with network nodes less than 10 were excluded. 
Circle size represented node degree.

Overall survival curve and risk score 

K-M analysis was used to evaluate the prognostic value of 
hub genes. Log-rank test was used and P value <0.05 was 
considered as statistically significant. Furthermore, we 
established a risk score (RS)-based prognostic evaluation 
model, which formula is RS=Ʃ (βi*Expi). In this formula, 
‘i’ represented the number of prognostic hub genes, ‘Expi’ 
represented the selected gene, and ‘βi’ represented the 
weight of gene, which calculated based on multivariate cox 
regression. Then we calculated RS of LGG patients and 
divided them into high- and low-risk groups according to 
the median RS. Survival receiver operating characteristic 
curve (ROC) package was used (30). In addition, K-M plots 
were used to evaluate the prognostic value of RS.

TIMER database analysis

In tumor immune estimation resource (TIMER) database 
(https://cistrome.shinyapps.io/timer/), RNA-Seq expression 
profiling data were utilized to detect the infiltration of 
immune cells including B cells, CD4+ T cells, CD8+ T 
cells, Neutrphils, Macrophages and Dendritic cells in tumor 
tissues. Besides, the association between tumor purity and 
hub genes was also analyzed.

Statistical analysis

IBM SPSS Statistics 20.0 was applied in multivariate Cox 
regression analysis and K-M analysis. Statistical analysis was 
implemented on R software (version 3.5.2). The results with 
P<0.05 represented as statistically significant.

Results

Immune scores and stromal scores are associated with LGG 
sub-types, tumor grade and survival outcome 

Totally 530 LGG tumor data were collected from TCGA. 
Then, we screened a total of 516 samples ended with ‘-01’, 
which represented ‘primary solid tumor’. Among them, 
we deleted samples TCGA-CS-5390-01 and TCGA-
R8-A6YH-01, because we were unable to obtain survival 
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information for these samples. Finally, 514 LGG samples 
including 285 males (55.45%) and 229 females (44.55%) 
were extracted from TCGA database. Clinical characters 
of LGG patients were exhibited in Table 1. Immune 
scores, stromal scores and ESTIMATE scores were listed 
in online: http://cdn.amegroups.cn/static/application/95
4ad2d4809e5d6e033eaf346ed86465/atm.2020.01.73-t1.
pdf. The distribution of immune scores, stromal scores 
and ESTIMATE scores in different histological types and 
grades was shown in Figure 1A,B,C,D,E,F. The results 
revealed that higher scores were significantly related with 
histological types and higher tumor grade (P<0.0001, 
respectively). Besides, K-M curves revealed that higher 
scores were associated with worse survival outcomes in 
immune scores (P=0.0167), stromal scores (P=0.0035) and 
ESTIMATE scores (P=0.0190) (Figure 1G,H,I).

Comparison of gene expression profiles with immune scores 
and stromal scores in LGG

Microarray data was standardized by limma package. In 
immune score group, heatmap of clustering analysis was 
shown in Figure S1. DEGs were reflected in volcano plot 
(Figure 2A). The heatmap and volcano plot based on 
stromal scores were shown in Figure S2A,B. According to 
statistics, 684 up-regulated DEGs and 892 down-regulated 
DEGs were selected in immune score group (online: 
http://cdn.amegroups.cn/static/application/09167c99881
221da5e479a7b81a141af/atm.2020.01.73-t2.docx), while 
409 up-regulated DEGs and 974 down-regulated DEGs 

were selected in stromal score group (online: http://cdn.
amegroups.cn/static/application/4847a27dac216bb9fa
a00192b15e5428/atm.2020.01.73-t3.docx). Then, 785 
up-regulated intersected genes and 357 down-regulated 
intersected genes were revealed in venn plots (Figure 2B,C).

Functional enrichment analysis

The results of GO analysis revealed that 1142 intersected 
genes were associated with immune response, inflammatory 
response, plasma membrane and receptor activity from 
the categories of BP (Figure 3A), CC (Figure 3B) and MF 
(Figure 3C), respectively. KEGG pathway annotation was 
analyzed and shown in Figure 3D. We separately calculated 
the enrichment of intersected genes in the aspects of 
organismal systems, human diseases, environmental 
information processing, cellular process metabolism and 
genetic information processing. From the results, we found 
that intersected genes were most abundant in pathways of 
the immune system, infectious diseases, signal transduction, 
signaling molecules and interaction, cell transport and 
catabolism, gloable and overview maps and folding sorting 
and degradation. Besides, KEGG enrichment barplot was 
shown in Figure 3E. Top 20 pathway enrichment analysis 
was visually presented in Figure 3F, which bubble size 
represented gene number and colour represented Q value. 

GSEA

To explore the difference in the pathway between high and  

Table 1 Clinical Characteristics of 514 LGG patients included in study from TCGA cohort

Variables Male (%) Female (%) Total (%)

Number 285 (55.45) 229 (44.55) 514 (100.00)

Histological type

Astrocytoma 108 (21.01) 86 (16.73) 194 (37.74)

Oligoastrocytoma 72 (14.01) 58 (11.28) 130 (25.29)

Oligodendroglioma 105 (20.43) 85 (16.54) 190 (36.96)

Grade

Grade 2 136 (26.46) 112 (21.79) 248 (48.25)

Grade 3 148 (28.79) 117 (22.76) 265 (51.56)

Event

Dead 71 (13.81) 54 (10.51) 125 (24.32)

Alive 214 (41.63) 174 (33.85) 388 (75.49)

http://cdn.amegroups.cn/static/application/954ad2d4809e5d6e033eaf346ed86465/atm.2020.01.73-t1.pdf
http://cdn.amegroups.cn/static/application/954ad2d4809e5d6e033eaf346ed86465/atm.2020.01.73-t1.pdf
http://cdn.amegroups.cn/static/application/954ad2d4809e5d6e033eaf346ed86465/atm.2020.01.73-t1.pdf
http://cdn.amegroups.cn/static/application/09167c99881221da5e479a7b81a141af/atm.2020.01.73-t2.docx
http://cdn.amegroups.cn/static/application/09167c99881221da5e479a7b81a141af/atm.2020.01.73-t2.docx
http://cdn.amegroups.cn/static/application/4847a27dac216bb9faa00192b15e5428/atm.2020.01.73-t3.docx
http://cdn.amegroups.cn/static/application/4847a27dac216bb9faa00192b15e5428/atm.2020.01.73-t3.docx
http://cdn.amegroups.cn/static/application/4847a27dac216bb9faa00192b15e5428/atm.2020.01.73-t3.docx
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Figure 1 Immune scores and stromal scores are associated with LGG sub-types, tumour grade and survival outcome. The distribution 
of immune scores in histological types (A) and grades (B); the distribution of stromal scores in histological types (C) and grades (D); the 
distribution of ESTIMATE scores in histological types (E) and grades (F), all the P values <0.0001. K-M survival curves revealed that 
worse overall survival were related with higher immune scores (G, P=0.0167), stromal scores (H, P=0.0035) and ESTIMATE scores had (I, 
P=0.0190). G: grade; K-M: Kaplan-Meier; L: low score group; H: high score group.
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low immune score groups, we performed GSEA analysis 
and the results were shown in Figure S3A, FcγR mediated 
phagocytosis, leukocyte transendothelial migration, natural 
killer cell mediated cytotoxicity, cell adhesion molecules, B 

cell receptor signaling pathway, Toll like receptor signaling 
pathway, JAK-STAT signaling pathway, cytokine-cytokine 
receptor interaction, T cell receptor signaling pathway, 
FcεRI signaling pathway, NOD like receptor signaling 
pathway, intestinal immune network for IgA production, 
antigen processing and presentation were intersected 
genes enriched pathways. In addition, Figure S3B shown 
the results of GSEA analysis conducted on stromal 
scores groups. Allograft rejection, antigen processing 
and presentation, viral myocarditis, autoimmune thyroid 
disease, cell adhesion molecules, graft versus host disease, 
intestinal immune network for IgA production, JAK-STAT 
signaling pathway, leishmania infection, NOD like receptor 
signaling pathway, systemic lupus erythematosus, Toll like 
receptor signaling pathway were intersected genes enriched 
pathways.

PPI

PPI network was performed via STRING tool for exploring 
the interplay among the identified DEGs. The network 
contained 1,103 nodes and 4,070 edges. Then, data from 
STRING were further analyzed by Cytoscape and hub 
genes identification was performed by cytoHubba, which 
results of algorithms were shown in Figure S4. The 25 
tumor immune-related hub genes were identified as follow: 
HRH3, APLNR, FCER1G, SYK, GNG12, GNG13, GNG5, 
PTPN6, GPR183, CXCL11, CXCL9, HLA-B, VAMP8, 
SSTR1, CCR5, PTAFR, C3, TAS1R1, ANXA1, OPRK1, 
ITGB2, CCL5, CXCR3, CXCR4 and GNGT2.

RS and survival analysis 

Based on the selected hub genes, RS=HRH3*(−0.045)+ 
APLNR*0.063+FCER1G*0.03+SYK*(−0.535)+GNG12* 
0.269+GNG13*0.024+GNG5*0.344+PTPN6*(−0.523)+ 
GPR183*0.346+CXCL11*0.181+CXCL9*(−0.13)+HLA-B* 
(−0.026)+VAMP8*(−0.302)+SSTR1*(−0.174)+CCR5*0.093+ 
PTAFR*0.23+C3*(−0.37)+TAS1R1*0.171+ANXA1*0.158
+OPRK1*0.147+ITGB2*0.381+CCL5*−0.371+CXCR3* 
0.245+CXCR4*(−0.119)+GNGT2*0.597.

We selected 481 patients with OS >30 days from 514 
samples. Then RS data of 481 patients were calculated 
and shown in online: http://cdn.amegroups.cn/static/
application/e64541dfb3b1cd2b8e9900fe0c982188/
atm.2020.01.73-t4.pdf. The range of RS was −3.99 to 
3.03 and the median was −0.5. Totally 481 eligible LGG 
patients were divided into low-RS group and high-RS 

Figure 2 Comparison of gene expression profiles with immune 
scores and stromal scores in LGG. In immune score group, DEGs 
were reflected in volcano plot (A). Venn plots revealed 785 up-
regulated intersected genes (B) and 357 down-regulated intersected 
genes (C).
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group according to the median RS. Survival analysis was 
constructed and the result demonstrated that patients with 
higher RS were associated with worse overall survival than 
who with lower RS (P<0.0001, Figure 4A). Furthermore, 
ROC curve was used to evaluate the prognostic value of 
RS. AUC was calculated as 0.771, which revealed superior 
predictive accuracy in overall survival (Figure 4B). In 
addition, survival curves of 25 hub genes were shown in 
Figure S5. From the K-M curves, lower expression levels of 
GNG13, HRH3, OPRK1 and SSTR1 were related with poor 
prognosis. In contrast, we found that high expression of 
other hub genes is associated with poor prognosis in LGG 
patients.

Hub genes and immune cells infiltration

TIMER database was applied for further exploring the 
relationship between 25 hub genes and immune infiltration 
in LGG TME. According to the results, 16 hub genes 
(ANAX1, C3, CCL5, CCR5, CXCL11, CXCR3, CXCR4, 
FCER1G, GNG5, GNG12, GNGT2, GPR183, HLA-B, 
OPRK1, PTAFR, SYK) were related with B cell, CD4+T 
cell, CD8+T cell, macrophage, neutrophil and dendritic cell 
infiltration (P<0.05, respectively, Figure S6).

Discussion

In recent years,  due to the rapid development of 
immunological checkpoint therapies such as nivolumab in 
LGG, TME has attracted a growing number of attentions 
as a key cellular milieu of immune cells, extracellular matrix 
molecules and stromal cells (7,8). Immunotherapy for 
cancers destroys cancer cells by enhancing the function of 
immune system. Growing evidence indicates that the key 
mechanism of interaction between the immune system and 
LGG is the immune checkpoints in the dynamic effect of 
immunity. Defined as a cohort of co-stimulatory and co-
inhibitory molecules modulating T-cell activity, immune 
checkpoints orchestrate as regulatory circuits to make the 
immune system self-tolerable under normal physiological 
circumstances (31,32). 

In our current research, we calculated the immune 
scores, stromal scores and ESTIMATE scores for each 
LGG sample extracted from the TCGA database by 
applying ESTIMATE algorithm. The results revealed 
that immune scores were statistically higher in malignant 
tumor cases and associated with worse survival outcomes, 

advanced tumor grades and higher pathological stages. For 
the first time that ESTIMATE algorithm-derived immune 
scores were calculated in LGG to evaluate the prognostic 
value and provide extra evidence for the biological basis of 
immunotherapy. In our study, PPI network was constructed 
using SRING tool and Cytoscape software. Finally, 25 
TME-related hub genes were selected and the potential 
pathways such as immune response, inflammatory response, 
plasma membrane and receptor activity were identified. We 
explored the associations between hub genes with immune 

Figure 4 Prognostic value of RS. M curve was constructed and the 
result demonstrated that patients with higher RS was associated 
with worse overall survival than who with lower RS (P<0.0001, A). 
ROC curve (B) was used to evaluate the prognostic value of RS. 
AUC was calculated as 0.771, which revealed superior predictive 
accuracy in overall survival. K-M, Kaplan-Meier; RS, risk score; 
ROC, operating characteristic curve; AUC, area under the curve.
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infiltration in LGG TME by using the deconvolution 
algorithm based on the TIMER database. We found 16 
hub genes including CCL5, CCR5, CXCR3, CXCR4 and 
CXCL11 were related to B cell, CD4+T cell, CD8+T cell, 
macrophage, neutrophil and dendritic cell infiltration.

Chemokine (C-C motif) ligand 5 (CCL5) is secreted 
by various cell types including platelets, immune cells, 
fibroblasts, and endothelial and epithelial cells (33), and 
has been originally identified as an inducer that can recruit 
leukocytes to sites of inflammation (34). After binding to its 
receptors, namely CCR1, CCR3, and CCR5, CCL5 induces 
phosphorylation of mitogen-activated protein kinase 
and other signaling pathways involved in the regulation 
of various cellular functions, such as the proliferation, 
migration, and differentiation (35,36). Interestingly, it has 
been reported that the CCL5/CCR1 axis is critical for 
maintaining mesenchymal stem cells (MSC) identity and 
multipotency (37). Non-neoplastic cell-derived signals 
(chemokines and cytokines) in the TME may also represent 
viable treatment targets. It was reported that CCL5 was 
responsible for maintaining neurofibromatosis type 1 
(NF1) mouse optic glioma growth in vivo (38). Since 
malignant gliomas may achieve partial independence from 
growth regulatory factors produced by non-neoplastic cells 
in the TME by producing the same cytokines secreted 
by the stromal cells in their low-grade counterparts, 
the NF1 protein, neurofibromin, negatively regulates 
CCL5 expression through suppression of AKT/mTOR  
signaling (39). Besides, CCL5 operates through an 
unconventional CCL5 receptor, CD44, to inhibit mouse 
mesenchymal glioblastoma (M-GBM) cell apoptosis. 
Collectively, these findings reveal that paracrine factors 
important for LGG growth can be usurped by high-grade 
tumors to create autocrine regulatory circuits that maintain 
malignant glioma survival (40). The opinions provided 
possible ideas for further research on our results.

The C-X-C motif chemokine receptor 3 (CXCR3), 
which belongs to the CXC chemokine receptor family, is 
a G protein-coupled receptor that plays a critical role in 
mediating chemotactic migration, cell proliferation, and 
survival (41-43). CXCR3 is mainly expressed by various 
effector T lymphocytes including CD4+ Th1 cells, CD8+ 
cytotoxic T cells, and natural killer (NK) cells (44,45). 
The principle chemokine ligands of CXCR3 are CXCL4, 
CXCL9, CXCL10 and CXCL11 (46-49). Maru et al. (50) 
first reported that CXCR3 and CXCL10 were increased 
in glioma cells compared with adult human astrocytes. 
Moreover, they found that the expression level of CXCR3 

correlated with malignancy grade of glioma. Liu et al. (51)  
examined the role of CXCR3 in glioblastoma (GBM) 
progression using the GL261 murine model of malignant 
glioma. They found that Murine glioma GL261 cells 
express CXCL10 in vitro and GL261 tumors express 
CXCL9 and CXCL10 in vivo. CXCR3−/− mice with glioma 
had significantly shorter median survival time and reduced 
numbers of tumor-infiltrated natural killer (NK) and 
natural killer T (NKT) cells in contrast with WT glioma 
mice. Moreover, both CXCR3 and its ligands are expressed 
by murine and human glioma cell lines (A172, T98G, U87, 
U118 and U138). These results suggested that CXCR3 
system may be a unique target for human glioma therapy. 
Recently, Pu et al. (52) investigated the potential prognostic 
value of CXCR3 in primary GBM and its relationship with 
clinicopathological features. Using K-M survival curve 
analysis with a log-rank comparison of the 65 primary 
glioma patients, they found that the patients with higher 
expression levels of CXCR3 had shorter progression free 
survival and overall survival compared with those with 
lower expression levels of CXCR3. Using univariate Cox 
regression analysis, they found that high CXCR3 expression 
was a risk factor for primary GBM [P<0.01, hazard ratio 
(HR) 2.336; 95% confidence interval (CI), 1.341–4.071]. 
Furthermore, their multivariate Cox regression analysis 
showed that CXCR3 expression level was an independent 
prognostic factor for overall survival of primary glioma 
patients. However, the role of CXCR3 in LGG has not yet 
been elucidated. The results mentioned above are consistent 
with our analysis, suggesting that CXCR3 may be a useful 
independent prognostic biomarker for patients with primary 
glioma.

Remarkably, the risk model was calculated based on 25 
hub prognostic genes associated with LGG TME. The 
AUC of the ROC curve revealed the satisfactory predictive 
efficiency of the risk signature. This novel TME hub 
genes-related risk score model provides a new theoretical 
basis for the prognosis assessment of LGG patients, which 
is expected to be further applied in the future clinical 
management. The interplay of LGG and its TME critically 
affects tumor evolution, which subsequently impacts 
subtype classification, recurrence, drug resistance, and the 
overall prognosis of patients. Previous reports have provided 
elegant analysis on how the activation of tumor-intrinsic 
genes shapes TME (53). In the current work, we focused 
on genes characteristic of microenvironment, which in turn 
affect the development of LGG and hence contribute to 
patients’ overall survival. Our results may provide additional 
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data in decoding the complex interaction of tumor and 
tumor environment in LGG.

It is important to note that limitations existed in our 
current study. Firstly, we only selected target data from 
the TCGA public database through biological algorithm 
approaches. We should validate the results of this article in 
clinical patients in further study. Secondly, 16 hub genes 
related to immune cells infiltration should be further 
studied to clarify the regulatory mechanism in immune 
infiltrates of LGG. Finally, considering the choice of 
analytical approaches, we included a limited database for 
the screening of hub genes in the immune ecosystem, 
which may lead to biased results due to the neglect of other 
databases.

Conclusions

In our research, we selected the transcriptional profiles from 
public databases based on bioinformatics algorithm and 
identified specific signatures that related to the infiltration 
of stromal and immune cells in LGG TME.
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Supplementary

Figure S1 The heatmap and volcano plot based on immune scores. In immune score group, microarray data was standardized by limma package and heatmap of clustering analysis was 
performed (|log(FC)| >1 and FDR <0.05). The right half of the samples is low expression group, while the left half is high expression group. 

Figure S2 The heatmap and volcano plot based on stromal scores. In stromal score group, microarray data was standardized by limma package and heatmap (A) of clustering analysis was 
performed (|log(FC)| >1 and FDR <0.05). The right half of the samples is low expression group, while the left half is high expression group. DEGs were reflected in volcano plot (B).
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Figure S3 Gene set enrichment analysis. GSEA analysis was performed to further screen the significant pathway between higher immune scores group and lower immune scores group. GSEA, 
Gene Set Enrichment Analysis.
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Figure S4 Hub genes identification based on cytoHubba. The PPI network data from STRING was further analyzed by Cytoscape and hub genes identification was performed by cytoHubba 
based on 12 algorithms.



Figure S5 K-M curves of 25 hub genes. K-M curves were applied to explore the association between expression levels of hub genes and overall survival.



Figure S6 Selected hub genes were associated with immune cells infiltration. According to the results analyzed based on TIMER database, 16 hub genes (ANAX1, C3, CCL5, CCR5, CXCL11, 
CXCR3, CXCR4, FCER1G, GNG5, GNG12, GNGT2, GPR183, HLA-B, OPRK1, PTAFR, SYK) was associated with B cell, CD4+ T cell, CD8+ T cell, macrophage, neutrophil and dendritic cell 
infiltration.
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