
Page 1 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(8):566 | http://dx.doi.org/10.21037/atm.2020.02.164

Induced pluripotent stem cells for the treatment of liver diseases: 
challenges and perspectives from a clinical viewpoint 

Eugenia Pareja1,2, M. José Gómez-Lechón1,3, Laia Tolosa1

1Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; 2Unidad Hepatobiliopancreáctica, Hospital 

Universitario Doctor Peset, Valencia, Spain; 3CIBERehd, ISCIII, Madrid, Spain

Contributions: (I) Conception and design: L Tolosa; (II) Administrative support: None; (III) Provision of study materials or patients: E Pareja, L 

Tolosa; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: L Tolosa; (VI) Manuscript writing: All authors; (VII) 

Final approval of manuscript: All authors.

Correspondence to: Laia Tolosa, PhD. Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe Av Fernando Abril 

Martorell 106, 46026-Valencia, Spain. Email: laiatolosa@hotmail.com. 

Abstract: The only curative treatment for severe end-stage liver disease (ESLD) is liver transplantation 
(LT) but it is limited by the shortage of organ donors. The increase of the incidence of liver disease has led 
to develop new therapeutic approaches such as liver cell transplantation. Current challenges that limit a 
wider application of this therapy include a limited cell source and the poor engraftment in the host liver of 
cryopreserved hepatocytes after thawing. Induced pluripotent stem cells (iPSCs) that can be differentiated 
into hepatocyte-like cells (HLCs) are being widely explored as an alternative to human hepatocytes because 
of their unlimited proliferation capacity and their potential ability to avoid the immune system. Their large-
scale production could provide a new tool to produce enough HLCs for treating patients with metabolic 
diseases, acute liver failure (ALF), those with ESLD or patients not considered for organ transplantation. 
In this review we discuss current challenges for generating differentiated cells compatible with human 
application as well as in-depth safety evaluation. This analysis highlights the uncertainties and deficiencies 
that should be addressed before their clinical use but also points out the potential benefits that will produce a 
great impact in the field of hepatology. 
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Introduction

Despite the fact that current medical and surgical therapies 
are available for early stages of liver diseases, a significant 
clinical need exists for alternative treatments of intractable 
liver diseases. Cell-based therapies are being developed as 
promising tools, alternative to liver transplantation (LT), 
to treat degenerative disorders, inborn hepatic metabolic 
diseases and organ failure (1-5). The earliest attempts 
made in this field involved the transplantation of allogeneic 
hepatocytes which is hindered by the increasing shortage of 
suitable donor livers for hepatocyte isolation as well as by 
the insufficient functional quality and great susceptibility 

to cryopreservation and thawing of hepatocytes (2,3,6). 
Therefore, the major challenge for hepatic cell therapy is 
to identify alternative reliable cell sources, equivalent to 
hepatocytes, expandable, bankable and engraftable, which 
can be derived from reproducible methods, thus making 
them available for transplantation to large numbers of 
patients. Current research on induced pluripotent stem cells 
(iPSCs), which are adult cells that have been genetically 
reprogrammed to an embryonic stem cell (ESC)-like state, 
point to these cells as an appealing option to face these 
challenges. iPSCs possess the unique properties of hepatic 
differentiation, self-renewal and in vitro expansion which 
make them a very promising cell source for generating 
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large-scale production of suitable functional hepatocyte-
like cells (HLCs) (1,4,7,8). Large numbers of HLCs 
can be made readily available to any patient on an as-
needed basis for hepatic cell-based therapies, both for 
programmed treatment for liver-based metabolic disorders 
and emergency use in patients with acute liver failure (ALF), 
acute-on-chronic liver failure (ACLF) or end-stage liver 
disease (ESLD) (4,7-10). 

On the other hand, using patient-specific iPSCs 
has been made available likely solving the problem of 
allogeneic immune rejection. In this case, ex vivo gene-
corrected patient-specific iPSCs lines raise the possibility of 
autologous transplantation for the treatment of hereditary 
liver metabolic diseases (10,11). Ideally, these cell lines 
should be highly viable preparations with robust hepatic 
function and engraftment capacity. Recent preclinical 
studies have shown that transplantation with HLCs 
differentiated from human iPSCs ameliorated inherited 
liver diseases (12,13) and ALF (14). Nonetheless, critical 
aspects to be addressed in clinical trials are long-term safety, 
tolerability, efficacy as well as the tumorigenic potential of 
the iPSC-derived cell based treatments to define the target 
patient and standardize the protocols. 

This review focuses on the different strategies recently 
described to reprogram somatic cells to the pluripotency, 
their differentiation to HLCs and their potential use to 
provide a real prospect of bringing cell-based therapy for 
liver diseases in two main areas: to make unlimited numbers 
of HLCs available to extend treatments to many patients 
and to treat hereditary liver diseases using autologous 
genetically corrected HLCs (Figure 1). The review also 
reflects about challenges and uncertainties of their clinical 
application and the needs of clinicians (Figure 2).

iPSC derivation 

Based on the findings showing that Oct3/4, Sox-2 and 
Nanog play essential roles in the maintenance of early 
embryos and embryonic stem cells (ESCs) (15-17), 
Yamanaka’s group selected a pool of 24 genes to identify 
the reprogramming factors that could induce pluripotency 
in somatic cells. Finally, they selected the now known as 
Yamanaka factors (Oct3/4, Sox2, c-Myc and Klf-4) as they 
were able to successfully reprogram mouse fibroblasts 
into iPSCs (18). A year later they reprogrammed human 
fibroblasts into iPSCs by using the same combination of 
factors (19).

Since Yamanaka reported the first generation of 

iPSCs from somatic cells, two major aspects have been 
continuously under investigation: methods to induce 
somatic cell reprogramming and which somatic cells to 
reprogram. Currently, iPSCs can be obtained from different 
cell sources and through distinct strategies that have been 
reviewed in detail (8).

Cell sources for iPSCs derivation

Although initially iPSCs were obtained from fibroblasts, 
distinct cell sources have been used to derive them [for a 
review (20,21)]. Skin fibroblasts are simple to culture and 
easily accessible with a skin biopsy, although, since it is an 
invasive process, alternative cell sources have been explored. 
These alternative cells such as blood cells, urine cells, hair-
follicle derived keratinocytes, menstrual blood cells or 
amnion cells have been derived into iPSCs.

Reprogramming methods

Important efforts have been made to understand the 
reprogramming process involved in the generation of 
iPSCs [reviewed by (20)]. The first method, used for the 
introduction of reprogramming transcription factors 
to human differentiated cells, was based on retroviral 
vectors (19), although, upon transduction, retroviral vectors 
are randomly integrated into the host genome, increasing 
the risk of tumor formation, which would be unsuitable for 
the generation of clinical-grade iPSCs. 

For the future clinical applicability of iPSCs-derived 
cells, the development of non-integrative iPSCs derivation 
methods that do not introduce genetic changes is 
required. Among these the use of adenoviral vectors (22) 
or TransGen-free induction of human pluripotent stem 
cells (PSCs) by the vectors derived from Sendai virus (23)  
have been explored. The use of Sendai virus involves viral 
particles raising questions about the safety of the generated 
iPSCs. Due to this, others have focused their research on 
DNA-free and viral-free protocols based on the introduction 
of reprogramming-inducing molecules into cells such as 
recombinant proteins (24), microRNA (25), mRNA (26)  
or small  molecule-mediated reprogramming (27).  
It has recently compared the efficiency of different RNA-
based footprint methods through the use of self-replicating 
RNA (srRNA) and the use of synthetic mRNA, showing 
that srRNA had a better efficiency indicating that could 
be an appropriate approach for clinical applications (28). 
It should be also considered that direct reprogramming of 
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Figure 1 Summary of the key aspects to consider about the use of iPSCs-derived HLCs in the treatment of liver disease. For the treatment 
of liver diseases with HLCs derived from iPSCs there are several steps to consider from the iPSCs obtaining to the final used in selected 
patients with metabolic diseases or other liver diseases. HLC, hepatocyte-like cell; iPSCs, induced pluripotent stem cells.
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somatic cells into HLCs using lentiviral vectors (29,30) has 
been proposed.

On the other hand, recently, human primary hepatocytes 
have been reprogrammed into a population of proliferating 

bipotent cells with regenerative potential by adding 
two small molecules and HGF, providing a new tool for 
personalised cell-based therapy (31). Finally, it should 
be considered that the iPSCs derivation efficiency of 

Figure 2 Summary of the needs of clinicians for the application of iPSCs for the treatment of liver disease. After considering the critical 
steps for the obtaining of hepatocyte-like cells from pluripotent stem cells, safety issues should be addressed before its translation to the 
clinics. iPSCs, induced pluripotent stem cells.
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all the proposed methods is low. Improving both the 
reprogramming efficiency and safety using integration-free 
and virus-free methods under feeder-free conditions is the 
most promising step in the safe translation of iPSCs to their 
clinical application in personalized regenerative medicine.

iPSCs correction 

The gene correction of patient-specific iPSCs should be 
applied for patients with monogenic inherited metabolic 
diseases such as Crigler-Najjar disease or alpha-1 antitrypsin 
(A1AT) deficiency. The most widely used tools for genome 
editing are zinc-finger endonucleases (ZFNs), transcription 
activator-like effector nucleases (TALENs), and clustered 
regularly interspaced short palindromic repeat (CRISPR)/
CRISPR-associated system (Cas9) [reviewed by (32)]. After 
gene editing, iPSCs could be differentiated into HLCs and 
then transplanted. In this sense, it has been described the 
gene correction of A1AT deficiency in iPSCs by combining 
two technologies: ZFNs and PiggyBac technology which 
resulted in the in vitro restoration of the structure and 
function (33). 

In another study, researchers generated iPSCs from 
a patient with Wilson’s disease (with a mutation in the 
ATPase Cu2+ transporting beta polypeptide gene) and 
corrected them using a lentiviral vector. These corrected 
iPSCs differentiated into HLCs showed copper metabolism 
capacity (34). In a study of Omer et al. [2017] the CRISPR/
Cas9 system was used to correct a LDLR mutation of 
iPSCs derived from a patient with hypercholesterolemia. In 
this case, the genetic correction restored LDLR-mediated 
endocytosis (35).

The efficacy of gene editing has shown the potential for 
the application of patient-derived iPSCs for the correction 
of underlying genetic defects that could allow the autologus 
transplantation and, thus, reduce problems of immune 
rejection.

iPSC differentiation, characterization and safety 

PSCs, including both ESCs and iPSCs can differentiate 
into all cell types of the body and are a promising 
tool for regenerative medicine, drug discovery and 
development studies. Great advances have been made to 
differentiate initially ESCs and now also iPSCs toward the 
hepatocyte lineage although the maturation levels and the 

characterization of HLCs vary in different studies.

Differentiation of iPSCs into HLCs

The generation of HLCs from iPSCs is a complex process. 
Although several protocols have been defined for the 
generation of HLCs from PSCs, this process includes 3 
basic stages by administering different soluble factors (i.e., 
growth factors) in a time-dependent manner to mimic 
ontogenetic liver development (9,36). The first step includes 
endoderm induction by Activin A, BMP4, LY294002 and 
Wnt3a. The second step uses as inducers FGF2, FGF4 and 
BMP4 to produce hepatoblast cells (hepatic specification), 
whereas the final step is hepatic differentiation and 
maturation (using HGF and oncostatin M). For clinical 
applications HLCs need to be produced in a large scale and 
different bioreactors have been proposed (1,37).

In addition to the use of growth factors, some groups 
have proposed the use of microRNAs (38) or small 
molecules (39) to differentiate PSCs into HLCs as a 
simple, highly efficient, and cost-effective alternative for 
generation. On the other hand, different improvements of 
the standard protocols such as co-culture with other cell 
types (40), genetic manipulation (41) and/or culture in 3D 
configuration (42) trying to simulate what happens in vivo 
have been also proposed. Although even a 2-fold increase 
in some of the functions has been demonstrated with some 
of these new methods (42), HLCs-derived iPSCs are closer 
to a fetal than adult hepatocyte phenotype and in other 
cases there is a lack of appropriate controls that allow a 
clear conclusion about the results. Moreover, it has been 
described that the origin of the donor cells and not the 
derivation method can determine the variation in hepatic 
differentiation (43), which really complicates the therapeutic 
use of iPSCs-HLCs because the quality of HLC could be 
different depending on the donor.

Characterization of HLCs

Hepatocytes are the most predominant cell type of the adult 
liver mass and perform essential functions, including plasma 
protein secretion, ureogenesis, metabolic homeostasis or 
detoxification (37). Figure 3 summarizes important hepatic 
specific functions that HLCs should exhibit although, 
depending on the disease to be treated with these cells, the 
studies may focus on the lack of a specific liver function. 
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For example, in the case of the treatment of patients 
receiving extensive medication, clinicians may focus on 
CYPs activities and drug-metabolism enzymes, whereas for 
the treatment of inborn metabolic errors, characterization 
should focus on the specific lacking function. Although 
numerous studies have demonstrated that iPSCs can be 
differentiated into HLCs, the characterization of the cells 
sometimes is only based on the analysis of the expression 
of few hepatic markers by means of immunofluorescence 
or RT-PCR and do not include functional analysis. Before 
their clinical use, specific functional assays should be also 
routinely included and standardized. Moreover, it should 
be also considered that cells should be phenotypically stable 
over a long period and safe before being applied clinically (1)  
and that in vivo maturation is expected (44), which may 

compensate the lack of a fully mature phenotype.

Safety assessment of HLCs

Complete characterization of the inherent immunogenicity 
profiles of iPSCs is also essential to define the best 
immunosuppressive strategy to favour their homing and 
engraftment (45). On the other hand, genetic modifications 
have profound functional implications and promote 
tumorigenic qualities, such as increased proliferation or 
higher frequencies of tumor-initiating cells (10). In this 
sense, the development of well-defined methods to reduce 
the expression of oncogenic genes in iPSCs is necessary to 
reduce the tumorigenicity of transplanted cells (46). The 
prospective removal (e.g., removal before transplantation) of 

Figure 3 Functionality of mature hepatocytes. Hepatocytes present a poligonal shape and can be polynucleated. They present different 
hepatic specific functions such as: (I) drug metabolism through phase I (CYP P450), phase II and phase III enzymes; (II) lipid metabolism; 
(III) gluconeogenesis; (IV) bile production and transport; (V) bilirubin conjugation and excretion; (VI) ureogenesis; (VII) synthesis and of 
proteins such as albumin; (VIII) production of hepatic clotting factors; (IX) metabolism of aminoacids; and (X) cholesterol transport. There 
are specific functions with clinical relevance because the lack or alteration of some specific hepatic enzymes such as OTS, UT1A1 or FAH 
produce metabolic congenital diseases that have been treated with liver cell transplantation (in bold).

Transport 
proteins

5. Bilrubin conjugation

UGT1AI

4. Bile acid 
production and 
transport

8. Clotting factors production 
Factors I,V, VII, lX, X and 
fibrinogen

9. Aminoacid 
metabolism

 FAHV

6.Urea
cycle  

OTC, CP51

7.Protein 
synthesis and 
secretion

Albumin

10. Cholesterol 
transport LDLR

3. Gluconeogenesis 
G6Pase

2. Lipid 
metabolism

1. Drug metabolism

CYPs Phase II

Phase III



Annals of Translational Medicine, Vol 8, No 8 April 2020 Page 7 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(8):566 | http://dx.doi.org/10.21037/atm.2020.02.164

tumorigenic cells using surface antigens has been proposed 
and would provide the highest level of safety (47). Finally, 
the safe distribution of the cells should be also assessed and 
it has been proved in different animal models. 

Challenges of HLCs derived from iPSCs 

Long-term safety, tolerability and efficacy of iPSCs-derived 
hepatic cell-based treatments are key issues to be addressed 
prior to the translation of cell therapy to the clinical 
practice. Human iPSCs technology is still in its infancy 
and a number of hurdles need to be overcome before these 
cell therapies become a reality. Reprogramming itself can 
induce both genetic and epigenetic defects in iPSCs (48), 
and it is possible that those defects can directly or indirectly 
promote immunogenicity and tumorigenicity in vivo, raising 
safety concerns. In fact, it has been recently reported that 
the genomic translocation detected in the iPSCs will create 
fusion proteins and new immunogenic determinants (49).  

Immunogenicity of HLCs derived from iPSCs

Theoretically, the autologous HLCs derived from a patient 
should be immune tolerant without any concern of immune 
rejections after transplantation into the same patient (50). 
However, it has been reported that even syngeneic iPSC-
derived cells can be immunogenic in syngeneic hosts by 
using a teratoma transplantation model (51).

On the other hand, it has been shown a differential 
immune recognit ion between di f ferent ia ted and 
u n d i f f e r e n t i a t e d  p l u r i p o t e n t  c e l l s  ( 1 1 , 4 6 , 5 2 ) . 
Undifferentiated, but not differentiated, PSCs have been 
reported to possess immune privilege properties, and 
would thus be less susceptible to immune recognition than 
their derived differentiated cell types (46,52). iPSCs are 
epigenetically abnormal and inherited epigenetic signature 
of parental cells could explain abnormal expression of 
immunogenic proteins expressed during the differentiation 
of iPSCs (53). In fact, undifferentiated iPSCs show a lower 
expression of MHC class I, and the complete absence of 
MHC class II antigens compared to their differentiated 
progeny (54). Generation of normal HLA-typed iPSCs 
banks homozygous for HLA-A, -B, and -DR, the most 
important loci to match, could be a solution to use 
compatible donors and reduce allograft rejection (55). 
Nevertheless, further in vivo studies will be needed to 
determine to what extent appropriately and terminally 
differentiated pluripotent cell lineages will induce the 

immunoresponse after transplantation (10).  

Tumorigenicity and safety of gene editing

Genome editing has evolved to address the need for 
improving the efficiency and specificity of traditional 
g e n o m e  m o d i f i c a t i o n  a c h i e v e d  b y  h o m o l o g o u s 
recombination. However, due to the possibility of off-
target effects (edits in the wrong place) and mosaicism 
(when some cells carry the edit but others do not), safety is 
of primary concern. An important safety issue for genome 
editing is the accurate assessment of off-target cleavage by 
endonucleases and the effects of non-specific activity (56).  
The enhancement to efficiency and safety of genome 
editing will bring cell-based therapies closer to the clinic for 
patients with inborn metabolic diseases (56).

In this context, tumorigenicity is a serious bottleneck 
for developing individualized hepatic cell therapy using 
patients’ own or compatible banked iPSCs (48,49). The 
intrinsic qualities of self-renewal and pluripotency that 
make PSCs so therapeutically promising are also responsible 
for an equally fundamental tumorigenic potential. The 
induction of pluripotency by reprogramming somatic cells 
has been linked to tumorigenic transformation by creating 
genomic aberrations at chromosomal and sub-chromosomal 
stochastically generated levels (57). This genomic instability 
of iPSCs can create new immunogenic determinants like 
the tumor antigens developed in cancer cells (48,49). The 
potential risk of tumorigenicity has been evaluated in recent 
years in small and large animal studies. Ultimately, genetic 
modifications can promote tumorigenic qualities, such as 
increased proliferation, growth factor independence and 
higher frequency of tumor-initiating cells.

Protocols for the elimination of the remaining PSCs 
in the HLCs cultures have been described but the risk of 
teratoma formation after transplantation remains and could 
be an obstacle for clinical grade manufacturing (58).

Engraftment of transplanted cells

Engraftment potential of iPSC-HLCs, both short- and 
long-term, is another relevant key issue associated with 
the success of hepatic cell therapy. The proliferative 
advantage of transplanted native hepatocytes over resident 
hepatocytes to efficiently repopulate the liver has been 
shown in a number of animal models (59). Concerns 
associated with safety and engraftment potential of iPSC-
HLCs are currently being addressed using these animal 



Pareja et al. iPSCs for liver disease

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(8):566 | http://dx.doi.org/10.21037/atm.2020.02.164

Page 8 of 13

models. Among the many strategies aimed at increasing 
homing, engraftment and proliferation of transplanted cells, 
partial reversible embolization of the portal vein (60) and 
irradiation of the native liver could be applicable to human 
iPSC-HLCs therapy (61).  

Large-scale and GMP production of HLCs

Although stem cell technology offers multiple treatment 
options, important technical advances are necessary before 
the clinical application of HLCs derived from iPSCs. In 
this sense, the starting material should be obtained and 
processed under good manufacturing practices (GMP) 
guidelines (62). Additionally, maintenance, expansion and 
differentiation of iPSCs will require GMP compatible 
conditions. Generation of HLA-typed iPSCs banks will 
lead to minimize the risk of allograft rejection. Finally, 
challenges remain to generate large quantity of well-
differentiated cells to achieve enough material for 
transplantation and the obvious tremendous cost of getting 
enough tissue mass to maintain the hepatic functionality (63)  
On the other hand, a total of 2.0×108 viable cells/kg for each 
patient has been proposed as an optimal and safe dose in 
humans (64), but, considering that most of the patients are 
children and a possible future routine use, the costs would 
be reduced. Alternatively, it has been proposed the use of 
rats as bioreactors to get the sufficient amount of cells (65). 

Potential therapeutic use of iPSCs in liver 
diseases 

The demand for LT outweighs supply which leads to an 
increased morbidity and mortality among waiting-list patients. 
Cell-based liver therapies are envisaged as a useful therapeutic 
option to replace or complement whole organ transplantation 
by recovering and stabilizing the lost metabolic function for 
acute and chronic liver diseases (Table 1). However, success 
is hampered by the scarce availability of liver tissue to 
isolate good-quality cells, the low engraftment capability 
of the cells into the host liver mainly due to the rejection 
of transplanted cells as well as the difficulties to monitor 
and predict rejection (64). Human iPSCs differentiated 
towards the hepatic lineage could establish the basis for 
producing autologous cell therapies that would avoid 
immune rejection but that would require gene correction 
and/or help to create biobanks of readily available 
HLCs for the emergency treatment of ALF. Table 1  
summarizes liver diseases susceptible to being treated with 

hepatic cell transplantation.

Inborn metabolic diseases

Liver-based inborn metabolic disorders are rare diseases 
characterized by defects in hepatic enzymes or proteins with 
metabolic functions, such as receptors or transporters. The 
management of patients with metabolic diseases is complex 
and LT may not always be the first therapeutic option in 
children due to invasiveness, recipient’s age or the need 
of lifelong immunosuppressive therapy (93,94). For those 
patients for whom the risks of LT are not justified, cell 
transplantation could be an appropriate therapeutic option 
to provide the missing liver function without replacing 
the whole organ. In this sense, hepatocyte transplantation 
has been used in pediatric patients with a number of 
inborn hepatic metabolic disorders (Crigler-Najjar disease, 
deficiencies in enzymes of the urea cycle, AAT1 deficiency) 
(93,94) with encouraging results.

Cell therapy for hereditary liver diseases with patient-
specific iPSC-derived HLCs would require gene correction 
before or after reprogramming. Patient-specific iPSCs 
are considered a promising alternative for an ex vivo gene 
therapy approach that could be used for cell therapy 
applications and curing diseases. Personalized cell 
therapy using iPSCs would likely avoid rejection, and 
thus immunosuppression, which would be an important 
advantage over LT and hepatocyte transplantation. 
However, the immunogenicity of iPSCs and their 
derivatives is still controversial (50,51). 

Other liver diseases

Hepatocyte transplantation has also been foreseen as 
a useful therapeutic approach for bridging patients to 
LT and is indicated for providing metabolic support 
during ALF and ACLF in which the only hope for 
survival for most patients is either LT, or facilitating 
liver regeneration of the native organ (93) (Table 1). 
Additionally, some patients suffering from ESLD, but 
with preserved liver function and no indication of LT 
could benefit from HLCs transplantation because cell 
therapy could delay disease progression and associated 
complications (95). Recently, the use of this strategy has 
been proposed to reverse the inflammation and fibrosis in 
non-alcoholic fatty liver disease, one of the commonest 
chronic liver diseases (96).

In these cases, time to make, mature and expand patient’s 
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cells into iPSCs and then into HLCs may be prohibitive 
to particularly ALF treatment (8). For this reason, an 
allogeneic source of HLCs should be prepared for and 
readily available for their use in the treatment of ALF or 
ACLF which would imply the use of immunosuppression as 
when human hepatocytes are transplanted.

Final remarks

There is an urgent requirement for an unlimited source of 
human hepatocytes for transplantation that could be solved 
by using HLCs derived from iPSCs. The current challenge 
in this field is to develop reliable processes to differentiate 
stem cells into functional and engraftable cells that exhibit 
phenotypic stability and with no risk of tumorigenicity. Key 
issues should be addressed  to improve clinical outcomes 
of hepatic cell therapy: (I) development of well-defined 
methods to generate iPSCs without viral integration and 
reduce the expression of oncogenic genes, (II) evaluation of 
unpredictable risks of using gene editing, (III) refinement of 
protocols for their complete and safe hepatic differentiation 
into HLCs comparable to their in vivo counterparts, (IV) 
expansion and production of cells under GMP conditions, 
(V) creation of iPSCs and HLCs biobanks, (VI) prospective 
removal (e.g., removal before transplantation) of tumorigenic 
cells through utilizing intrinsic cell properties, such 
as surface antigens, to minimize the tumorigenicity of 
transplanted cells, (VII) optimization and refinement of 
immunological strategies for transplant recipients, (VIII) 
defining preconditioning treatments of the recipient liver to 
enhance the engraftment and proliferation of donor cells, 
and (IX) development of non-invasive and accurate tracking 
or monitoring methods for cell survival and engraftment 
post-transplantation. Finally, such new strategies should 
be rigorously tested and validated in preclinical studies 
before they can be safely transferred to clinical practice with 
patients.
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