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Background: Circular RNAs (circRNAs), a novel type of non-coding RNA, play a vital role in the 
pathogenesis and development of cancer. CircRNAs signatures may be useful as prognostic and predictive 
factors as well as clinical tools for evaluating disease status and prognosis. This study was carried out to 
explore novel circRNA signatures in hepatocellular carcinoma (HCC).
Methods: The expression profiles of circRNAs were retrieved from the Gene Expression Omnibus (GEO). 
The expression profiles of miRNAs and mRNAs were obtained from The Cancer Genome Atlas (TCGA) 
and the Genotype-Tissue Expression (GTEx) database. The results of the microarray were validated 
by quantitative real-time RCR (qPCR). Based on circRNA-miRNA pairs and miRNA-mRNA pairs, a 
competitive endogenous RNA (ceRNA) network was constructed. Functional analysis was performed via 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis 
(GSEA), and gene set variation analysis (GSVA). Furthermore, survival analysis was carried out using the 
Kaplan-Meier curve and the log-rank test.
Results: Differentially expressed circRNAs in HCC from GEO databases (GSE94508 and GSE97332) 
were screened and analyzed using the bioinformatics method. We detected a total of 26 differentially 
expressed circRNAs by qPCR and then selected 6 circRNAs to construct the circRNA-miRNA-mRNA 
networks. Through prognostic analysis, 3 target hub genes (AURKA, KIF5B, and RHOA) of circRNAs were 
discovered. Moreover, GSEA and GSVA were used to reveal the functions of AURKA, KIF5B, and RHOA 
in HCC.
Conclusions: We identified three hub genes, and our results suggest that the circHMGCS1/miR-581/
AURKA, circHMGCS1/miR-892a/KIF5B, and circTMCO3/miR-577/RHOA axes may play a vital role in 
HCC progression.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common 
malignancy and the main cause of cancer-related death 

in the world (1). Owing to the lack of early diagnostic 

biomarkers with high specificity and sensitivity and the 

high frequency of tumor metastasis, the overall survival of 
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patients with HCC is very poor (2). Therefore, identifying 
novel biomarkers and therapeutic targets is of great 
significance in improving the diagnosis and treatment of 
HCC and could  lead to a better understanding of the 
pathology of HCC.

Accumulating evidence has shown that the dysregulation 
of circRNAs may contribute to tumorigenesis and cancer 
progression in humans (3). CircRNA is a newly discovered 
non-coding RNA with a special structure, which is 
characterized by a covalent closed-loop without 5’ caps or 3’ 
tails (4). In recent years, numerous pieces of evidence have 
revealed that circRNAs could be involved in gene regulation 
by acting as miRNA sponges, regulating splicing and 
transcription, or interacting with RNA-binding proteins 
(RBPs) (5). These findings suggest the potential regulatory 
role of circRNAs in biologic development and the 
pathogenesis and progression of diseases, especially types 
of cancer (6). Aberrant expression of circRNA also played 
an important role in the initiation and development of  
HCC (7) .  Huang e t  a l . ,  for  example ,  found that 
the activation of the mTOR signaling pathway by 
circRNA-100338/miR-141-3p/RHEB axis is closely 
associated with poor prognosis of hepatitis B-related 
HCC (8). Another study reported that cicrRNA_101368 
could function as a sponge of miR-200a to inhibit miR-
200a expression, thus promoting the migration of HCC 
cells through HMGB1/RAGE signaling of miR-200a 
downstream (9).

In this study, we analyzed the expression profiles of 
circRNAs, miRNAs, and mRNAs of HCC downloaded 
from The Cancer Genome Atlas (TCGA) and the Gene 
Expression Omnibus (GEO). Differentially expressed that 
circRNAs (DEcircRNAs) were identified and validated. 
After predicting the sponging of miRNAs by circRNA and 
miRNA target genes, we established a circRNA-miRNA-
mRNA network and a circRNA-miRNA-hub gene network 
for HCC. To predict the possible mechanisms and function 
of circRNAs in HCC, we also performed functional 
enrichment analyses. These results could improve our 
understanding of the regulatory mechanisms of circRNAs 
in the pathogenesis and progression of HCC and provide 
novel therapeutic targets or biomarkers for HCC.

Methods

Microarray data and RNA sequencing data

The microarray data of two circRNA expression profiles 

were collected from the GEO database (GSE94508 and 
GSE97332). RNA-sequencing (RNA-seq) data were 
downloaded from the TCGA database. miRNA sequencing 
data included 375 liver cancer tissues and 50 normal tissues, 
and the mRNA sequencing data included 374 liver cancer 
tissues and 160 normal tissues. We used the Limma R 
package to explore the significantly differentially expressed 
genes between tumorous and normal tissues. The cut-off 
value was |log2FC| >1 and FDR <0.05 (FC, fold change; 
FDR, false discovery rate). Due to the public availability of 
data on the GEO and TCGA databases, ethical approval or 
informed consent was not required for this study.

Cell culture and validation of overlapping circRNAs with 
real-time Quantitative PCR

SMMC-7721 cells were cultured in Dulbecco’s Modified 
Eagle Medium (DMEM, Gibco) supplemented with 10% 
fetal bovine serum (FBS, Gibco) at 37 ℃ in a 5% CO2 
atmosphere in a humidified incubator.

Total RNAs from SMMC-7721 cells were extracted 
using TRIzol (Invitrogen) according to the manufacturer’s 
protocol. cDNA was synthesized from total RNA using 
M-MLV RT (Promega). Then real-time qPCR was applied 
with SYBR Master Mixture (Takara) on the LightCycler 
480 II (Roche) according to standard protocols. The 
primer sequences for GAPDH acted as the control in these 
experiments. Primers used for detecting circRNAs were 
synthesized from GeneChem (Shanghai). Primer sequences 
were listed in Table 1. The quantity of each mRNA 
was calculated using the 2−ΔΔCt method, and data were 
normalized using GAPDH as the loading control.

Predictions of target miRNA and miRNA target genes

The Circular RNA Interactome (CircInteractome) (10) and 
Cancer-Specific CircRNA (CSCD) (11) were used to predict 
target miRNAs and their miRNA binding sites (MREs). 
These target miRNAs were further selected by DEmiRNA 
based on TCGA, and the screened miRNAs were identified 
as potential target miRNAs of the DEcircRNAs.

Interactions between miRNA and mRNA were predicted 
based on the TargetScan (12), miRTarBase (13), and  
miRDB (14) databases. Only the target mRNAs recognized 
by the three databases were considered as candidate 
mRNAs. Moreover, intersections with the DEmRNAs 
were identified to screen out the hub genes targeted by the 
DEmiRNAs.
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Table 1 Primer sequences of circRNAs used for qPCR

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

circRNA(hsa_circ_0004913) TCACTCTGACGGAACTTGACA GCTCCTTCTGCTTTGGCTGT

circRNA(hsa_circ_0006248) AAAGACCACATACGCCAACA TCAGCCCAAATACTCCAAGA

circRNA(hsa_circ_0038929) CATGCCTTGGGACCTGTTAA AGCAAAGTTGAGTGCGGAGA

circRNA(hsa_circ_0005428) AACAGCTCTGGCAAGAAACT TTTGATGGAGGAAAGTGGAA

circRNA(hsa_circ_0006913) AACCCAAGAAACTGCTGTCG GAAATCCCTGATGTGCTCACT

circRNA(hsa_circ_0007248) TTCTGCGGGCATTGGTGATA CTCCCTGAGCATTGCATTGGAC

circRNA(hsa_circ_0059342) GGGACCTCAAATCAAAGAAA TCCTGAAGTTGTAATGTGGG

circRNA(hsa_circ_0007762) GGGACCTCAAATCAAAGAAA GCCCACATAGAGCCACTTAC

circRNA(hsa_circ_0059859) AGGTGCGGACTCTTGTTCTT GAGTGCAGATGATGTGGAGG

circRNA(hsa_circ_0056548) AGGAGGAGAAGTTGGAGGCT GAGGCAATGGAGTTAAAGGACA

circRNA(hsa_circ_0043302) TTGACGCCTTAGATAACAGC ATTCAATCCAGGATGCAAAA

circRNA(hsa_circ_0055033) AAGAAGTCCTGCATCGAAAT CACATGATCCTTACTGTCCG

circRNA(hsa_circ_0001359) CCTGGAATCACGAAGCACAG TGGGTAATACTGCCGCTGGT

circRNA(hsa_circ_0067323) ATCCACAACTGATGCACCTA TGCTTCAACAGTGACTACGC

circRNA(hsa_circ_0001360) GTTGTCTCGTCGTCATCGTC GCTTATTAACTGTGCAGGTGT

circRNA(hsa_circ_0000204) CCTCCTAGAAGTAATGCCCACA CAGCACCTCACTGTCAAAGAAT

circRNA(hsa_circ_0009581) CGACTGTGACCTCCTTATGT ACTGTTCAGCCTCCTTGTCT

circRNA(hsa_circ_0072389) TGGCTGCCACTCTGTACTCT TTCCAGCATCTACACCATCA

circRNA(hsa_circ_0007540) CAGCAGTGGAGGCAGAAGTT AAACCAAGGGATGGCATAGA

circRNA(hsa_circ_0027774) TGTGCTGGAATTGATGTTCG CTGAGGGAGGGTCTGTTTGA

circRNA(hsa_circ_0000517) TGAGCTTCGGGGAGGTGAGTT GGGAGAGCCCTGTTAGGGC

circRNA(hsa_circ_0030130) CTGCCTGTAAGTGCCAAGT GAGGCCAGGGTAGTCCATT

circRNA(hsa_circ_0084429) GGCAACTGTATGAGCCACT GGACTAACTCCCTCGAAAT

circRNA(hsa_circ_0031027) GGACCCTATTATCGGAAGC CACCTATGGAGGCGAAGAA

circRNA(hsa_circ_0008160) GTGCTCTTGTTTGGGATTA TTTGAGGCCAATAGGTTAA

circRNA(hsa_circ_0011536) GACAATGCTCAAGTGGTGGTA TGCTGTCAAGGGTAGGAGTTA

GAPDH TGACTTCAACAGCGACACCCA CACCCTGTTGCTGTAGCCAAA

Construction of the CeRNA network

The circRNA-miRNA-mRNA regulatory network was 
constructed by using a combination of circRNA-miRNA 
pairs and miRNA-mRNA pairs and visualized by Cytoscape 
3.6.1.

GO and KEGG pathway enrichment analysis

mRNAs in the ceRNA network were evaluated by GO (15)  

annotation and KEGG (16) pathway analyses with the 
clusterProfiler package in R. P value <0.05 served as the 
cut-off point to assess the functional pathways.

Gene functional analysis 

GSEA (17) is a computational method for assessing 
whether a set of genes defined by a priori show statistically 
significant, consistent differences between two biological 
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Figure 1 Heat maps and volcano plots for differentially expressed circRNAs in LIHC based on GSE94508 and GSE97332 from the GEO 
database. Red represents up-regulated circRNAs and green represents down-regulated circRNAs. Black represents circRNAs without 
statistically significant change (|log2[fold change]| >1 and FDR <0.05).

states. GSEA was performed to analyze the enrichment of 
datasets between high- and low-expression groups of hub 
genes. A false discovery rate (FDR) <25% and nominal 
P value <5% were set as the cut-off criteria. In addition, 
GSVA (18) was used to find the most relevant pathways of 
hub genes, according to the gene sets files from the KEGG 
databases.

Results

Identification of differentially expressed circRNAs and 
miRNAs

Two circRNA microarray  datasets (GSE94508 and 

GSE97332) were downloaded from the GEO database, 
and the DEcircRNAs were generated by using the limma 
R package. A total of 270 DEcircRNAs (25 up-regulated 
and 245 down-regulated) were identified in the GSE94508 
dataset (Figure 1A,B). A total of 869 DEcircRNAs (421 
up-regulated and 448 down-regulated) were identified 
in the GSE97332 dataset (Figure 1C,D). We found that 
26 overlapping DEcircRNAs were obtained from two 
datasets, and these were chosen for further validation. 
The expressions of these DEcircRNAs in SMMC-7721 
cells were detected using qPCR. Among them, the mRNA 
expression abundance of six DEcircRNAs was validated to 
be up-regulated in SMMC-7721 cells (Figure 2), indicating 
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Figure 2 Differentially expressed circRNAs in the two microarray datasets. (A) Heat map of overlapping differentially expressed circRNAs 
in LIHC based on the GSE94508 and GSE97332 from the GEO database; (B) histogram of mRNA expression abundance of the six target 
circRNAs in SMMC-7721 cell lines by real-time quantitative PCR (Y-axis is ΔCt).
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that they were appropriate for further research. Moreover, 
the basic characteristics of the six DEcircRNAs are listed in 
Table 2. Their basic structural patterns are shown in Figure 3  
based on the data from CSCD.

Based on the TCGA-LIHC database, we obtained 251 
differentially expressed miRNAs (DEmiRNAs, 229 up-
regulated and 22 down-regulated) using edgeR package 
analysis with |log2FC| >1 and FDR <0.05 (Figure S1).

The construction of the ceRNA network and functional 
assessment

To better comprehend the role of circRNA in miRNA 
mediated mRNA, we constructed a circRNA-miRNA-
mRNA (ceRNA) network. Firstly, using the CircInteractome 
database, we predicted the miRNAs targeted by the 6 
DEcircRNAs and identified 100 circRNAs-miRNAs pairs. 

Table 2 Basic characters of the six hub circRNAs

circRNA ID Position Genomic length Strand Best transcript Gene symbol

hsa_circ_0004913 chr17:62248459-62265775 17,316 − NM_018469 TEX2

hsa_circ_0072389 chr5:43294157-43299077 4,920 − NM_001098272 HMGCS1

hsa_circ_0000517 chr14:20811404-20811492 88 − NR_002312 RPPH1

hsa_circ_0031027 chr13:114164552-114193822 29,270 + NM_017905 TMCO3

hsa_circ_0008160 chr21:38439561-38441924 2,363 − NR_028352 PIGP

hsa_circ_0011536 chr1:35824525-35827390 2,865 + NM_005095 ZMYM4
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Figure 3 Structural graphs of the six circRNAs. Red spots represent miRNA response elements, blue spots represent RNA binding protein, 
and green curves represent the open reading frame.
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After intersecting with the DEmiRNAs, only 13 circRNA-
miRNA pairs remained, including 6 circRNAs and 11 
DEmiRNAs. We then identified mRNAs targeted by the 
11 DEmiRNAs in 3 databases (miRDB, miRTarBase, and 
TargetScan). Lastly, we established a ceRNA network based 
on 6 circRNA nodes, 11 miRNA nodes, and 114 mRNA 
nodes in HCC (Figure 4).

To achieve a better understanding of the underlying 
biological processes (BP) and pathways associated with the 
circRNAs-related target genes in the ceRNA network, we 
applied the GO and KEGG pathway enrichment analyses. 
The results of BP, cellular component (CC), molecular 
function (MF), and KEGG pathways are indicated in 
Figure 5A,B,C,D (P<0.05). In addition, GSVA further 
confirmed that a high level of circRNAs-related target 
genes was significantly enriched in 9 KEGG terms (thyroid 
cancer, pathogenic Escherichia coli infection, hypertrophic 
cardiomyopathy hcm, lysosome, hedgehog signaling 
pathway, oocyte meiosis, natural killer cell-mediated 

cytotoxicity, base excision repair, and cell cycle) (Figure 5E).

The construction of the CircRNA-miRNA-hub gene 
network and functional enrichment analysis of hub genes

Based on the thresholds of |log2FC| >1 and FDR <0.05, 
we obtained a total of 2,135 differentially expressed 
mRNAs (DEGs) from the TCGA-LIHC and GTEx 
databases (Figure S2). The above results showed that 
7 DEGs were involved in the ceRNA network. Then, 
to further explore the functions of these hub genes in 
the network in carcinogenesis and the development of 
HCC, we also established a CircRNA-miRNA-hub gene 
regulatory network. Firstly, we presented 106 circRNAs-
related target genes and 2,135 DEGs in TCGA and 
GTEx and generated 7 common target genes DEGs 
(CITED2, ACSL4, MARCKS, KIF5B, AURKA, SMO, 
and RHOA) using Venn diagram analysis (Figure 6A).  
Then, Cytoscape was used to construct the circRNA-
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Figure 4 The ceRNA network of circRNA-miRNA-mRNA in LIHC. Red represents circRNAs, green represents differentially expressed 
miRNA, and sky blue represents mRNA.

miRNA-hub gene networks (Figure 6B). Moreover, the 
Kaplan-Meier curves, which were plotted using the GEPIA 
database, indicated that higher expression of AURKA, 
KIF5B, and RHOA were significantly correlated with 
poorer overall survival (Figure 6C,D,E, P<0.05), however, no 
significant prognostic significance was shown in CITED2, 
ACSL4, MARCKS, or SMO. We further verified the 
expression levels of 7 hub genes using EdgeR software in 
TCGA and GTEx data and found that an up-regulation of 

AURKA, KIF5B, and RHOA in tumor tissues compared 
with normal tissues (Figure 6F,G,H, P<0.001). In addition, 
elevated expressions of KIF5B and RHOA correlated with 
the clinical tumor stage (Figure S3, P<0.05), suggesting 
LIHCs with high KIF5B and RHOA expression are prone 
to progress to a more advanced stage.

To further study the potential roles of AURKA, KIF5B, 
and RHOA in HCC, we performed an analysis of GSEA 
and GSVA on the TCGA-LIHC database. The results 
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Figure 6 The identification of hub genes in LIHC. (A) VennDiagram analysis of circRNA-related target genes and differentially expressed 
genes in TCGA and GTEx; (B) the CircRNA-miRNA-hubgene network. The network consists of 5 circRNAs, 6 miRNAs, and 7 hub genes. 
Red represents circRNAs, blue represents miRNAs, and yellow represents differentially expressed mRNAs; (C-E) Kaplan-Meier curves for 
survival analyses of three hub-genes in patients with TCGA-LIHC. (C) AURKA (P=0.00022); (D) KIF5B (P=0.047); (E) RHOA (P=0.046); 
(F-H) the box plot showing the mRNA expression levels of hub-genes detected in the TCGA-LIHC database (P<0.05). (F) AURKA; (G) 
KIF5B; (H) RHOA. 

Diff

2135

106

7

Target

hsa_circ_0072389

miR-892amiR-527

MARCKS

ACSL4

SMO

hsa_circ_0011536

miR-182

miR-581

miR-577

hsa_circ_0000517

miR-326

hsa_circ_0031027 hsa_circ_0004913

KIF5B

CITED2

AURKA

RHOA

0 20 40 60 80 100 120
Months

Normal Tumor
Type

Normal Tumor
Type

Normal Tumor
Type

A
U

R
K

A
 e

xp
re

ss
io

n

K
IF

5B
 e

xp
re

ss
io

n

R
H

O
A

 e
xp

re
ss

io
n

P=5.202e−10 P=1.897e−05 P=3.641e−1030

25

20

15

10

5

0

30

25

20

15

10

5

0

250

200

150

100

50

0

0 20 40 60 80 100 120
Months

0 20 40 60 80 100 120
Months

Low AURKA TPM
High AURKA TPM

Logrank P=0.00022
HR(high)=1.9
p(HR)=0.00028
n(high)=181
n(low)=181

Low KIF5B TPM
High KIF5B TPM
Logrank P=0.047
HR(high)=1.4
p(HR)=0.048
n(high)=182.
n(low)=182

Low RHOA TPM
High RHOA TPM
Logrank P=0.046
HR(high)=1.4
p(HR)=0.047
n(high)=182
n(low)=182

Overall Survival Overall Survival Overall Survival

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

B

D

G

E

H

A

C

F



Wang et al. HCC-related circular RNA signature

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(6):294 | http://dx.doi.org/10.21037/atm.2020.03.06

Page 10 of 12

Figure 7 The functional analysis of hub genes in the TCGA-LIHC dataset. (A-C) GSEA applied to validate the hub gene signatures. (A) 
AURKA; (B) KIF5B; (C) RHOA; (D-F) GSVA-derived clustering heat maps of differentially expressed pathways for single hub genes. (D) 
AURKA; (E) KIF5B; (F) RHOA.
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of GSEA showed that the hub genes with the highest 
enrichment score were closely associated with signaling 
pathways related to cancer (Figure 7A,B,C). Furthermore, 
GSVA confirmed that many cell cycle-related KEGG 
pathways, including DNA replication and mismatch repair, 
were enriched in the groups with high-expression of 
AURKA, KIF5B, and RHOA, further suggesting that the 
activation of these hallmark genes might participate in the 
process of tumor proliferation (Figure 7D,E,F).

Discussion

Over recent decades, studies have emerged, showing the 
abnormal expression profiles of non-coding RNAs in HCC 
(19,20). Some investigations have demonstrated circRNA 
to be closely associated with the occurrence of HCC and 
its dysfunction to inhibit tumor growth and metastasis 
(21,22). However, the molecular mechanisms underlying the 

participation of circRNAs in HCC progression remain elusive.
To explore the molecular regulatory mechanisms 

of HCC, we studied circRNA microarray profiles and 
identified 26 DEcircRNAs in HCC tissues and paired 
normal tissues. Then, qPCR was applied to detect the 
mRNA expression abundance of the 26 DEcircRNAs in 
SMMC-7721 cell lines. Finally, hsa_circ_0004913, hsa_
circ_0072389, hsa_circ_0000517, hsa_circ_0031027), hsa_
circ_0008160, and hsa_circ_0011536 were confirmed by 
qPCR to be significantly dysregulated in HCC cells. In 
addition, studies have indicated that circRNAs could act as 
promising biomarkers for cancer diagnosis (23). Therefore, 
our findings indicated that circTEX2 (hsa_circ_0004913), 
circHMGCS1 (hsa_circ_0072389), circRPPH1 (hsa_
circ_0000517), circTMCO3 (hsa_circ_0031027), circPIGP 
(hsa_circ_0008160), and circZMYM4 (hsa_circ_0011536) 
could represent potentially valuable diagnostic biomarkers 
for HCC treatment. The previous study demonstrated 
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that circRNAs had been deemed to possess the function 
of miRNA sponges, which can suppress the binding of 
miRNAs to target genes, regulating their expression (24). 
Therefore, we proposed the hypothesis that the circRNA-
miRNA-mRNA axis might be the possible molecular 
regulatory mechanism underlying HCC. In this study, 
we constructed a ceRNA network based on the above 6 
circRNAs and identified 11 DEmiRNAs and 114 mRNAs 
in this network. Through GO and KEGG pathway analysis, 
these mRNAs were suggested to participate in many crucial 
cancer-related biological functions and pathways.

To further identify the crucial circRNAs involving in the 
network, we screened 7 hub genes, and thereby established 
the circRNA-miRNA-hub gene network. Among this 
network, several miRNAs have been identified to play vital 
roles in the development and progression of HCC, such as 
miR-577 (25), miR-326 (26), miR-182 (27), miR-892a (28),  
and miR-581 (29). Moreover, using the TCGA and GTEx 
databases, we detected the expression of 7 hub genes and 
found that the expression levels of AURKA, KIF5B, and 
RHOA were elevated in tumor tissues compared with 
normal tissues and that higher expression of these genes was 
dramatically associated with poorer overall survival. Previous 
studies have shown that circRNAs could regulate host 
gene expression or work as a miRNA sponge, regulating 
miRNA-mediated gene expression and thus leading to 
tumor progression and development (30). In this study, we 
investigated DEcircRNAs in HCC and then selected the 
DEcircRNAs that had host genes that were differentially 
expressed in TCGA-LIHC data and correlated with the 
prognosis as a candidate circRNAs. Following this, we 
speculated that these candidate DEcircRNAs (circHMGCS1 
and circTMCO3) might participate in the pathogenesis of 
HCC. In addition, GSEA and GSVA analyses revealed that 
the functions of AURKA, KIF5B, and RHOA were also 
closely associated with cancer progression, which indicated 
that the circRNAs were meaningfully associated with HCC 
metastasis.

Conclusions

In conclusion, our research revealed circHMGCS1/miR-
581/AURKA ,  circHMGCS1/miR-892a/KIF5B, and 
circTMCO3/miR-577/RHOA regulatory axes, which could 
serve as novel biomarkers in the detection of HCC. Finally, 
bioinformatics analysis indicated that the interaction pairs 
of the circRNAs mentioned above might be involved in the 
initiation and development of HCC.
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Figure S1 Heat maps and volcano plots of the differentially expressed miRNAs between LIHC tissues and normal controls in the TCGA dataset.
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Figure S2 Heat maps and volcano plots of the DEGs between LIHC tissues and normal controls in the TCGA and GTEx datasets.
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Figure S3 The association between the expression of hub genes and clinical stage (P<0.05). (A) AURKA; (B) KIF5B; (C) RHOA.
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