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An artificial intelligence model for the simulation of visual effects 
in patients with visual field defects
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Background: This study aimed to simulate the visual field (VF) effects of patients with VF defects using 
deep learning and computer vision technology.
Methods: We collected 3,660 Humphrey visual fields (HVFs) as data samples, including 3,263 reliable 
24-2 HVFs. The convolutional neural network (CNN) analyzed and converted the grayscale map of reliable 
samples into structured data. The artificial intelligence (AI) simulations were developed using computer 
vision technology. In statistical analyses, the pilot study determined 687 reliable samples to conduct clinical 
trials, and the two independent sample t-tests were used to calculate the difference of the cumulative gray 
values. Three volunteers evaluated the matching degree of shape and position between the grayscale map 
and the AI simulation, which was graded from 0 to100 scores. Based on the average ranking, the proportion 
of good and excellent grades was determined, and thus the reliability of the AI simulations was assessed.
Results: The reliable samples in the experimental data consisted of 1,334 normal samples and 1,929 
abnormal samples. Based on the existing mature CNN model, the fully connected layer was integrated to 
analyze the VF damage parameters of the input images, and the prediction accuracy of the damage type of 
the VF defects was up to 89%. By mapping the area and damage information in the VF damage parameter 
quintuple data set into the real scene image and adjusting the darkening effect according to the damage 
parameter, the visual effects in patients were simulated in the real scene image. In the clinical validation, 
there was no statistically significant difference in the cumulative gray value (P>0.05). The good and excellent 
proportion of the average scores reached 96.0%, thus confirming the accuracy of the AI model.
Conclusions: An AI model with high accuracy was established to simulate the visual effects in patients 
with VF defects.
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Introduction

The visual field (VF) is defined as the range of space that 
can be seen when one’s gaze is fixed. The upper side of the 
normal monocular VF is 56°, the lower side is 74°, the nasal 
side is 65°, and the temporal side is 91° (1). Apart from the 
physiological blind spot, the light sensitivity of each part in 
the whole VF is normal, and if VF defects occur, the light 
sensitivity of retina will reduce, or the VF dark spot will be 
observed, with the various types of VF defects only differing 
in distribution and depth (2). Many diseases can cause 
VF defects including those of glaucoma, the optic nerve 
and visual path diseases, retinopathy, and stroke, or other 
neurological diseases (3-5). The VF test is an important 
method to detect dysfunction in central and peripheral 
vision. Currently, the automated static threshold perimetry 
is commonly used in clinical practice, among which the 
24-2 strategy in Humphrey Field Analyzer (HFA) is the 
gold standard for the VF test (6-8).

In the past 5 years, with the increasing amount of 
experimental data and the enhancement of computer 
hardware, deep learning (DL) has made significant progress in 
the medical field (9). The application of DL in ophthalmology 
mainly includes the image classification and segmentation 
in optical coherence tomography (10) and the analysis and 
diagnosis of fundus photographs (11). DL is widely used in 
computer vision technology for image and video analysis, 
target automatic classification, object detection, and entity 
segmentation. As an essential technology for image processing, 
the convolutional neural networks (CNN) and its improved 
model, effectively solve the problem of limited training 
samples in the migration learning of the image field (12-15).

Currently, the study of DL in VF defects mainly focuses 
on diagnosis, classification, and prediction (16-20), but VF 
defect simulation has rarely been reported. Furthermore, 
many factors are required to determine the severity of 
patients’ VF defects, such as different statistical maps and 
VF indices, in addition to specific knowledge of fundus 
anatomy. Clinicians without HFA medical training may 
have difficulty understanding Humphrey visual field (HVF) 
test results, which may easily cause misdiagnosis. Therefore, 
an artificial intelligence (AI) model is needed to simulate the 
visual effects in patients with VF defects in real scenario.

We therefore used DL and computer vision technology 
to establish an accurate AI model and preliminarily 
simulated the VF effects of patients. This AI simulation 
will help clinicians to understand the HVF test and lay a 
foundation for relevant research and health education on 

visual impairment and rehabilitation.

Methods

The VF data used in this study was approved by the Ethical 
Review Committee of Shenzhen Eye Hospital Affiliated 
to Jinan University (approval number: 2019081301) and 
complied with all principles of the Declaration of Helsinki.

Participant and data preparation

All VF data were collected from Jinan University Affiliated 
Shenzhen Eye Hospital by using the HFA II (Carl Zeiss 
MediTech, Inc., Dublin, CA, USA) with the 24-2 strategy 
and the Goldmann size III target. HVF reliability indices 
with fixation losses less than 20% and false-positive errors 
are less than 15% were included following the criteria used 
in the HFA software. The training of the model parameter 
was completed using reliable samples that met the reliability 
indices. The resolution of the grayscale map in the HVF 
was set to 450*400 and then input as sample data for 
conducting batch meshing, as shown in Figure 1A,B. The 
grayscale map was needed to calculate the average degree of 
darkening of each grid to get the damage type parameters. 
Firs, we obtained a two-dimensional matrix by converting 
the image from the RGB model to the grayscale map; the 
value of each grid could then be calculated by the sub-
matrix with the following formula: 

 
[1]

M is the two-dimensional matrix, r is rows number of M, 
c is the number of the column of M. If M is the matrix of a 
completely black image, then any value in M is 0, and the 
calculation result of the formula is 0; if M is for a completely 
white image, then any value in M is 255, and the calculation 
result of the formula is 1. It can be seen that the smaller the 
value is, the more serious the VF damage level is.

The grayscale training model extracted the data from top 
to bottom and left to right. The mapping process is shown 
in Figure 2. The output result is the column vector. 

Neural network construction

In the training model of the grayscale map inherited from 
the Visual Geometry Group Network (VGGNet), we used 
the convolution and pooling layers in the VGG19 model 
(the 16 hidden layers in front of the VGG19 model) and 
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added two new full connection layers at the end of the 
model. The neural network is shown in Figure 3. 

The loss function of the model was designed to make the 
vector close to the real sample data value. In our model, we 
used a Euclidean distance formula to calculate the distance 
between the predicted vector data of the model and the 
corresponding sample vector data. The following formula 
shows the detail of the calculation: 

 
[2]

V' is the predicted vector data of the model, V is the 

sample vector data, and n is the result of the dimension 
value of the vector minus by one (since the dimension value 
of the vector is counted from 0). 

In the real vector, the more non-zero elements in the 
vector there are, the larger the deviation between the 
sample vector data and the predicted vector data will 
be. The improved model follows the Euclidean distance 
formula. The final distance is divided by the number of 
non-zero elements in the sample vector data; the updated 
formula is as follows:
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Approximately 10% of the reliable samples were 
randomly selected to test the model performance. The AI 
model predicted the damage parameters for each grid of the 
grayscale map and calculated the mean square error (MSE) 
of the predicted values and the grayscale values. Finally, 
the AI model test obtained the MSE in different damage 
parameter intervals.

Structure data transformation

Assuming V is the output vector data of the model, the 
index i element V[i] can get its x and y dimension value by 
the following formula:
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Figure 1 The grayscale map of 24-2 strategy and the grid processing to the grayscale map. (A) The grayscale map; (B) the grayscale map 
under grid processing. 

Figure 2 The vector mapping of the grayscale map.
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Where h is the height of the grid, and w is the weight of 
the grid, then the range-box of G<x,y> can be calculated by 
the following formula:

( ) { }, : , : , : , :start start a aArea G x y x x w y y h w w h h= ∗ ∗ [5]

Where xstart is the start value of the horizontal coordinate 
in the range-box, ystart is the start value of the vertical 
coordinate in the range-box, wa is weight value of the range-
box, and ha is height value of the range-box. Moreover, 
the range-box data can be obtained directly by the order 
number of vector with the following formula:

[6][ ]( ) ( ): , : 10 , : , :
10start start a a
iArea V i x w y i x h w w h h  = ∗ − ∗ ∗  

  

Ultimately, the quintuple data T(V[i]) can be obtained by 

the following formula:

[7]( ) [ ]: , : 10 , : , : , :
10start start a a
ix w y i x h w w h h level V i  ∗ − ∗ ∗  

  

In the quintuple data, the attribution of the “level” is to 
record the VF damage parameters in the corresponding grid. 
After model processing, the quintuple data sets can be retrieved 
from each input image to represent the damage status of the 
VF, and can used for visual simulation in patients.

Visual simulation 

For the visual stimulation by mapping the VF damage 
parameters into the real scene image, we needed to 
transform the center point once the resolution of the real 
scene image was larger than that of the VF check result 
image (450*400). The definition of the center point is 
shown in Figure 4; h is the height value of the image, w is 
weight value of the image, and the coordinate of the center 
point is (w/2,h/2). The transformation process is shown in 
Figure 5; the VF check result image is the same as the center 
point of the real scene image after the transformation.

During the transformation of the center point, the 
attribution of xstart and ystart in the quintuple data will be 
changed while other attributions remain unchanged. 
Assuming h is the height value of the real scene image, w 
is the weight value of the real scene image, h' is the height 
value of the VF check result image, and w' is weight value 
of the VF check result image. The attribution of xstart and 
ystart in the quintuple data can then be recalculated by the 
following formulas:
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Figure 3 The structure of the neural network in the artificial intelligent model of our study. The blue part is the convolution layer, the 
yellow part is the largest pooling layer, and the red part is the fully connected layer.

Figure 4 The definition of the center point. Point C is the center 
point, and its coordinate value is (w/2, h/2).
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After the center point transformation for all quintuple 
data, the VF check result image and the real scene image 
had the same center point, and we then resized the range 
of the area represented by the quintuple data. Assuming r 
is the view range value of the real scene image and r' is the 
view range value of the VF check result image, the resize 
rate can be calculated by the following formula:

' ' ',rate
h w rresize MIN
h w r

   = ∗   
     

[10]

We then used the value to recalculate the attributions in 
quintuple data by the following formulas:

( )1
2start start rate rate
wx x resize resize= ∗ + − ∗

 

[11]

( )1
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hy y resize resize= ∗ + − ∗  

[12]

a a ratew w resize= ∗  
[13]

a a rateh h resize= ∗
 

[14]

After the recalculation for the attributions in quintuple 
data, we created an initial matrix, with each value of the 
matrix being 1. The three channels in the matrix are shown 
in Figure 6A. Next, we mapped the quintuple data into 
the matrix by filling the attribution value of “level” in the 
quintuple data into the corresponding place. We had two 
quintuples as follows:

{ }1 :1, :1, : 3, : 3, : 0.5start start a aT x y w h level=  [15]

{ }2 : 4, : 4, : 3, : 3, : 0.1start start a aT x y w h level=  [16]

The mapping results of these quintuples are shown in 
Figure 6B. We named the mapping result as the damage 
parameters matrix. After completing the visual contour 
construction based on VF damage parameters, we merged 
the VF damage parameters matrix with the matrix of the 
real scene image to simulate the VF damaged area in the 
real scenario. The damage parameters matrix in Figure 7A 
used Gaussian smoothing filtering. Since three channels 
were the same, one of them used a representative example; 
the process is shown in Figure 7B. After the filtering, the 
apparent boundary between the damaged area and the 
background was eliminated, while most of the background 
values remained “1”. The filtering process does not change 
the value of the VF normal area in the real scene image, as 
shown in Figure 7C.

Clinical validation

This study’s clinical validity was divided into two parts: the 
pilot study and clinical trial. The pilot study mainly used 
the sample size estimation. In the pilot study, 10 groups of 
HVF grayscale maps were randomly selected from reliable 
samples of VF defects, and 10 groups of AI simulations were 
generated accordingly. The value of the gray value of the 
image ranged from 0 to 10: 0 indicated the VF was normal, 
and 10 indicated the VF was seriously damaged. The image 
was divided into 80 grids, and the gray value of each grid 
was calculated as follows: 

w ww’0 0

0 0

0
h h

h’

Figure 5 The transformation of the visual field check result to the real scenario. The real scenario image was transformed from the central 
point of the visual field check result to the real scenario image. VF, visual field.
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Figure 6 The visualization matrix of the visual field damage area. (A) 8*8 RGB matrix; (B) matrix filled by quintuples.

  

[17]

M is a two-dimensional pixel matrix of the grayscale 
expression mode of the grid, r is the number of rows of the 
matrix, and c is the number of columns of the matrix. After 
calculating the cumulative gray value of these images, SPSS 
25.0 was used to test the statistical difference between the 
HVF grayscale map and AI simulations. The sample size in 
the clinical trial was calculated by using the following two-
sample mean comparison formula:

( ) 2

2
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[18]

n1 and n2 are the required contents of the two samples, 
respectively. δ is the difference between the population mean 

values, σ is the population standard deviation, and uα and uβ are 
the u values related to the detection level α and type II error 
probability β (the unilateral test level α is 0.05, and β is 0.1). 
The clinical trial was divided into two parts: the comparison 
of the cumulative gray value and the analysis of the shape-
position matching degree. After the pilot study calculated the 
sample size, the clinical trial was constructed to be a double-
blind and equivalence analysis. The HVF grayscale maps and 
AI simulations were randomly selected as the control group 
and the test group from the reliable sample data of VF defects. 
After using the same method as the pilot study to calculate the 
cumulative gray value of the two groups, the two independent 
samples t-test were used to test whether there was a statistical 
difference between the control group and the test group. In 
the clinical trials of the shape and position matching degree, 
we enrolled three ophthalmologists as volunteers (Wenwen 
Ye, Xuelan Chen, and Hongli Cai) with normal VF. The 
volunteers were asked to score the shape and position between 
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Figure 7 The Gaussian smoothing filtering in the visualization matrix of the visual field damage area. (A) The damage parameter matrix; (B) 
Gaussian smoothing filtering process detail; (C) the merging process. The area marked with red color in the result shows the damaged area, 
and the area marked with green color shows the normal area.

the two groups from 0 to 100, with 0 indicating a complete 
mismatch, and 100 indicating a perfect match. The average 
scores of three volunteers were calculated in each group of 
images and divided into four levels as follows: 0–25, unfit; 

26–50, poor; 51–75, good; 76–100, excellent. After the group 
of images was scored, the ratio of the four levels was calculated, 
and the ratio of the good and the excellent was considered the 
shape and position matching rate.
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Results

We collected 3,660 VFs of the 24-2 strategy for AI model 
training. Among them, the reliable samples consisted of 
1,334 normal VFs and 1,929 VF defects that met the criteria 
of the reliability indices (Table 1).

In the process of AI model training, we first divided the 
grayscale map into 80 equal-sized grids according to the 
model algorithm and performed feature extraction analysis 
on each grid to obtain feature parameters. The feature 
parameters were then calculated by each grid to generate 
vectors as intermediate outputs. Finally, the area coordinates 
and VF damage information were converted into the result 
vectors. Since each grid of the grayscale map had no fixed 
features, assigning them could not be done directly. By 
calculating the average degree of darkening in each grid, the 
damage type parameter could be obtained.

The performance of the AI model was validated, and the 
results of 311 grayscale map test samples were predicted. 
The MSE of the damage parameter interval in the predicted 
values and the grayscale values are shown in Table 2. The 
MSE in the (0.75, 1) and (0, 0.25) intervals was less than 
that in the (0.5, 0.75) and (0.25, 0.5) interval.

In computer vision processing, the area and damage 
information in the VF damage parameter quintuple data set 
were mapped into the real scene image, and the darkening 
effect was adjusted according to the damage parameter; the 
visual effects in patients were thus simulated into the real 

scene image. After constructing the visual contour based on 
the VF damage parameter, the visualization matrix of the 
VF damaged area and the real scene images processed by 
the Gaussian smoothing filter were merged.

The grayscale map of VF defects was input into the 
model, and the real scene image was selected from a stairs 
picture. After processing by computer vision technology, 
the AI model preliminarily simulated the monocular visual 
effects in patients with VF defects, as shown in Figure 8.

Clinical validation results

The SPSS statistical results in the pilot study are shown 
in Table 3. After statistical analysis, the Levene Variance 
Equality Test indicated that the two groups had the same 
variance (F value =0.174, P=0.782), and two independent 
samples t-test indicated that there was no statistical 
difference between the groups (t=0.379, P=0.709). Based 
on the pilot study, the overall mean difference δ was taken 
as 13, and the standard deviation of the AI simulations was 
used instead of the total standard deviation σ=74. After 
checking the u-value list (uα=1.96. uβ=1.282), the sample size 
of the control group and the test group was 682.

The SPSS statistical results of the clinical trial are shown 
in Table 4. The cumulative gray values between the HVF 
grayscale map and the AI VF simulation were similarly 
analyzed, and the difference was not statistically significant. 
After the evaluation was complete, each group’s average 

BA

30

Figure 8 The artificial intelligence model to simulate the visual effects of patients with visual field defects in the real scenario. (A) The 
grayscale map; (B) the simulation of visual effects of patients with visual field defects in the real scenario.
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score was divided into four groups. The proportion of 
excellent and good levels was 96.0%, as shown in Table 5.

Discussion

We developed an AI model based on the grayscale map 
in the 24-2 VF strategy by using DL and computer vision 
technology. In the real scenario, the AI model could 
preliminarily simulate patients’ monocular VF effects of 
24°, in which the nasal VF extended to 30°.

VF defect diseases can severely impact patients’ quality 
of life (21), and glaucoma, a type of this condition, has 
become the second most common eye disease in the world 
even when over half of the glaucoma patients in developed 
countries are estimated to have not been diagnosed (22).  
The prevalence of glaucoma in China is about 3%. 
However, 80% of glaucoma patients are misdiagnosed, 
especially in rural areas (23-25). Therefore, the VF test 
is an important indicator, one version of which, HFA, is 
commonly used as perimetry to diagnose and observe VF 
defects (26-28).

In this study, we used the 24-2 strategy in HFA, in which 
the nasal side extends to 30° of VF. Other research has 
used the 30-2 strategy to study VF defects (16), in which 
the depth and range of the VF defects would be more 
severe than the 24-2 strategy because of the longer test 
time, potentially causing psychological fatigue and visual 
stress (29). Thus, many medical institutions regard the  
24-2 strategy as the standard procedure because of the 
minimal diagnosis time involved (30). 

In our study, the grayscale map was chosen to train the 
AI model. For many clinicians who have not received any 
HFA-related training, they have difficulties in diagnosing 
the VF by analyzing the statistical chart in HVF test results. 
The threshold values reflect the decibel sensitivity at each 
tested point, which cannot directly and quickly explain 
the test result. The total deviation map is mainly used to 
correct the patient’s age factor, and the pattern deviation 
map corrects the effects of refractive interstitial opacity and 
other conventional VFs (31).

The grayscale map was based on the actual light 
sensitivity value of each tested point in the HFA. The 
grayscale map can intuitively reflect the VF test results 
by converting the light threshold into grayscale (32). The 
grayscale map can be used to diagnose the VF defects of 

Table 1 Sample data 

Sample Number 

Total sample

Reliable 3,263

Unreliable 397

Reliable sample

Normal VFs 1,334

VF defects 1,929

VF, visual field.

Table 2 Mean square error of the damage parameter interval 

Damage parameter interval Mean square error

(0.75, 1) 0.0083

(0.5, 0.75) 0.0104

(0.25, 0.5) 0.0116

(0, 0.25) 0.0079

Mean value 0.00955

Table 3 Statistical results of pilot study

Group
Case 

number
Mean

Standard 
deviation

t P

AI simulations 10 123.80 74.38 0.379 0.709

Grayscale map 10 137.10 82.46

Table 4 The clinical trial statistical results

Group Case number χ±SD t P

Test group 682 69.97±103.43 1.317 0.188

Control group 682 77.77±114.87

Table 5 The evaluation results of volunteers in four levels

Score level N (%) (n=682)

Unfit 9 (1.3)

Poor 18 (2.6)

Good 40 (5.9)

Excellent 615 (90.2)
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patients more quickly and intuitively, and thus the clinician 
without HFA training can also have a preliminary judgment 
on the VF test result. The VF defects in glaucoma are 
irreversible, but the patient may not perceive the monocular 
VF change due to the binocular compensation (33). The 
grayscale map can help clinicians to diagnose the patient’s 
visual condition in good time, and to prevent the possible 
delay of patient’s treatment. 

We used the VGGNet network structure to build our AI 
model, which was a CNN developed by researchers at the 
Visual Geometry Group of Oxford University and Google 
DeepMind (34). VGGNet has two structures: VGG16 and 
VGG19. Compared to traditional CNN, the application 
of VGGNet has a profound influence on DL (35). VGG19 
adopts the alternating structure of multiple convolutional 
layers and nonlinear activation layers, which improves the 
network depth and extracts image features more effectively 
than a single convolutional layer structure (36,37). Since 
the image in each grid of the grayscale map has no fixed 
features, it cannot be directly assigned. By calculating the 
average gray values in each grid, the damage type parameter 
can be obtained. After the construction of the AI model, 
visual processing is required to transform the data into the 
real scene. After the visual contour construction based on 
VF damage parameters was completed, the visual matrix 
of the VF damaged area and the real scene image were 
required to be processed with a Gaussian smoothing filter. 
If smoothing is not performed in AI simulations, the image 
generated by the initialization matrix will have a distinct 
segmentation edge between the original background and 
VF damaged area, thus affecting the simulated effect after 
fusion (38-40).

After constructing the AI model, the model predicted the 
damage parameters of the grayscale map in the test sample 
and calculated the MSE between the predicted value and 
the real value. The MSE showed a downtrend in the (0.75, 1) 
and (0, 0.25) intervals (MSE =0.0083 and 0.0079) compared 
to the (0.5, 0.75) and (0.25, 0.5) intervals (MSE =0.0104 
and 0.0116). The results indicated that the AI model had a 
higher prediction accuracy in the normal VF and VF defects 
area in the grayscale map.

In order to test the AI simulation of the patient’s VF 
defects in the real scenario, we conducted the clinical 
validation of the AI model. There are very few comparisons 
of the cumulative gray values between the grayscale map 
and an AI simulation reported in the literature. Therefore, 
to ensure the sample size of this clinical trial, a pilot study 
was carried out to obtain sufficient statistical performance. 

In clinical trials, since the AI simulation is based on the 
HVF grayscale maps, the cumulative gray values have 
partial results if the statistical method uses the paired 
t-test. Therefore, using the two independent sample t-test 
is more in line with this clinical trial. After analyzing two 
independent sample t-test (t=1.317, P=0.188, P>0.05), 
the difference was not statistically significant. The results 
indicated that the patients with VF defects were consistent 
with the area of bright and shade between the AI simulation 
and the grayscale map. For validating the consistency of the 
shape and position between the grayscale map and the AI 
simulation, we enrolled three volunteers ophthalmologists 
to score the shape and position between the two groups. 
Background in ophthalmology and double-blind evaluations 
reduced the risk of bias (41). A total of 615 cases received 
excellent scores, and the combined rate of good and 
excellent grades reached 96%. The three ophthalmologists 
approved of our AI simulation. In the future, our AI 
simulations may help clinicians reduce the misdiagnosis of 
patients with VF defects in real practice. 

Our study has some limitations. The simulation of 
visual effects was performed only based on the patient’s 
VF test results and exclusive of other influencing factors 
such as visual acuity, color vision, and contrast sensitivity. 
Therefore, in a future study, we plan to add vision-
related data including vision, color vision, and contrast 
sensitivity for model training, thereby obtaining a more 
comprehensive visual function parameter.

Conclusions

In summary, based on the 24-2 strategy commonly used in 
the VF test, this study developed an AI VF model, which 
could simulate the visual effects of patients with VF defects 
in real practice; the monocular VF was 24°, in which 
the nasal extended to 30°. The AI simulation will help 
clinicians, patients, and patient families to understand the 
HVF test results. Our findings can help lay a foundation 
for subsequent research and the health education related to 
visual impairment and rehabilitation.
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