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Acute respiratory distress syndrome (ARDS) is a life-
threatening disease in critically ill patients, in whom it 
is associated with a mortality rate of 30–45% (1). The 
prevalence of ARDS in the intensive care unit (ICU) is high 
and is responsible for high morbidity and mortality rates 
among mechanically ventilated patients, although current 
therapies for ARDS are only symptomatic. Management 
strategies include protective mechanical ventilation and 
fluid-restrictive strategies, which aim to minimize symptoms 
while providing organ support. Therefore, clinicians and 
scientists hope for new pharmacologic, biologic, and genetic 
strategies to further our understanding of the pathogenesis, 
pathophysiology, and treatment of ARDS, which will 
improve clinical outcomes.

Cell therapy is one potential strategy that has shown 
great promise in preclinical ARDS studies. Multiple studies 
have revealed immunomodulatory and anti-inflammatory 
effects after treatment using mesenchymal stromal cells 
(MSCs). These non-hematopoietic multipotent stromal 
precursor cells can be isolated from various tissues, 
including the bone marrow, adipose tissue, dental pulp, 
placental tissue, cord blood, and matrix (2). Given the 
ease of isolating these cells, it was originally thought that 
delivery of cultured MSCs to the injured tissues would 
result in migration and differentiation into a locally 
appropriate phenotype and function, thereby leading to 
tissue repair (3). However, MSCs exhibit low engraftment 
into the injured tissues in some cases, and several animal 

studies clearly showed that injected MSCs could repair 
damaged tissue and lead to functional recovery without 
differentiating into the specialized cells for that tissue (4). 
Thus, it appears that MSCs do not typically differentiate 
into tissue-specific specialized cells but rather exert their 
regenerative ability through a paracrine effect. For example, 
MSCs may contribute to the resolution of inflammation 
through immunomodulatory and anti-inflammatory 
mechanisms, such as the release of soluble factors, including 
nitric oxide, indoleamine 2,3-dioxygenase, prostaglandin 
E2 (PGE2), and interleukin-10 (IL-10) (5,6). Thus, 
despite a lack of clarity regarding their specific molecular 
mechanisms, MSCs remain an attractive therapeutic 
candidate for treating acute or chronic inflammation-related 
diseases. Moreover, MSCs have low immunogenicity that 
allows for safe use in allogenic donor-matched settings or 
even xenogeneic settings, which suggests that they have 
many clinical advantages.

Jung et al. recently published a report in the Annals 
of Translational Medicine describing their mouse model 
of ARDS that could be induced using intratracheal 
administration of lipopolysaccharide (LPS) (7). These 
mice were then treated with human adipose-derived stem 
cells (ASCs) that were injected intravenously at 4 h after 
ARDS induction. Eggenhofer et al. have reported that 
intravenously infused MSCs are short-lived and mostly 
trapped in the lungs at 1 h after the infusion, with few 
MSCs observed in the other organs (6). Moreover, at 24 h 
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after the MSC infusion, most MSCs were dead and were 
detected in the liver, which suggests that an infusion of 
MSCs might be useful for targeting acute lung injuries, such 
as ARDS, and they might effectively reduce inflammation 
of the injured lung.

Jung et al. also showed that injected ASCs attenuated the 
alveolar hemorrhage and congestion that was induced by the 
intrapulmonary administration of LPS, which lowered the 
overall lung injury scores relative to the LPS control group (7).  
Many studies examining the effect of MSCs in lung injury 
models have also indicated that MSC application was 
associated with reduced lung injury and a recovery of lung 
function. For example, rats with ventilator-induced lung 
injury (VILI) received a tracheal administration of rat bone 
marrow-derived mesenchymal stromal cells (BMSCs) and 
subsequently experienced recovery of their lung function (8).  
Intravenous injection of human BMSCs into rats with 
acute lung injury also accelerated their lung recovery and 
bacterial clearance (9), which indicates that MSCs provide 
regenerative effects independent of the species from which 
they were derived. However, no changes in infiltrating 
neutrophils or inflammatory cytokine levels (e.g., IL-1β,  
IL-6, and TNF-α) were observed after the injection 
of ASCs in the study by Jung et al., although the lung 
injury scores did recover. Nevertheless, these assays were 
performed on days 2 and 7 after ARDS induction, while 
inflammatory cytokine level (e.g., TNF-α and IL-6) tend 
to rapidly respond to acute systemic inflammation or the 
induction of experimental endotoxemia. In the plasma of  
10 young healthy volunteers, notable TNF-α, IFN-γ, 
and IL-6 levels appeared within the first hour after an 
intravenous bolus injection of LPS (10). In this context, 
TNF-α  tends to exhibit  a  monophasic peak after 
approximately 90 min, whereas IL-6 and IFN-γ levels tend 
to peak after approximately 120 min and then gradually 
decrease (11). Thus, detecting cytokine levels earlier than 
day 2 or especially day 7 might have revealed significant 
differences between the LPS and LPS/ASCs groups in 
the study by Jung et al. Gonzalez-Rey et al. demonstrated 
that human ASCs could significantly reduce the levels 
of TNF-α, IL-1β, IFN-γ, and IL-6 starting at 18 h after 
cecal ligation and puncture (CLP) in a mouse model (12). 
Pedrazza et al. also used a CLP mouse model to determine 
that mouse ASCs could decrease the levels of TNF-α and 
IL-6 at 12 h after sepsis induction (13).

The findings described above might indicate that the 
therapeutic effect of MSCs is dependent on the dose (i.e., 
high or low doses in one or several treatments) and the 

timing of their administration (early or later after disease 
onset). The study by Jung et al. revealed that a single dose 
of 2×105 human ASCs at 4 h after sepsis induction improved 
the lung injury score, although there was no information 
regarding the survival rate after ASC administration. 
Gonzalez-Rey et al. reported that mice administered a 
single intraperitoneal dose of 1×106 human ASCs at 30 min 
after LPS injection had a better survival rate than those 
administered a single dose of 3×105 cells (12). Hall et al. 
used three intravenous administrations of mouse BMSCs 
after CLP induction (5×105 at 2 h, 2.5×105 at 24 h, and 
2.5×105 at 48 h), which also improved the mortality rate 
among mice (14). While there are no direct comparisons 
of single-dose and repeated-dose treatments, these results 
suggest that multiple doses or a single early dose might 
improve the outcomes among mice and enhance their 
likelihood of recovering from sepsis. Nevertheless, further 
studies are needed to clarify the optimal dose(s) and timing 
of administration(s) in this setting.

Another important issue is the cell source, as MSCs can 
be harvested from various adult and neonatal tissues. Clinical 
studies have widely used ASCs and umbilical cord blood-
derived MSCs (UC-MSCs) because they are readily available, 
although animal studies have tended to use BMSCs, which 
were the first described type of cells and considered the gold 
standard for MSCs (15). It is possible that the cell source 
might affect MSC efficacy, although standard methods have 
been described for the isolation, culture, and characterization 
of MSCs. Bochev et al. have also compared the anti-
inflammatory effects of human ASCs and human BMSCs, 
based on immunoglobulin (Ig) produced by peripheral 
blood mononuclear cells (PBMCs) after stimulation using 
pokeweed mitogen (16). The Ig production was significantly 
reduced by MSC treatment, with ASCs providing greater 
suppression than BMSCs. However, Elman et al. reported 
that BMSCs appeared to provide greater anti-inflammatory 
effects and improved mouse survival better than ASCs 
in a model of LPS-induced systemic inflammation (17). 
Thus, it is difficult to conclude which MSC source is the 
most appropriate, although human ASCs appear to be 
more genetically and morphologically stable in long-term 
cultures, with a lower senescence ratio, a higher proliferative 
capacity, and a greater retention of differentiation 
potential  (vs.  human BMSCs) (18).  Furthermore, 
approximately 500-fold more ASCs can be obtained 
from adipose tissue than the amount of BMSCs isolated 
from an equivalent amount of bone marrow stroma (19).  
Therefore, ASCs may be easier to obtain and a more 
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effective option for anti-inflammatory therapy. Moreover, 
Bernardo et al. suggested that ASCs could be clinically 
used without expansion after harvest (20), which would 
presumably be safer and more effective than cultured cells 
used after ex vivo manipulations that potentially lead to 
the accumulation of genetic and epigenetic alterations. It is 
possible that Jung et al. might have observed substantially 
better improvements in lung function and inflammatory 
cytokine levels if they had used freshly prepared human 
ASCs in their model.

In conclusion, the results reported by Jung et al. suggest 
that human ASCs may be useful for treating ARDS in a 
mouse model (based on improvement in the lung injury 
score), which might make them a readily accessible option 
for clinical applications. However, that study was limited by 
the fact that the ASCs were used after several days of culture 
expansion, and the biochemical assays were performed 
relatively late after ARDS induction. These issues may 
have reduced the efficacy of ASCs as a therapeutic strategy 
for ARDS, and further studies are needed to clarify the 
potential clinical utility of human ASCs for treating ARDS.
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