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Abstract: Non-alcoholic steatohepatitis (NASH) is considered the advanced stage of non-alcoholic fatty 
liver disease (NAFLD). It is characterized by liver steatosis, inflammation and different degrees of fibrosis. 
Although the exact mechanisms by which fatty liver progresses to NASH are still not well understood, innate 
and adaptive immune responses seem to be essential key regulators in the establishment, progression, and 
chronicity of these disease. Diet-induced lipid overload of parenchymal and non-parenchymal liver cells is 
considered the first step for the development of fatty liver with the consequent organelle dysfunction, cellular 
stress and liver injury. These will generate the production of pro-inflammatory cytokines, chemokines and 
damage-associated molecular patterns (DAMPs) that will upregulate the activation of Kupffer cells (KCs) 
and monocyte-derived macrophages (MMs) favoring the polarization of the tolerogenic environment 
of the liver to an immunogenic phenotype with the resulting transdifferentiation of hepatic stellate cells 
(HSCs) into myofibroblasts developing fibrosis. In the long run, dendritic cells (DCs) will activate CD4+ 
T cells polarizing into the pro-inflammatory lymphocytes Th1 and Th17 worsening the liver damage and 
inflammation. Therefore, the objective of this review is to discuss in a systematic way the mechanisms known 
so far of the immune and non-proper immune liver cells in the development and progression of NASH.
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Introduction

The liver is one of the most regenerative tissues in the 
body with the capacity to regenerate itself even after partial 
hepatectomy. Despite this, there is critical difference between 
the response to transient or chronic liver damage (1). 
Usually, after acute injury the liver will be able to return to its 
original architecture by proliferation and remodeling of the 
remaining cells trough the interaction of the distinct innate 
immune liver cells such as Kupffer cells (KCs), dendritic 
cells (DCs), neutrophils and innate-like lymphocytes (ILCs) 
with parenchymal cells like hepatocytes and liver sinusoidal 

endothelial cells (LSECs) without completely losing the 
characteristic tolerogenic capacity of this organ (2-4). 
The balance between the immune response, the grade of 
apoptosis, the grade of cells mitosis, and the grade of liver 
injury is important for the recovery of hepatic tissue (4,5).

In contrast to acute injury, chronic liver injury overcomes 
the regenerative capacity of the liver resulting in fibrosis and 
its further complications. Fibrosis is an adaptive mechanism 
with the primary objective of repair the damaged tissue, 
however, after prolonged injury it can progress to 
parenchymal scarring, cellular dysfunction and finally 
to organ failure by the activation of hepatic stellate cells 
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(HSCs), characteristic of liver cirrhosis (6). In this context, 
non-alcoholic steatohepatitis (NASH) has emerged in the 
last decade as an important cause of worldwide cirrhosis 
with scary projections for the near future (7,8). Although the 
exact mechanisms by which non-alcoholic fatty liver disease 
(NAFLD) progresses to NASH are still not completely 
understood, it is known that liver cells of the innate immune 
response play an important role in the shift of liver‘s 
tolerogenic environment to an immunogenic phenotype 
through the recognition of a myriad of danger signs known 
as damage-associated molecular patterns (DAMPs) released 
from damaged parenchymal and non-parenchymal liver 
cells, and also the recognition of bacterial products from 
enterohepatic circulation known as pathogen-associated 
molecular patterns (PAMPs) via pattern-recognition 
receptors (PRRs) from immune cells. Moreover, adaptive 
immune response also plays an important role in NASH 
progression. Recent studies in human and animal models 
have found lymphocytic infiltrates in advanced NASH 
stages associated with a worse degree of steatohepatitis and 
fibrosis (9-12) making the comprehension of those cells 
an important issue of study. With this in mind, it is the 
objective of this review to discuss in a systematic way the 
mechanisms known so far of the immune and non-proper 
immune liver cells in the development and progression  
of NASH.

Overview of the development of NAFLD

Currently, many metabolic diseases are the direct 
consequence of an overnutrition state combined with the 
lack of physical exercise (13). In the case of NAFLD, we can 
see that a high-calorie diet leads to insulin resistance (IR) 
decreasing its antilipolytic effect on adipose tissue (AT), 
generating the breakdown of triglycerides (TGs) though the 
hydrolysis of 3 enzymes; adipose triglyceride lipase (ATGL), 
hormone-sensitive lipase (HSL), and monoglyceride lipase 
(MGL) with the consequent formation of free fatty acids 
(FFAs) and glycerol (14). Also, AT dysfunction will follow 
a lower production of adiponectin and a greater release 
of adipokines such as leptin, conditioning a low-grade 
proinflammatory state (15).

An increase in circulating FFAs in the systemic 
circulation enhances a higher uptake of FFAs by the liver 
leading to an accumulation of lipids in liver cells (16). 
Interestingly, not all dietary lipids have cytotoxic effects, 
monounsaturated fatty acids (MUFAs) and polyunsaturated 
fatty acids (PUFAs) like docosahexaenoic acid (an omega-3 

fatty acid) have shown protective actions by binding 
directly to the peroxisome proliferator activated receptor-α 
(PPAR-α) in association with the retinoid X receptor 
(RXR) creating and heterodimeric complex (PPAR-α/
RXR) involved in fatty acid oxidation and regulation of 
TGs catabolism (17) while saturated fatty acids (SFAs) like 
palmitic and stearic acid promote inflammation by indirect 
Toll-like receptors (TLRs) signaling favoring NAFLD 
development (18).

Besides, IR and hyperglycemia favors hepatic de novo 
lipogenesis (DNL) via sterol regulatory element binding 
protein 1c (SREBP1c) setting up the creation of lipid 
droplets in the liver parenchyma (19). Fructose-derived 
precursors also act as nutritional regulators of hepatic DNL 
via SREBP1c and carbohydrate response element binding 
protein (ChREBP) signaling (20).

The excessive accumulation of toxic lipids in the liver (a 
process commonly known as lipotoxicity) is associated with 
organelles dysfunction, mainly endoplasmic reticulum (ER) 
and mitochondria (Figure 1). Lipotoxicity causes ER stress 
by deregulating its reaction to misfolded proteins creating 
an aberrant response of the 3 intracellular pathways of 
the ER (21). In this context the overactivation of RNA-
dependent protein kinase-like ER eukaryotic initiation 
factor-2α kinase (PERK) and activating transcription 
factor 6 (ATF6) increases the secretion of proinflammatory 
cytokines via nuclear factor-κβ (NF-κβ) pathway. The other 
intracellular pathway of the ER known as inositol-requiring 
enzyme 1 (IRE1) is also associated with the release of 
proinflammatory cytokines though TNFα receptor-
associated factor 2 (TRAF2) binding via kinase 1 (19).

In the case of mitochondrial stress, lipid overload 
increases acetyl-CoA synthesis disturbing the tricarboxylic 
acid (TCA) cycle function from mitochondrial respiration 
enhancing reactive oxygen species (ROS) formation (22). 
Moreover, the alteration on β-oxidation process will end 
up with the formation of toxic lipid intermediates like 
ceramides (23).

Once NAFLD is established, the combination of 
lipotoxicity and the low-grade inflammation will determine 
an immune response by liver cells with two main objectives: 
(I) activate innate immune cells to “control the damage”; 
and (II) repair the damaged tissue. Paradoxically, in some 
cases this will end up in the development of NASH. For this 
reason, the conceptualization of each one of these immune 
cells must be seen as a dynamic process and not as a series 
of steps to follow, however, for a better understanding, the 
main mechanisms of the cells involved in this process will be 
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Figure 1 Crosstalk between liver cells and their response to different stimuli. Hepatocytes, Kupffer cells (KCs), hepatic stellate cells (HSCs) 
and dendritic cells (DCs) are the most important liver cells within the development of non-alcoholic steatohepatitis (NASH). Diet-induced 
lipid overload will generate lipotoxicity and glucotoxicity with the consequent endoplasmic reticulum (ER) and mitochondrial stress inducing 
the formation of reactive oxygen species (ROS) and a deregulated unfolded protein response (UPR) developing apoptosis and liver injury. 
Damage-associated molecular pattern (DAMPs) will activate myeloid-derived cells promoting inflammation and the transdifferentiation of 
HSCs to myofibroblasts developing fibrosis.
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described in a systematic way in the following paragraphs.

Hepatocyte

The hepatocytes are the main liver parenchyma cells 
representing around 85% of the liver mass (24). They are 
considered the main functional cells of the liver as they 
have several functions just as protein synthesis and storage, 
carbohydrate metabolism, bile formation, drug and toxic 
catabolism, among others. Within NAFLD development, 
these cells suffer a characteristic variation in its structure 
developing lobular inflammation and balloon degeneration 
associated with different degrees of scarring or fibrosis (25) 
due to the release of proinflammatory cytokines like tumor 
necrosis factor-α (TNF-α), interleukin (IL-6) and (IL-
1β) derived from organelles dysfunction. Also, ER stress 
promotes proteotoxicity and proapoptotic signals through 
a rapid decay of selected microRNAs that would normally 
suppress apoptosis (26-28). The C/EBP homologous 
protein (CHOP) is one of the most important proapoptotic 

signals activated by PERK and ATF6 pathways (29). 
Besides, the phosphorylation of IRE1 is associated with 
the activation of the c-Jun N-terminal kinase (JNK) (28),  
the  Bcl-2-associated X protein (BAX) and Bcl-2 
homologous antagonist killer (BAK) pathways related with 
apoptosis (30). On the other hand, ROS-derived from 
mitochondrial dysfunction result in decreased levels of 
adenosine triphosphate (ATP) and in the depletion and 
inhibition of antioxidant molecules such as thioredoxin and 
glutathione (31,32). Also, the oxidization of SFAs leads to 
the production of aldehyde byproducts like 4-hydroxy-2-
nonenal (HNE) and malondialdehyde (MDA) perpetuating 
protein oxidation and lipid peroxidation (33). These 
mechanisms may eventually result in a deleterious cycle 
of mitochondrial damage and mitochondria-originating 
oxidative stress (34). Oxidative stress is essential for NASH 
progression, as it has been reported to activate NF-ĸβ 
pathway inducing the production of pro-inflammatory 
cytokines enhancing apoptosis and necrosis in hepatocytes 
(35-37). Damaged mitochondria and the subsequent 
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necrosis of hepatocytes release a set of mitochondria-
derived danger molecules known as DAMPs, like the 
high mobility group box protein (HMGB1), alarmins, 
nucleic acids, histones, ATP and uric acid which can be 
recognized by the PRRs of the myeloid cells and induce 
the activation of the innate immune response. Also, 
several experimental models with mice have shown that 
mitochondrial DNA (mtDNA) interacts with TLR-9 
on KCs and HSCs stimulating the innate immune and 
fibrogenic responses (38-40). Finally, another way that 
hepatocytes have to stimulate the activation of myeloid 
cells, is the release of extracellular vesicles (EVs). These 
molecules are important mediators in the crosstalk of cell 
to cell communication initiating or suppressing signaling 
pathways in the recipient cell through the transfer of 
certain types of biomolecules. Recently one of this type of 
EVs known as exosomes has been discovered to transport 
the chemokine CXCL10 and ceramides to KCs with the 
capacity of recruit neutrophils via IL-8 (41) and activate 
macrophages via sphingosine-1-phosphate (42). Also, 
palmitate was seen to induce the liberation of EVs by the 
hepatocytes containing TNF-related apoptosis-inducing 
ligand (TRAIL), an important proapoptotic protein with 
the ability to activate macrophages (43), both representing 
important mechanisms in disease progression.

KC

KCs are the resident liver macrophages which are part of the 
reticuloendothelial system (RES) of this organ. They play a 
critical role in the mononuclear phagocytic system essential 
to both the hepatic and systemic response to pathogens (44). 
A dysregulation in the control of inflammatory responses in 
KCs and other macrophages can contribute to chronic liver 
inflammation (45). Interestingly, KCs and bone marrow-
derived macrophages (BMMs) have different roles in 
NAFLD pathogenesis depending on the current state of the 
liver injury. In acute phase, KCs and BMMs are polarized 
into their activated phenotype (M1) though the recognition 
of DAMPs or PAMPs by specialized PRRs just as TLRs 
and NOD-like receptors (NLRs) (46-49). HMGB1, one 
of the most important DAMPs released by damaged cells 
activates TLR4 and promoted the binding with its ligand 
myeloid differentiation primary response 88 (MYD88) 
resulting in a multiple activation of JNK, inhibitor of 
nuclear factor kappa-B kinase 2 (IKK2) and mitogen-
activated protein kinase (MAPK) p38 with the consequent 

expression of the NF-κβ pathway and the activation of the 
activator protein 1 (AP-1) leading to the release of TNF-α, 
interferon (IFN-γ), prostaglandin-2 (PGE2), chemokine 
C-C motif ligand (CCL), IL-1α, IL-1β , IL-6, ROS, and 
nitric oxide (NO) (50). SFAs can induced by themselves 
the activation of liver macrophages via TLR4 and TLR2 
(51). Also, other types of danger signals can promote the 
activation of intracellular multiproteic oligomers known 
as inflammasomes by the NLRs binding and the secretion 
of proinflammatory cytokines (52). Similarly, fructose is 
another diet-component with the capacity of activate the 
inflammasome NLRP3 in macrophages via thioredoxin-
interacting protein (TXNIP) (53) with the expression of 
CCL2, CXCL2, IL-6, and TNF-α (54). All those cytokines 
and chemokines can recruit non-resident cells to the liver 
like neutrophils, natural killer T cells (NKT), CD4+ and 
CD8+ T cells (55). An important number of studies have 
found that KCs and BMMs recruited to the liver in acute 
liver injury showed an increased expression of TNF-α, IL-
1β and CCR2 promoting NASH progression (56-58).

However, as we mentioned, KCs and BMMs show 
a different phenotype in chronic phase since most of 
these cells change to their anti-inflammatory phenotype 
(M2) by multiple pathways (59). One of them is through 
an increase in the conversion of oxidized low-density 
lipoproteins (LDL) to oxysterols by the cytochrome P450 
oxidase and with the further binding of oxysterols with 
liver X receptor (LXR) inhibiting the NF-κβ pathway (60). 
Additionally, in chronic stages adiponectin may increase 
the levels of adenosine monophosphate (AMP) leading 
to the activation of the AMP kinase (AMPK), inhibiting 
acetyl Co-A carboxylase, increasing the FFAs oxidation, and 
inhibiting SREBP-1C (61). Finally, the RAR-related orphan 
receptor-α (RORα) pathway via factor 4 similar to Kruppel 
(KLF4) induced by PUFAs through an increased expression 
of PPAR-ꝩ are another important anti-inflammatory 
mechanism of liver macrophages (19). In a recent study, 
BMMs depletion in mice with advanced NASH conditioned 
a significant increase in the activation of HSCs with the 
consequent production of collagen fibers and therefore 
a worsen liver histology (62). These results demonstrate 
a probable polarization of macrophages to their anti-
inflammatory phenotype (M2) in stages of liver recovery by 
inducing the expression of anti-inflammatory cytokines like 
IL-4, IL-5 and IL-10 (50). In spite of this, more studies are 
required to know the specific mechanisms by which hepatic 
macrophages change their phenotype in advanced stages  
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of NASH.

HSC

HSCs are a type of pericytes found in the perisinusoidal 
space of the liver with the capacity of storage a great 
amount of lipid droplets containing vitamin A as retinol 
esters. Under physiological conditions, HSCs are under 
a quiescent phenotype (qHSCs) with a highly production 
of IFNꝩ via expression of TLR3 (63), however, in chronic 
liver disease HSCs suffer from a transdifferentiation into 
myofibroblasts losing the ability to produce IFNꝩ but 
becoming the most important cellular source of matrix 
protein-secretion (considered de major driver of liver 
fibrosis) (49).

Several pathways have been dilucidated in the activation 
of HSCs (Table 1), from these the most significant are 
described below (49).
 Transforming growth factor-β (TGF-β) is considered 

the most important fibrinogenic cytokine by 
promoting the transcription of type I and type III 
collagen as well as the mitogen-activated protein 
kinase (MAPK) and JNK signaling pathways favoring 
the HSCs activation.

 The platelet derived growth factor (PDGF) is an 
important chemoattractant for HSCs proliferation 
and migration.

 Vascular endothelial growth factor (VEGF) is 
produced mainly by LSECs and HSCs promoting 
fibrogenesis, but also required for hepatic tissue 
repair and fibrosis resolution.

 Connective tissue growth factor (CTGF) is a potent 
fibrogenic cytokine highly express in liver fibrosis 
contributing to extracellular matrix production 
as well as proliferation, migration, adhesion and 
survival of liver cells.

In addition to these pathways, patients with NASH 
reveal high concentration of leptin inversely proportional to 
the levels of adiponectin favoring the profibrotic effect (64).  
In this context, a recent meta-analysis showed that 
circulating leptin concentrations were proportional with 
NAFLD severity (65). Leptin can be secreted by AT, 
KCs and other non-parenchymal cells in the liver as an 
important signal traductor for HSCs, thus, it is considered 
a potent mitogenic agent. In both in vivo and in vitro studies 
leptin promotes HSCs proliferation and inhibits cells 
apoptosis with effects nearly as potent as PDGF (66). At 
the same time, the role of interleukins secreted by KCs are 
also important for HSCs differentiation. Liu et al. found in 
a mice-model with liver fibrosis an important upregulation 
of KCs activity as well as an increased expression of 
TNF-α, α-smooth muscle actin (α-SMA) and collagen 
type I-positive cells that interestingly do not underwent 
apoptosis (67). Alternatively, the chemokine CCL20 which 
is highly up-regulated in NAFLD-associated fibrosis seems 
to be released by HSCs in response to lipid loading (68). 
This means that HSCs are also capable to induce fibrosis by 
themselves. Recent findings have shown that free cholesterol 
(FC) may induce HSCs activation by direct signaling of 
TLR4 (69). Therefore, this could be a key mechanism 
in the fibrotic progression of NAFLD in response to the 
increased caloric intake in obesity (70). Another chemokine 
that is expressed in NASH, particularly in early stages, is 
CCL5. In a study with mice fed with a choline-deficient diet 
for three weeks, it results in a developing of NASH with an 
increase expression of Ccl5 secreted by HSCs (71).

Finally, the role of the hepatic endocannabinoid (EC) and 
the apelin systems in liver fibrosis has been an issue that has 
taken great interest in recent years (72). Most NASH patients 
have been found with an upregulation of EC and apelin 
signals (73-75). EC are physiological ligands derived from 
arachidonic acid (AA) that interact with their receptors CB1 
and CB2. It has been suggested that CB1 has an important 
role in NAFLD development and in diet-induced obesity 
mainly expressed in hepatocytes, LSECs, and HSCs (76) 

Table 1 Main pathways involved in HSCs activation

Cells Molecules

Hepatocytes CTGF

KCs PDGFβ

T Cells TGFβ

DCs VEGF

Neutrophils Interleukins and TNF-α

Adipocytes Leptin and adiponectin

PAMPs (TLR)

DAMPs

ROS

KCs, Kupffer cells; DCs, dendritic cells; CTGF, connective 
tissue growth factor; PDGFβ, platelet-derived growth factor β; 
TGFβ, transforming growth factor β; VEGF, vascular endothelial 
growth factor; PAMPs, pathogen-associated molecular patterns; 
TLR, Toll-like receptor; DAMPs, damage-associated molecular 
patterns; ROS, reactive oxygen species.
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by seeing that its inactivation led to the apoptosis of HSCs 
and a decreased response to PDGF reducing the levels of 
TGF-β expression and fibrosis (77) while CB2 was more 
expressed in HSCs and its upregulation was related with anti-
fibrotic and anti-inflammatory effects (78). On the other 
hand, apelin is an endogenous ligand of an orphan receptor 
called angiotensin-like-receptor 1 (APJ). Apelin system has 
been related with important physiological events as EC 
system (72). In the liver, apelin is expressed in LSECs, HSCs, 
and leukocytes while in NASH pathogenesis, apelin has an 
important pro-fibrotic effect through partially mediating the 
fibrogenic effects of HSCs triggered by angiotensin II (AII) 
and endothelin 1 (ET-1) expression (79). Apelin has also been 
related with HSCs survival and synthesis of PDGF and type 
1 collagen via ERK signaling (79). Additionally, apelin is an 
important angiogenic factor via endothelial APJ activation 
stimulating the expression of angiopoietin-1 in HSCs and 
favoring the hypoxic environment commonly seen in NASH, 
by the upregulation of the hypoxia-inducible factors (HIF-1,  

HIF-2) with an important transcendence in fibrosis 
development (80,81) (Figure 2).

Thus, we can summarize that HSCs are important 
components in the development of NASH. They are the 
major cells in fibrosis with the capacity to respond to KCs 
and hepatocytes stimulation. Even more, HSCs can release 
several transcriptional factors for itself and other cells in 
response to chronic liver injury (82-86).

DCs

In recent years DCs have emerged as an essential cell 
bridge for the connection between the innate and adaptive 
immune system response. DCs are a group of specialized 
hematopoietic cells that function as antigen presenting cells 
(APCs) in the liver. One of the most important properties 
that hepatic DCs (HDCs) possess, unlike other DCs in 
the human body, is the ability to preserve a tolerogenic 
atmosphere to maintain homeostasis in situations that are 

Figure 2 Hepatic stellate cells activation. Lipotoxicity plays an important role in producing dysfunction of the endoplasmic reticulum (ER) 
and mitochondria activating the CHOP and JNK pathways, altering calcium channels and favoring ROS formation. This will trigger the 
production of MDA and 4-HNE, respectively. Also, the activation of HSCs through KCs, which also induce the production of CD4+ T cell 
that increases VAP-1 concentrations, an amino oxidase expressed in the endothelium that is related to fibrosis severity. Other mechanisms 
are the ECS through the production of AEA and 2-AG that activates the CB1 receptor which further aggravates the state of fibrosis, as well 
as contributes to other systemic complications, while CB2 seems to have an opposite effect. In addition, the activation of the Apelin/APJ 
System promotes pro-inflammatory activity and angiogenesis that favors fibrosis development especially in early stages.
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not so hostile for the liver (87). In a healthy environment 
DCs will present an immature phenotype characterized 
by a low capacity to endocytose antigens and to stimulate 
T-lymphocytes accompanied with a high production of IL-
10 and IL-27 promoting the differentiation of CD4+ T cells 
into regulatory T cells (Treg) maintaining the tolerance of 
self-antigens (88), however, as mentioned before, one of 
the main characteristics of NASH is the loss of the liver‘s 
tolerogenic environment, changing to a pro-inflammatory 
immunogenic phenotype. This will induce maturation 
of DCs favoring inflammation by the liberation of pro-
inflammatory cytokines and inducing the adaptive immune 
response by an enhanced capacity to activate antigen 
specific CD4+ T cells and CD8+ T cells (87). Nonetheless, 
the actual role of DCs in the pathogenesis of NASH is 
still a matter of debate, since DCs ablation studies have 
shown contrasting results depending on the experimental 
setting (88). Interestingly, the immune-stimulating and pro-
inflammatory phenotype of HDCs seems to be associated 
with a high-lipid content in the cell. Also, depending on 
the differentiation pattern that HDCs express, it might 
determine the immunophenotypic response that these cells 
would achieve. In experimental animal models, myeloid 
HDCs (DC1) identified with the CD103+ marker appear 
to have a protective role in the liver by founding that the 
transference of CD103+ cDC1 to a Batf3-/- deficient murine 
cohort reduced inflammatory monocyte recruitment, 
liver CCL2 expression and serum transaminases without 
affecting the extent of steatosis (89). By other side, DC-
CD40-ko mice (CD40fl/flCD11ccre) subjected to obesity and 
NASH by feeding them with a high-fat diet (HFD) showed 
that CD40 expressing CD11c+ cells play a crucial role in 
protection against obesity-induced ectopic lipid storage and 
metabolic dysfunction, most likely via induction of Treg, 
however, during NASH, CD40 on CD11c+ cells contributes 
to liver inflammation (90). Additionally, NASH C57BL/6 
mice fed with a methionine/choline-deficient (MCD)-
diet exhibited an overexpression of CD11chigh/F4-80+ DCs 
pool, but a reduced expression of CD11c+/MHCII+/B220+ 
plasmocytoid DCs (pDCs) and CD11c+/MHCII+/CD8a+ 
lymphocytoid DCs (lDCs) (91).

In humans, we have shown that CD11C+ cDC2 were more 
elevated in obesity-induced NASH patients with fibrosis 
than those without fibrosis suggesting that CD11C+ cDC2 

may have an important role in fibrosis development (92).  
In this scenario, an elegant transcriptional and immune 
profiling of patients with NASH was recently conducted 
showing interesting results (93). It was revealed that cDC2 

were positively correlated with NASH progression while 
cDC1 and pDC were associated with a negative hepatic 
expression of genes involved in immune regulation and 
antigenic presentation making more understandable the 
role of these cells in NASH pathogenesis.

Interplay between the innate and the adaptive 
immune response in NASH development

As we have reviewed, an overnutrition state will generate an 
imbalance in AT storage and in the hepatic lipid metabolism 
promoting cellular stress, apoptosis and liver injury. The 
activation of KCs and the transdifferentiation of HSCs into 
myofibroblasts are the more important mechanisms within 
NASH and fibrosis development. However, the adaptive 
immune response will end up orchestrating the chronicity 
of inflammation and liver damage in NASH patients. In this 
context, DCs are responsible for the connection between the 
innate and adaptive response via major histocompatibility 
complex (MHC) class I and II molecules (94). Similarly, 
recent findings have described oxidative stress as one 
of the main triggers in stimulating adaptive immune 
response through a group of protein adducts with lipid 
peroxidation breakdown products, like malondialdehyde 
(MDA), malondialdehyde−acetaldehyde (MAA), and 
4-hydroxynonenal, as well as phosphocholine (PC)-
containing oxidized phospholipids formally called oxidation-
specific epitopes (OSEs) (95). OSEs are recognized by both 
innate and adaptive humoral immunity, including specific 
antibodies in an important number of systemic diseases (94). 
Evidence has suggested a protective mechanism of OSE-
specific immunoglobulin M (IgM) antibodies in NASH 
in both animal and human models (96-98), while elevated 
titers of OSE-specific immunoglobulin G (IgG) antibodies 
are associated with the severity of lobular inflammation and 
a greater presence of intrahepatic B and T cell lymphocyte 
aggregates, in addition to being an independent fibrosis 
factor (94,99,100) (Figure 3).

Lymphocytes

Lobular lymphocyte aggregates by T and B cells are a 
characteristic commonly found in patients with NASH. The 
size and prevalence of these lymphocyte aggregates correlated 
with the degree of lobular inflammation and fibrosis 
(101,102). CD4+ T cells express CD44 and CD69 activation 
markers as well as an increase in the production of IFN-ꝩ and 
tumor necrosis factor superfamily member-14 (TNFSF14) 
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indicating that lymphocyte aggregates are functionally active. 
Moreover, in addition to the activation mediated by DCs, it 
has recently been demonstrated through the use of coculture 
systems, that KCs promote adult liver hematopoietic stem 
and progenitor cells (HSPCs) to primarily generate T cells 
and B cells via intercellular cell adhesion molecule-1 (ICAM-
1). A blockade in ICAM-1 impaired the adhesion, expansion, 
and differentiation of HSPCs suggesting another important 
induction-pathway of adaptive immune response (103). Also, 
the vascular adhesion protein 1 (VAP-1) is a membrane-
bound amine oxidase expressed in liver endothelium that 
supports lymphocytes adhesion and transendothelial 
migration across LSECs in many inflammatory diseases (11).  
VAP-1 catalyzes the oxidative deamination of primary 
amines resulting in the generation of aldehyde, ammonia 
and hydrogen peroxide (104). These products activate the 
secretion of NFκB-dependent chemokines and the expression 
of adhesion molecules in the liver endothelium (105,106). 

Furthermore, Weston et al. found that the soluble form 
of VAP-1 (sVAP-1) in the liver was markedly elevated in 
NAFLD patients when compared to controls and in VAP-
1-deficient mice (Aoc3-/-) they probed that VAP-1 promotes 
NASH progression by observing that a poor expression of 
VAP-1 protected against the accumulation of intrahepatic T 
cells, NKT cells, and myeloid subsets (11) (Figure 2).

T cells

In a healthy host, DCs are responsible for expressing 
negative regulators for T cells response such as cytotoxic 
T lymphocyte antigen 4 (CTLA-4), IL-10, TGF-β 
and programmed death-ligand 1 (PD-L1) favoring the 
polarization of CD4+ T cells into Treg maintaining the 
tolerance to self-antigens and avoiding an excessive 
effector-T-cell activation and subsequent tissue damage 
during infection-induced immune responses (107,108). 

Figure 3 Oxidative stress in the progression of NASH. In the first instance, lipotoxicity and intestinal dysbiosis can produce an environment 
of oxidative stress, which contributes to the development of fibrosis through the activation of Kupffer cells (KCs) and hepatic stellate cells 
(HSCs), also, this stress generates a response from both the innate and adaptive immune system, through the production of oxidation-
specific epitopes (OSEs) favoring the activation of KCs with the further released of pro-inflammatory cytokines and chemokines such as 
TNFα, IFNγ, PGE2, CCL, IL-1α, IL-1β, ROS, NO, TGFβ and C3ar1 activating natural killer T cells (NKT) and HSCs. In addition, 
KCs will enhance the differentiation of both T and B cells. CD4+ T cells will polarize into Th1 and Th17 cells promoting the activation of 
macrophages and establishing lymphocytic infiltrates aggravating the pro-inflammatory state. On the other hand, CD45+ B cells will express 
anti-OSE IgG enhancing the activation of CD4+ T cells.
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Interestingly, in NAFLD-induced animal models, a reduced 
number of hepatic Treg cells has been found (109,110). 
Apparently, this reduction is due to local ROS-induced 
apoptosis of Treg cells. Moreover, an adoptive transfer of 
Treg cells attenuated hepatic inflammation and decrease 
hepatic TNF-α expression (110).

Nonetheless, within NASH development DCs perform 
the antigen presentation of MHC class II molecules to the 
specialized CD4+ T cell receptor (TCR) and the co-receptor 
CD3 favoring the polarization into T helper-1 (Th1) and 
T helper-17 (Th17) (94). Th1 cells are proinflammatory 
cells that express the transcription factor T-bet producing 
IFN-ꝩ, IL-12, TNF-α and TNFSF14 (108). Th1 cells 
have been involved in AT inflammation associated with 
an overexpression of leptin in HFD-animal models of 
obesity (111-113). In humans, a couple of studies have 
demonstrated increased levels of Th1 cells in peripheral 
blood of NASH patients (114,115) and in a MCD-diet 
murine model of NASH an increase in liver Th1 cells was 
found only in advanced stages of the disease speculating a 
possible relation with the fibrosis development (116).

As mentioned early, the other important phenotype 
of CD4+ T cells in NASH is Th17 cells. These are 
proinflammatory cells that express the transcription factor 
retinoic acid receptor-related orphan receptor γt (RORγt), 
as well as the signal transducer and activator of transcription 
3 (STAT3). Their main action is to reinforce the adaptive 
immune response against external agents by the expression 
of IL-17, IL-22 and IL-23. Interestingly, the progression 
of NAFLD to NASH has been associated with the liver 
accumulation of Th17 cells (117). Also, some studies 
have found a Th-17-induced liver inflammation through 
an accumulation of macrophages via IL-17-dependent 
upregulation of CXCL-10 (118,119). Similarly, Rolla et al. 
suggested that lipotoxic effects of FFAs are exacerbated in 
the presence of IL-17 in a JNK- dependent manner (116).

On the other hand, CD8+ T cells are the special 
cytotoxic cells aimed to eliminate infected or malignant 
cells. They are mediated by the recognition of MHC class 
I molecules by APCs and until today, their role in NASH 
pathogenesis is still not clear. Nishimura et al. have shown 
that CD8+ T cells are essential for macrophage recruitment 
and AT inflammation (120). Evidence has also confirmed an 
important liver infiltration of CD8+ T cells in human and 
animal models of NAFLD (121-123) while the blockade of 
these cells with anti-CD8 antibodies result in a decrease in 
liver steatosis, liver inflammation and transaminase levels 
(9,121), as well as reduced HSCs activation (9). Similarly, 

in the elegant study of Haas et al. (93) they suggest that 
intrahepatic accumulation of CD8+ T cells and a disruption 
in cDC1/cDC2 ratio were the main immune hallmark in 
NASH activity and progression.

B cells

Some observational studies in obesity-induced mouse 
models have found an association between CD 45+ B-cell 
infiltrates in AT and IR, systemic inflammation, increased 
production of proinflammatory cytokines and T-cells 
and macrophages activation (124-126). Few studies have 
focused on determine the role of intrahepatic B cells in 
NAFLD. In this scenario, Zhang et al. (127) found that 
CD45+ intrahepatic B (IHB) cells were significantly higher 
in NAFLD patients than controls, expressing higher levels 
of IL-6, and TNF-α. Moreover, IHB cells enhanced the 
activation of CD4+ T cells promoting the polarization into 
Th1 cells in the NAFLD group (75). Likewise, Bruzzì et al.  
showed in a mouse-model of NAFLD that the onset of 
NASH was characterized by hepatic B2 cells maturation to 
plasma B cells and by an elevation in circulating anti-OSE 
IgG titers. The B cells responses preceded T cells activation 
and the up-regulation of the hepatic expression of B-cell 
Activating Factor (BAFF). The selective B2-cells depletion 
in mice prevented the plasma B cells maturation and the 
Th1 polarization of CD4+ T-cells accompanied with a 
milder steatohepatitis and fibrosis (101).

Conclusions

The liver is an extraordinary organ with the ability to 
preserve a tolerogenic environment despite the multiple 
harmful agents derived from the enterohepatic circulation 
and with the capacity of recover from acute liver injury in 
most of the cases. Nonetheless, in NASH the hepatic tissue 
repair capacity is exceeded by the accumulation of cytotoxic 
lipids derived from an overnutrition diet triggering cells 
dysfunction and the activation of the innate immune 
response with the consequent development of fibrosis. 
Recent findings have also suggested that T and B cells are 
essential for the maintenance of the liver inflammation 
and the fibrosis development by inducing the expression 
of cytokines and chemokines important for the KCs 
polarization and the HDCs activation. Therefore, the study 
of both immune responses in NASH is crucial in order to 
implement new therapeutic options for the near future.
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