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Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancy 
worldwide. Accumulating evidences have highlighted the importance of transcriptome data during HNSCC 
tumorigenesis. The aim of this study was to identify significant genes as effective biomarkers for HNSCC 
and constructed miRNA-mRNA regulatory network for a more comprehensive understanding of the 
underlying molecular mechanisms.
Methods: A total of four independent microarrays conducted on HNSCC samples were downloaded 
from the Gene Expression Omnibus (GEO) and analyzed through R software. FunRich was applied to 
predict potential transcription factors and targeted genes of miRNAs. Protein-protein interaction (PPI) 
network and miRNA-mRNA regulatory network were constructed in Cytoscape. Additionally, the database 
for annotation, visualization, and integrated discovery (DAVID) was utilized to perform GO and KEGG 
pathway enrichment analyses. Validation of gene expression levels was conducted by online databases and 
qPCR experiments.
Results: A total of 35 and 193 differentially expressed miRNAs (DEMs) and mRNAs (DEGs) were 
screened out by the limma package in R. The interactive network of the overlapping DEGs presented 
three significant modules and ten hub genes (FN1, MMP3, SPP1, STAT1, LOX, CXCL5, CXCL11, ISG15, 
IFIT3, and RSAD2). Predicted target genes of DEMs were visualized in Cytoscape and six miRNA-mRNA 
regulatory pairs were identified. Further validation demonstrated the upregulation of SLC16A1 and 
COL4A1 in HNSCC.
Conclusions: We performed an integrated and comprehensive bioinformatics analysis of miRNAs and 
mRNAs in HNSCC, contributing to explore the underlying regulatory mechanisms and to identify genetic 
biomarkers and therapeutic targets for HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is listed 
as one of the most frequent malignancies all over the world 
and it was reported that approximately 500,000 new cases 
are diagnosed annually. In spite of the substantial efforts 
devoted to developing innovative and effective treatment 
methods for HNSCC, the survival rate of HNSCC patients 
stayed at 50% in the past 40 years (1). Therefore, in depth 
investigation of precise biomarkers for diagnosis and 
effective targets for treatment is especially valuable.

According to the newly displayed modern technologies 
such as microarray and next-generation deep sequencing, 
human genome codes have primarily been divided into two 
groups, namely messenger RNAs and non-coding RNAs. 
Non-coding RNAs represent novel regulatory layers in the 
transcriptional and post-transcriptional gene regulation. 
They influence gene regulation through multiple aspects, 
such as epigenetic regulation, transcription, and mRNA 
splicing (2). The high proportion and complexity of non-
coding RNAs in the genome made them significant 
factors in a good array of malignancies (3,4). MicroRNAs 
(miRNAs), single-stranded non-coding RNAs with around 
20 nucleotides in length, were reported to possess the 
ability of regulating gene expression. In most circumstances, 
miRNAs perform their functions by binding with the 
mRNAs of target genes post-transcriptionally (5). A 
multiple of studies have demonstrated the vital roles of 
miRNAs in various aspects of biological phenotypes, 
which may play indispensable roles in carcinogenesis (6). 
Furthermore, the tissue-specific property of miRNAs 
renders them comparatively accurate and effective 
biomarkers in the diagnosis, treatment, and prognosis of 
cancers. Recently, a series of tumor-promoting or tumor-
suppressive miRNAs have been implicated in HNSCC 
progression. For example, miR-300 was demonstrated to 
inhibit the EMT transition process by regulating twist in 
HNSCC (7). Also, miR-125b-1 dysregulation was verified to 
stimulate the pathogenesis and deterioration of HNSCC (8).  
In addition, some kinds of miRNAs were upregulated in 
HNSCC and acted as stimulators for tumor progression, 
such as miR-21 (9), miR-134 (10), and miR-196a (11), 
mainly by facilitating cell growth and promoting cell 
motility.

The miRNA-mRNA network is an innovative model 
for presenting gene expression regulation and representing 
complicated interactions between coding and noncoding 
RNAs. The ability of miRNA binding to mRNA constitutes 

an indispensable part in the underlying molecular 
mechanisms involving various physiological processes. 
Therefore, the integration and analysis of differentially 
expressed miRNAs (DEMs) and mRNAs (DEGs) through 
microarray data-based analysis is conductive to the 
discovery of diagnostic biomarkers and therapeutic targets. 
For example, by analyzing the interactive relationship of 
miRNA and mRNA in breast cancer, the study identified 
essential molecular markers that may facilitate the 
prognosis evaluation of breast cancer patients (12). Another 
study found out candidate miRNA-mRNA network that 
could be utilized to predict chemoresistance response in 
osteosarcoma (13). Moreover, a study provided a meaningful 
characterization of miRNA-mRNA co-expression network 
in chondrosarcoma and identified crucial miRNAs and 
mRNAs involved in chondrosarcoma carcinogenesis (14).

Although prior studies have detected some kinds of 
aberrantly expressed miRNAs that may mediate the 
tumorigenesis process of HNSCC, a majority of them 
were dependent on a relatively small sample size that may 
result in biased and unreliable results. In the present study, 
we applied multiple microarray datasets of HNSCC from 
Gene Expression Omnibus (GEO) and made a series of 
functional analyses. Investigating the expression pattern of 
miRNAs and mRNAs and identifying candidate miRNA-
mRNA regulatory pairs could be helpful for understanding 
the underlying regulatory mechanisms in HNSCC.

Methods

Overall design of the study

Firstly, an integrated analysis of three individual GEO 
datasets was performed by R software and identified DEGs. 
Then, selected DEGs underwent a series of further analyses 
including enrichment analysis, PPI network analysis and 
public database validation. Subsequently, DEMs were 
screened out and miRNA target genes were predicted by 
FunRich software. Significant miRNA-mRNA regulatory 
network was finally established and potential molecular 
regulatory mechanism was detected. More importantly, 
selected hub genes were verified by qPCR experiment 
conducted on HNSCC cell lines and clinical samples.

Microarray datasets

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo) is a web-accessible database with a collection of 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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gene expression datasets and platform records. In this study, 
four independent HNSCC microarrays were downloaded 
from GEO for differential expression analysis. The detailed 
information of each microarray was summarized in Table 1.

Identification of DEMs and DEGs from multiple datasets

DEMs and DEGs were selected by the limma package in 
R language with different criterions. P value <0.01 and 
|logFC| >1.5 were set as the threshold for DEGs. While 
those met the criteria of P value <0.05 and |logFC| >1.0 
were screened out as DEMs. Overlapping DEGs were 
identified through the intersection of the results from three 
individual GEO microarrays.

GO and KEGG pathway enrichment analysis

Gene ontology (GO, http://www.geneontology.org/) is 
a universally used bioinformatics tool for investigating 
functional relationships between gene products and 
predicting three main aspects: biological process (BP), 
cellular component (CC), and molecular function (MF). 
Kyoto Encyclopedia of Genes and Genomes (KEGG, 
http://www.genome.jp/kegg/) is a database for analyzing 
enriched pathways of the selected genes in order to further 
understand gene functions. DAVID is an online database 
(https://david.ncifcrf.gov/) which was frequently utilized to 
conduct GO and KEGG pathway analysis. 

Protein-protein interaction (PPI) network and module 
analysis

STRING database (https://string-db.org) is an online 
software which could provide an integrated analysis of the 
direct or indirect associations among selected genes. The 
overlapping DEGs were mapped to STRING to create 
an interactive network and then visualized through the 
Cytoscape software (www.cytoscape.org). Subsequently, 

the Molecular Complex Detection (MCODE) plugin was 
applied to screen out significant gene modules. Meanwhile, 
the cytoHubba plugin was utilized to identify the key 
mRNAs in this complicated network. The top 10 genes with 
highest scores were determined as hub genes and subjected 
to further analyses. 

Identification of potential transcription factors of DEMs

FunRich (http://www.funrich.org) is a public accessible 
software that has the ability of identifying the enriched 
transcription factors of uploaded miRNAs. In the current 
study, DEMs were subjected to FunRich for analysis and 
the top 10 essential transcription factors that may regulate 
the DEMs were finally identified.

Prediction of miRNA target genes and miRNA-mRNA 
regulatory network

It was suggested that the functional roles of miRNAs mainly 
reside in the regulation of target genes. Therefore, target 
gene prediction is especially important, which could help 
understand the biological functions and enriched pathways 
of miRNAs indirectly (15). The miRNA enrichment 
function in FunRich was adopted to implement miRNA 
target prediction. Moreover, the intersection of predicted 
target genes of DEMs and DEGs was determined as 
significantly differentially expressed target genes. Later, 
these significant differentially expressed target genes and the 
corresponding miRNAs were put to the Cytoscape software 
to establish the miRNA-mRNA regulatory network.

Validation of gene expression levels in multiple online 
databases

GEPIA (http://gepia.cancer-pku.cn/) is a newly established 
platform which recollects TCGA and GTEx data and 
presents differential expression analysis of human genes. 

Table 1 Details of the GEO datasets

Reference Sample GEO Platform Normal Tumor

Ambatipudi S et al. [2012] oral GSE23558 GPL6480 5 27

Reis PP et al. [2011] oral GSE31056 GPL10526 24 23

Chen C et al. [2008] oral GSE30784 GPL570 45 167

Ochs MF et al. [2013] oral GSE34496 GPL8786 25 44

http://www.geneontology.org/
http://www.genome.jp/kegg/
https://david.ncifcrf.gov/)
https://string-db.org/
http://www.cytoscape.org)
http://www.funrich.org/
http://gepia.cancer-pku.cn/)
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In the present study, we overviewed the mRNA level of 
selected genes with |log2FC| =1.0 and P value =0.05 set as 
the cutoff. 

The human protein at las  (HPA) (https ://www.
proteinatlas.org/) is a database that offers transcription 
and translation data on human normal and pathological 
tissues. In this study, the distribution and protein level of 
differentially expressed target genes was investigated in 
HPA by immunohistochemistry analysis.

Cell culture

The detailed resource and culture conditions of the cells 
used in this study were as described before (16). Specifically, 
SCC-4, SCC-25 and CAL 27 cells were purchased from 
the American Type Culture Collection (ATCC, U.S.A.), 
and the human HNSCC cell lines HN4, HN6 and HN30 
were kindly provided by the University of Maryland 
Dental School. SCC-4 and SCC-25 cells were cultured 
in Dulbecco’s modified Eagle’s medium/nutrient mixture 
F-12 (GIBCO-BRL, U.S.A.) supplemented with 10% fetal 
bovine serum (GIBCO-BRL, U.S.A.) and 1% penicillin 
and streptomycin. The other cells were cultured in DMEM 
medium with the same additives. Furthermore, normal oral 
epithelial cells which were obtained from primary culture 
were used as normal counterpart and they were cultured 
in keratinocyte serum-free medium (GIBCO-BRL, USA) 
containing 0.2 ng/mL recombinant epidermal growth factor 
(Invitrogen, USA). All the cells were maintained at 37 ℃ in 
a humidified atmosphere.

Tissue specimens

HNSCC samples were obtained from the Department 
of Oral and Maxillofacial-Head and Neck Oncology, 
Ninth People’s Hospital, Shanghai Jiao Tong University 
of Medicine (Shanghai, China). In total, 33 pairs of 
HNSCC tissues and adjacent non-tumor tissues were 
collected from patients and then quickly frozen in liquid 
nitrogen and stored at −80℃ until use. The protocols 
were approved by Review Board of the Medical Ethics 
Committee of the Ninth People’s Hospital. This study 
received written informed consent from all the patients 
involved. Additionally, tissue samples used in this study 
were pathologically confirmed as HNSCC and tumor 
pathological differentiation and clinical stage were defined 
according to World Health Organization Classification 
of Tumors and the TNM classification system of the 

International Union Against Cancer (1988), respectively.

RNA extraction and quantitative real-time PCR

Total RNA of cells and tissues was extracted by TRIzol 
reagent (Takara, Japan) and reverse-transcribed into 
cDNA using a PrimeScript™ RT reagent kit (Takara, 
Japan). Real-time PCR was performed using SYBR 
Premix Ex Taq Reagent Kit (Takara, Japan) with ABI 
StepOne real-time PCR system (Applied Biosystems, 
USA) .  The react ion condi t ions  were  per formed 
according to the manufactures’  instructions.  The 
detailed sequences of the primers used in the experiment 
are presented as follows. SLC16A1 (forward primer: 
5'-AGGTCCAGTTGGATACACCCC-3' and reverse 
primer: 5'-GCATAAGAGAAGCCGATGGAAAT-3'), 
COL4A1 (forward primer: 5'-GGACTACCTGGAACAA 
AAGGG-3' and reverse primer: 5'-GCCAAGTATCTCA 
CCTGGATCA-3'), and GAPDH (forward primer: 
5'-ACAACTTTGGTATCGTGGAAGG-3' and reverse 
primer: 5'-GCCATCACGCCACAGTTTC-3'). mRNA 
levels of genes were normalized against GAPDH and 2−ΔΔCt 
method was adopted to assess the relative expression level.

Statistical analysis

All the statistical analyses were performed by the SPSS 23.0 
software. Student's two-tailed t test was applied to make 
comparisons between two groups. P<0.05 was considered 
statistically significant throughout this study.

Results

Identification of DEMs and DEGs in the GEO datasets

Three mRNA microarray datasets (GSE23558, GSE31056, 
GSE30784) and one miRNA microarray dataset (GSE34496) 
were obtained from GEO database and analyzed through R 
language. A total of 35 DEMs and 193 DEGs were screened 
out from the collected data of HNSCC samples. Volcano 
plots were generated to manifest upregulated (red) and 
downregulated (blue) genes between cancer and normal 
controls from three studies, respectively (Figure 1A,B,C). 
Then, 193 overlapping DEGs were identified through the 
intersection of three independent datasets (Figure 1D).

GO and KEGG analysis of the overlapping DEGs

To have a more profound understanding of selected 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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DEGs, GO and KEGG pathway enrichment analysis was 
performed in David. The top 10 biological processes that 
these DEGs enriched in were presented in Figure 2A, 
including cell adhesion, extracellular matrix organization, 
and inflammatory response. For cellular component, the 
results showed enrichment in extracellular regions, such as 
extracellular matrix, extracellular space, and extracellular 
exosome (Figure 2B). The importance of extracellular 
components in cancer progression has been gradually 
recognized as more and more findings illustrated the 
intimate communications between tumor environment and 
extracellular matrix. Therefore, our findings highlighted 
the critical roles of selected DEGs in HNSCC progression. 
Regarding molecular function classification, the DEGs 
particularly participated in the following functions: oxygen 
and heparin binding, peptidase activity, and cytokine activity 
(Figure 2C). More importantly, KEGG analysis suggested 
the overlapping DEGs were primarily enriched in cancer-
related pathways, such as focal adhesion, ECM-receptor 
interaction, and cytokine-cytokine receptor interaction 
(Figure 2D).

PPI network of overlapping DEGs and hub gene 
identification

A PPI network was established by the STRING database. 
The three most outstanding modules were subsequently 

identified by the MCODE application based on the 
connective degrees (Figure 3A,B,C). In the meantime, 
cytoHubba plugin was applied to screen out hub genes, 
defined as having the highest degree of connectivity within 
the PPI network (Figure 3D). It turned out that FN1 was 
the most significant gene with the connectivity degree of 32, 
followed by STAT1 (degree =15) and MMP3 (degree =13). 

Determination of hub gene expression in GEPIA database

To demonstrate the reliability and accuracy of the results 
of bioinformatics analyses, we examined the transcriptional 
level of hub genes in GEPIA database, a platform from which 
TCGA data for multiple cancers could be obtained. We set 
the cutoff as |log2FC| =1.0 and P value =0.05. It was shown 
in Figure 4 that all hub genes were remarkably upregulated in 
HNSCC, implying their possible oncogenic functions.

Screening of potential transcription factors and target 
genes of DEMs

Analysis result of GSE34496 identified 35 DEMs and 
a volcano plot showing the distribution of these DEMs 
was presented in Figure 5A. Afterwards, we used the 
heatmap2 package in R to plot a heatmap based on the 
expression levels of DEMs in GSE34496 (Figure 5B). Each 
row represented an individual sample and each column 
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represented a specific miRNA. Since transcription factors 
were demonstrated to act as essential factors in miRNA, 
the top 10 enriched transcription factors were investigated 

by FunRich software, namely EGR1, SP1, SP4, POU2F1, 
NFIC, RREB1, RORA, ZFP161, FOXD1 and HOXD8 
(Figure 5C). Subsequently, the target genes predicted 
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Figure 5 Screening of potential transcription factors and target genes of DEMs. (A) Volcano plot of DEMs in GSE34496. Red, blue and gray color 
represents relatively high, low and equal expression of genes, respectively. P<0.05 and |log(FC)| >1.0 were set as the criteria. (B) The heatmap showing the 
DEMs expression profiles in HNSCC and compared normal samples in GSE34496. Red represents upregulation and green represents downregulation. 
(C) Identification of the potential transcription factors of DEMs by FunRich software. (D,E,F) The top 10 of biological process (D), cellular component (E), 
and molecular function (F) of the target genes of DEMs. (G) The top 10 enriched KEGG pathways of the target genes of DEMs.
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by FunRich were subjected to GO/KEGG analyses and 
detailed outcomes were shown in Figure 5D,E,F,G.

miRNA-mRNA regulatory network

For a more intuitional visualization of target genes 
composition and correlation, Cytoscape was utilized to make a 
comprehensive target gene network. To clarify the complicated 
correlations between miRNAs and mRNAs, essential miRNA-
mRNA pairs were identified based on the expression profiles. 
The significantly differentially expressed target genes were 
screened out by the intersection of predicted target genes of 
DEMs and overlapping DEGs (Figure 6A). Finally, six essential 
miRNA-mRNA pairs were identified, implying the crucial 
effect of them on HNSCC (Figure 6B).

Detection of the differentially expressed target genes in 
multiple online databases

The transcriptional expression of the differentially 
expressed target genes between HNSCC tissues and normal 
tissues were determined in GEPIA. The mRNA levels 
of ITGA6, COL4A1, and SLC16A1 were shown to be 
significantly higher in HNSCC, suggesting their potential 
oncogenic effect (Figure 7A). Meanwhile, the relative 
underexpression of PPM1L, GREM2, and ID4 implied the 
tumor suppressor role of them in cancer development. The 
corresponding protein level of the target genes was further 
explored through HPA database, with similar expression 
pattern suggested in Figure 7B.

Investigation of SLC16A1 and COL4A1 expression in 
HNSCC cell lines and clinical samples

To lay a solid groundwork for further research, we chose 

to verify the expression level of SLC16A1 and COL4A1 in 
clinical samples. The results of qPCR experiment showed 
a remarkable higher level of SLC16A1 and COL4A1 in 
HNSCC cell lines and tissues when compared to normal 
controls (Figure 8A,B). Further analysis of the relationship 
of SLC16A1 and COL4A1 with clinicopathological 
parameters found that the upregulation of COL4A1 in 
HNSCC was positively correlated with advanced tumor 
stage and lymph node metastasis (Figure 8C,D; Tables 2,3). 
Moreover, statistical analysis suggested that the expression 
level of SLC16A1was closely related with smoking and 
drinking behaviors, with higher levels in patients with 
smoking or drinking history (Figure 8E,F). However, there 
are three highly expressers of SLC16A1 that may skew the 
correlations of smoking and alcohol consumption analysis. 
From our perspective, the statistical significance may not 
firmly come to the conclusion that SLC16A1 was intimately 
associated with tobacco or alcohol. We need to collect 
more HNSCC samples in the future to get a more reliable 
analysis.

Discussion

HNSCC is a tumor type that determined as one of the most 
prevalent malignancies worldwide. Although enormous 
work has been devoted to exploring molecular pathology 
and investigating targeted therapies for HNSCC, there still 
lacks effective biomarkers or efficient treatment methods 
to screen and treat HNSCC patients (17). To develop 
innovative approach to cancer treatment, clarifying the 
mechanisms involved in the pathogenesis of HNSCC has 
spawned great interest from researchers.

Microarray technology and integrated molecular analysis 
could provide innovative insights into the molecular 
mechanisms underlying tumor formation (18,19). 

186 7 968

A B

Figure 6 miRNA-mRNA regulatory network in HNSCC. (A) Venn diagram of the overlapping DEGs and the target genes of DEMs. (B) A 
total of six miRNA-mRNA pairs were identified underlying HNSCC progression.
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Moreover, the combined application of molecular biology 
and bioinformatics technique contributes to the discovery 
of relative accurate therapy targets and reliable biomarkers 
for cancer diagnosis and prognosis. Computational 
analyses predict that almost 30% of all human genes 
are regulated more or less by miRNAs (20). To be more 
specific, each miRNA can target multiple genes, and one 
specific gene may be regulated by a diversity of miRNAs. 
Therefore, miRNAs and their potential target genes could 
form a complicated and comprehensive miRNA-mRNA 
regulatory network (15). In order to establish miRNA-
target gene regulatory network in HNSCC and elucidate 
the underlying mechanisms involved in tumor progression, 
we made an integrated bioinformatics-based analysis. Since 
the integration of multiple microarray datasets could lead 
to more reliable and accurate results (21), we utilized four 
independent HNSCC datasets in this study. Through 

bioinformatics analysis, 35 DEMs and 193 DEGs were 
screened out and GO analysis showed that the candidate 
genes mainly participate in cell adhesion, extracellular 
matrix organization and disassembly, and inflammatory 
response, all are indispensable biological processes involved 
in carcinogenesis (22). In the meantime, a majority of genes 
were enriched in extracellular region including matrix and 
exosome and it was explicitly illustrated that there exist 
complex communications between tumor cells and the 
ECM (23). Moreover, KEGG analysis suggested these 
genes showed enrichment in focal adhesion, ECM-receptor 
interaction and cytokine-cytokine receptor interaction, 
which were intimately involved in HNSCC pathogenesis 
(24,25). KEGG pathway enrichment analyses provide 
us with a more in-depth understanding of the HNSCC 
pathogenesis and enable us to explore the potential 
molecular mechanisms of DEGs.
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Networks offer a clear and straightforward representation 
of intricate interactions between gene nodes. Many 
domains have utilized network-based analysis, such as gene 
coexpression network (26), protein-protein interaction 
network (27,28), and cell-cell interaction network (29). 
In the present study, PPI network based on overlapping 
DEGs was constructed and hub genes were identified. Our 
results showed that FN1 was the most significant gene with 
the highest connectivity degree, followed by STAT1 and 
MMP3. FN1, a composition part of the extracellular matrix, 
was described to be elevated in different malignancies 
including hepatocellular carcinoma, gastric cancer, and 

head and neck cancer (30). It could mediate interactions 
between cells and extracellular matrix so as to influence 
cell differentiation, proliferation, migration, and adhesion. 
Signal transducer and activator of transcription (STAT) 
proteins are transcription factors downstream of cytokines 
and growth factors. Previous studies indicated STAT1 
may be an effective prognostic indicator and a specific 
biomarker for evaluating the response to drug treatment 
in HNSCC patients (31,32). Matrix metalloproteinases 
(MMPs), traditionally recognized to function at matrix 
remolding, were suggested to mediate several biological 
process in cancer, such as tumor invasion, angiogenesis, and 
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Table 2 Relationship between SLC16A1 level and clinicopathologic features (N=33)

Characteristics
No. of patients

PYGM △ Cta, mean ± SD Non-parametric test value P value
No. %

Age (years)

<60 10 30.3 60.96±86.49 Z =−0.838 0.402

≥60 23 69.7 44.32±100.29

Gender

Female 10 30.3 49.21±88.17 Z =−0.627 0.531

Male 23 69.7 52.32±97.82

Smoking history

Nonsmoker 21 63.6 22.68±15.68 Z =−2.330 0.026

Smoker 12 36.4 95.53±139.66

Alcohol history

Nondrinker 23 69.7 26.42±18.62 Z =−2.136 0.041

Drinker 10 30.3 95.06±146.97

Tumor size (cm)

≤4 23 69.7 45.42±69.25 Z =−0.353 0.724

>4 10 30.3 65.09±138.38

Lymph node metastasis

pN0 23 69.7 43.44±71.20 Z =−0.726 0.468

pN1 to pN2 10 30.3 67.26±130.36

TNM stage

I-II 17 51.5 53.47±81.80 Z =−0.108 0.914

III-IV 16 48.5 49.41±106.07

Pathological differentiation

Well 30 90.9 40.34±61.77 Z =−2.277 0.030

Moderately/poorly 3 9.1 161.75±254.64

Disease site

Tongue 11 33.3 25.09±18.19 H =1.871 0.143

Gingival 8 24.2 24.23±10.43

Cheek 8 24.2 10.83±5.65

Floor of mouth 2 3.0 39.83±24.57

Oropharynx 4 12.1 15.61±14.93

Recurrence

No 26 78.8 60.17±103.95 Z =−1.321 0.186

Yes 7 21.2 18.74±12.53

SD, standard deviation; pN, pathological lymph node status; TNM stage, tumor-lymph node-metastasis stage. a△Ct indicates the 
difference in the cycle number at which a sample’s fluorescent signal passes a given threshold above baseline (Ct) derived from a specific 
gene compared with that of β-actin in tumor tissues.
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Table 3 Relationship between COL4A1 level and clinicopathologic features (N=33)

Characteristics
No. of Patients

PYGM △ Cta, mean ± SD Non-parametric test value P value
No. %

Age (years)

<60 10 30.3 28.61±19.99 Z =−1.449 0.147

≥60 23 69.7 19.58±13.11

Gender

Female 10 30.3 18.34±9.70 Z =−0.588 0.557

Male 23 69.7 24.05±17.68

Smoking history

Nonsmoker 21 63.6 19.92±13.03 Z =−1.160 0.246

Smoker 12 36.4 26.51±19.59

Alcohol history

Nondrinker 23 69.7 21.43±18.15 Z =−1.528 0.127

Drinker 10 30.3 24.36±8.43

Tumor size (cm)

≤4 23 69.7 20.04±12.79 Z =−0.666 0.505

>4 10 30.3 26.72±21.28

Lymph node metastasis

pN0 23 69.7 17.32±9.11 Z =−2.350 0.019

pN1 to pN2 10 30.3 33.82±21.65

TNM stage

I-II 17 51.5 16.04±8.21 Z =−2.089 0.037

III-IV 16 48.5 28.99±19.13

Pathological differentiation

Well 30 90.9 22.84±16.13 Z =−0.679 0.497

Moderately/poorly 3 9.1 14.24±0.81

Disease site

Tongue 11 33.3 29.37±19.32 H =0.826 0.520

Gingival 8 24.2 18.50±12.90

Cheek 8 24.2 18.24±16.80

Floor of mouth 2 3.0 22.46±9.62

Oropharynx 4 12.1 19.67±4.82

Recurrence

No 26 78.8 22.37±17.03 Z =−0.264 0.792

Yes 7 21.2 22.15±10.81

SD, standard deviation; pN, pathological lymph node status; TNM stage, tumor-lymph node-metastasis stage. a△Ct indicates the 
difference in the cycle number at which a sample’s fluorescent signal passes a given threshold above baseline (Ct) derived from a specific 
gene compared with that of β-actin in tumor tissues.
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metastasis. In this study, MMP3 was identified to be a hub 
gene in HNSCC and a published study showing increased 
MMP3 expression in neoplasms supported our findings (33).

Bioinformatics predictions of miRNA target genes 
could facilitate the investigation of miRNA functions 
and help to illuminate the gene regulation network 
of miRNAs. All the predicted target genes of DEMs 
underwent enrichment analyses and the results emphasized 
their potential functions in cancer. Specifically, it 
turned out that these genes were mainly enriched in 
intrinsic apoptotic signaling pathway and transcription 
regulation, both were closely related to the biology and 
phenotypes of tumor cells. KEGG pathway enrichment 
results further suggested their intimate associations with 
tumor progression, such as TGF-β signaling pathway, 
Notch signaling pathway, and cAMP signaling pathway. 
It implied the target genes of miRNAs may mediate 
HNSCC by a variety of signaling pathways. Also, the 
enrichment category of ‘microRNAs in cancer’ enhanced 
the reliability of our analysis. Finally, we identified 6 
miRNA-mRNA regulatory pairs involving three kinds 
of miRNAs. Several studies have reported the tumor 
suppressive role of miR-140-3p, which was validated to 
influence lung cancer progression by targeting BRD9 and 
ATP8A1 directly (34,35). miR-342-3p, a newly developed 
cancer-related miRNA, was reported to be involved in 
a number of physiological and pathological processes, 
serving as a promising anticancer therapy target (36,37). 
miR-34c-5p, which belongs to the miR-34 family, consists 
of three main members, namely miR-34a, miR-34b, and 
miR-34c. The hypermethylation of miR-34c-5p promoter 
led to its repression and its tumor suppressive functions 
on multiple human cancers (38). It could also affect cancer 
progression, drug resistance, and patient prognosis (39). 
Meanwhile, six key genes (ID4, PPM1L, GREM2, ITGA6, 
COL4A1, SLC16A1) were further investigated in our 
research. ID4, a member of the inhibitor of DNA binding 
(ID) family proteins, was demonstrated to be correlated 
with tumor differentiation and patient prognosis and it 
hinted that promoter hypermethylation may account for 
the silencing of ID4 in cancers (40). PPM1L, originally 
discovered as a potent regulator of stress-activated protein 
kinase signaling, has been investigated its candidate 
tumor suppressor roles in recent years (41). GREM2 
is a gene located in chromosome 1q43 and belongs to 
the cystine knot superfamily. A study discovered many 
differentially expressed genes in tumor clusters including 
GREM2, laying the foundation of its possible role in 

tumorigenesis (42). Another study demonstrated that 
GREM2 could biologically mediate the proliferation, 
apoptosis, migration, and invasion of cancer cells through 
mediating the JNK signaling pathway, making GREM2-
mediated JNK signaling pathway a promising therapeutic 
strategy (43). It is obvious that tumor microenvironment 
has increasingly attracted more and more attention and 
acknowledged as an essential factor in tumor context. 
Integrins not only regulate interactions within the 
extracellular matrix (ECM), but also mediate intracellular 
signaling events that communicate from the tumor 
microenvironment to the inside of tumor cells. ITGA6, a 
vital component of integrins, was suggested to contribute 
to the aggressive phenotypes of cancer directly (44).  
Therefore, future studies concentrated on the genetic 
modulation of ITGA6 may be valuable in exploring 
therapeutic modalities for tumors. COL4A1, which 
belongs to the collagen family, constitutes a major 
component of the basement membrane that surrounds 
tumor vasculature, leading to an increased angiogenesis 
activity in cancers. Moreover, it has been verified to be 
tightly associated with cell viability, cell cycle arrest, and 
cell adhesion. SLC16A1 is a transcription factor which 
encodes MCT1 protein, a member of monocarboxylate 
transporter (MCT) family. Its primary function is to 
transport lactate into and out of tumor cells, serving as 
a key mediator in maintaining tumor microenvironment 
homeostasis. A number of tumors presented elevated levels 
of SLC16A1 and targeting MCT1 has been certified to 
inhibit tumor progression and enhance chemotherapeutic 
drugs sensitivity (45). More in depth investigation 
suggested the involvement of NF-κB pathway underlying 
MCT1-mediated cancer progression (46). From what 
has been discussed above, we came to the conclusion that 
our selected genes were associated with different cancers, 
either act as regulators in biological processes or serve as 
efficient biomarkers for diagnosis and prognosis.

In this study, we validated the upregulation of SLC16A1 
and COL4A1 in HNSCC tissues and emphasized their 
potential oncogenic roles in HNSCC progression. 
However, there also exist some deficiencies in this study. 
Firstly, the sample size for validation was relatively small. 
Secondly, there is lack of in-depth in vitro experiments. Last 
but not the least, HPV status was not taken into account 
in our analysis. To get a more comprehensive analysis, we 
intend to determine the HPV status of the clinical samples 
we will collect in the future and make corresponding 
investigation. What is more, a recent review on non-coding 
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RNAs discovered a number of long non-coding RNAs 
(lncRNAs) whose expression level could be utilized as 
biomarkers for head and neck tumors (2). More importantly, 
some of the lncRNAs function by sponging miRNAs or 
affecting miRNA stability. Therefore, more comprehensive 
studies focused on lncRNA-miRNA-mRNA network may 
be conducted in the future.

Conclusions

In conclusion, our research applied integrated bioinformatics 
methods to systematically analyze miRNAs and mRNAs 
in HNSCC. Ten hub genes were investigated as potent 
markers and six key miRNA-mRNA regulatory pairs 
were screened out as essential mediators in HNSCC. 
These findings could remarkably improve the overall 
understanding of the potential molecular interactions 
and the intricate mechanisms of HNSCC, facilitating 
the discovery of effective biomarkers for diagnosis and 
prognosis for HNSCC patients.
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