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Background: Triple negative breast cancer (TNBC) account for about 20% of breast carcinomas and the 
American society of clinical oncology guidelines does not specify approaches for TNBC patients since lack of 
specific driver molecules and targeted drugs. 
Methods: We filtered out the aberrantly expressed mRNAs on the basis of RNA-seq data deposited in the 
Gene Expression Omnibus database, and verified and deeply analyzed screened differentially expressed genes 
(DEGs) using a combined bioinformatics approach. 
Results: Of 21,755 genes with 472 TNBC cases from 3 independent laboratories, 159 mRNAs were 
identified as DEGs. To verify our results, we assessed the expression levels of top 8 DEGs in Oncomine 
database. The hierarchical clustering analysis, functional and pathway enrichment analysis were carried out 
for all DEGs. The results reveal that N-acetyltransferase 1 (NAT1) is most obvious of expression change’s 
gene. Protein-protein interaction (PPI) network construction of 159 DEGs selected 3 hub genes: desmoglein 
3 (DSG3), family with sequence similarity 83 member D (FAM83D) and GATA binding protein 3 (GATA3). 
For further analysis of the potential role of NAT1 in TNBC, the co-expression profiles of NAT1 in BC were 
made out, and we found that there are 5 genes [GATA3, trefoil factor 3 (TFF3), forkhead box A1 (FOXA1), 
signal peptide, CUB domain and EGF like domain containing 2 (SCUBE2), G protein-coupled receptor 160 
(GPR160)] which co-expressed with NAT1 also were DEGs that we screened out before. Co-occurrence 
analysis confirmed that same as DEGs, GATA3 and SCUBE2 co-expressed with NAT1, and had a tendency 
towards a co-occurrence with NAT1 in TNBC. The survival curves showed that NAT1, GATA3 and SCUBE2 
expression are significantly related with prognosis. 
Conclusions: From all above results, we speculate that NAT1, GATA3 and SCUBE2 play a vital role in 
TNBC.
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Introduction

Breast cancer (BC) was the major cause of cancer death 
in women worldwide, with an estimated 268,600 new 
cases (30% of the total) and 41,760 deaths (15% of the 
total) among females in 2019 (1). Among all BC subtypes, 
triple negative breast cancer (TNBC) accounting for 
approximately 10% to 20% (2). TNBC was a special sub-
group of BC which didn’t express human epidermal growth 
factor receptor 2 (HER2) nor estrogen receptors (ER) or 
progesterone receptors (PR) (3-5). According to the working 
principle of estrogen synthesis blocking, ER antagonists or 
aromatase inhibitors were widely used in the therapy of BC 
patients who express ER or PR. Moreover, HER2-blocking 
antibody such as Trastuzumab or HER2 kinase such as 
Trikerb can effectively treat HER2+ breast carcinomas (6,7). 
However, TNBC patients had the worst prognosis among 
all BC patients; this is partly due to endocrine therapy or 
therapies targeting HER2 cannot work (8). The American 
society of clinical oncology (ASCO) guidelines did not 
specify approaches for TNBC patients thus far (9). Hence, 
it is urgent to find one or a few accurate indicators in the 
genesis and development of TNBC. We hope to shed light 
on exploring potential therapeutic targets in TNBC by our 
results of data analysis.

Better understanding of TNBC pathogenesis is vital 
to identify diagnosis markers and novel therapeutic 
methods. However, it should be noted that the definite 
etiopathogenesis of TNBC is still unclear despite there 
were a great deal of researches on the mechanism in 
TNBC formation (10-12). It is extremely important and 
sorely demanded to reveal the reason and the underlying 
molecular mechanisms since high morbidity and mortality 
of TNBC, also there is an urgent needed for early diagnosis, 
prevention and targeted therapy biomarkers (13,14). In 
the present study, we want to find one or several molecular 
biomarkers which may eventually be applied to noninvasive 
diagnosis of TNBC.

Microarray was a high-throughput platform which could 
measure the expression of global gene. It was widely used 
for searching for possible genetic or epigenetic alternations, 
identify molecular biomarkers such as carcinomas and 
so on (15,16). Huge amounts of cores slice data were 
produced with an extensive use of microarrays, and most 
of them were stored and shared in public databases (17,18). 
Because of data redundancy and variances, researchers 
sometimes reached different conclusions. For getting more 

accurate reasons about onset and progression of TNBC, we 
integrated, re-analyzed and verified the data stored in public 
databases. Some studies were done to seek differentially 
expressed genes (DEGs) in TNBC though gene expression 
profiling microarrays (19,20). However, independent 
researches involving heterogeneous tissues or samples, in 
addition, their results were obtained from a single cohort 
study, so their conclusions were limited or inconsistent. 
Consequently, key genes and pathways were difficult to 
confirm according to different studies. With our study, via 
integrated, re-analyzed and verified available and relevant 
expression profiling microarray data sets that uploaded in 
the Gene Expression Omnibus (GEO) database by different 
laboratories, one-sidedness of individual researchers is 
overcome and statistical power increased, therefor; the 
screening results are more precise and reliable.

In the present study, we have downloaded three original 
microarray datasets GSE65194 [55 TNBC samples, 95 non-
TNBC samples (36 HER+; 29 luminal A; 30 Luminal B)], 
GSE43358 [17 TNBC samples, 40 non-TNBC samples (14 
HER+; 16 luminal A; 10 luminal B)] and GSE76275 (198 
TNBC samples and 67 not triple-negative tumors) from 
GEO database (https://www.ncbi.nlm.nih.gov/geo). There 
was a total of 270 TNBC and 202 non-TNBC tissues 
available. Subsequently, the DEGs were screened using 
R language and 159 DEGs were filtered out from 21,755 
genes based on 3 independent datasets which contained 472 
BC cases. To better understand the molecular mechanisms 
of the onset and progression of TNBC, we conducted 
hierarchical clustering analysis, enrichment analysis for 
function and pathway on 159 screened DEGs. Then, by 
searching in protein-protein interaction (PPI) network, 
several important functional modules and hub genes were 
achieved from 159 screened DEGs.

Furthermore, we selected the top 8 DEGs with the 
most obvious expression difference to verify our previous 
results in this paper and evaluated their clinic pathological 
value and potential mechanism for TNBC. The expression 
signatures of the 8 DEGs in clinical cancer tissue were 
assessed by several databases. Their expressions in 
TNBC or non-TNBC tissues were analyzed in oncomine 
database. The co-expression analysis of selected 8 DEGs 
was performed by cBioportal reveals the co-occurrence 
or mutual exclusivity relationship, and gives clues to the 
possible underlying mechanism. The survival times of 
TNBC patients with high expression or low expression 
of DEGs were identified in the Kaplan-Meier plotter 

https://www.ncbi.nlm.nih.gov/geo
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database. All in all, we hope to throw further light on the 
molecular mechanism of TNBC and seek out the candidate 
biomarkers for drug targets, diagnosis and prognosis.

Methods

Microarray data selection

In our current study, the gene expression profiling data sets 
(ID: GSE65194, GSE43358, GSE76275) were obtained 
from National Center for Biotechnology Information-Gene 
Expression Omnibus (NCBI-GEO) database. We used 
“breast cancer array”, “human [organism]” and “expression 
profiling by array [dataset type]” as keywords for searching 
in GEO database. There were 1,460 results from this 
search condition. The microarray datasets were selected 
according to the following rules: the samples must contain 
human TNBC tissues; the patients did not receive special 
treatment, including radiotherapy and chemotherapy; and 
dataset tested genes were not less than 12,000. Under these 
conditions, we obtained 3 datasets to performing further 
analyze although there were 5 datasets contain TNBC 
tissues (GSE27447 and GSE37614 were excluded because 
only 10922 genes were tested in the two datasets). In other 
words, we collected mRNA-sequencing raw data from 3 
independent original researches. We collected the following 
information from each individual original research: number 
of TNBC tissues and non-TNBC samples, GEO accession 
number, sequencing platforms, and the most important 
gene expression data. The brief information about the GEO 
series to be analyzed was listed in Table 1. We download the 
raw data of 472 specimens from 3 independent GEO series. 
Totally 270 TNBC and 202 non-TNBC specimens were 
enrolled in GSE65194, GSE43358 and GSE76275. All 
mRNA-sequencing data were obtained to be integrated and 
re-analyzed. The platform GPL570 tested 21,755 genes’ 
expression values. The process of obtain, sieve and filter 
GEO series is shown in Figure 1.

Data preprocessing before integration and re-analysis

We started to process the raw data by Affy package in R 
language using Robust Multiarray Average algorithm and 
obtained expression data of each probe. With Annotation 
package of Bioconductor in R program language, we 
converted the expression data of the probe sets to expression 
profile of gene according to the platform Annotation files. 
There is many given genes’ expression data were tested by 
multiple probes in each GEO series, so we averaged the 
multiple probes expression data for just one gene according 
to gene symbol. Then, the expression values file of 21,755 
given genes was obtained. Of course, there were 3 tables 
since there were 3 independent GEO series. To integration 
and re-analysis of all data, we merged the gene expression 
value files of 472 patients from datasets of GSE65194, 
GSE43358 and GSE76275 into one output table according 
to gene symbol through using the package of sameGene 
in R language. Then the datasets of the output table were 
assigned into 2 groups: TNBC group and non-TNBC 
group.

We used the ComBat algorithm of the Surrogate 
Variable Analysis package in R language to conduct batch 
normalization on all expression profiling data. The function 
in R language could eliminate the systematic variations 
effectively from different independent researchers.

DEGs screening

We selected the DEGs by a Bioconductor software package 
called LIMMA in R program language using linear models 
from the normalized data of TNBC and Non-TNBC 
tissues. Expression values of DEGs with |Fold Change| >3, 
also known as |PP2FoldChange| (|log2FC|) >1.585 and 
adjusted P value <0.05 were the focus we pay attention to.

We draw the Volcano plot to show the distribution of 
all 21,755 genes for P value and fold change. Heat map 
of expression hierarchical clustering analysis for top 50 

Table 1 Characteristic of included microarray data

Expression profiling array (TNBC & non-TNBC) Platforms GEO accession Samples

Genome GPL570 GSE65194 55 TNBC; 95 non-TNBC

GSE43358 17 TNBC; 40 non-TNBC

GSE76275 198 TNBC; 67 non-TNBC

TNBC, triple negative breast cancer; GEO, Gene Expression Omnibus.
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genes was performed to investigate probable discrepancies 
between TNBC and non-TNBC tissues.

Function and pathway enrichment analysis of  
159 screened DEGs

To gain biological function sights of involved DEGs, we did 
functional enrichment analysis with FunRich. The FunRich 
software is a standalone functional enrichment and network 
analysis tool. It can be utilized to perform biological 
process, cellular component, and biological pathway 
enrichment analysis for a batch of genes with a filtering 
condition of P value <0.05.

PPI network and module analysis

The PPI network of DEGs can help us better understanding 
the molecular mechanisms by highlight the core signal 
pathways and core genes in carcinogenesis. It was 
constructed based on Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) database (21) and 
clarified which gene encoded protein had most interactions 
with other DEGs. Our study constructed and visualized the 
PPI network of 159 screened DEGs with a cut-off criterion 

of interaction score >0.4 and p value <0.05.
Moreover, to screen out ranked top proteins (these 

proteins corresponded genes called hub genes) which had 
most interactions with other DEGs, and correspondent 
modules of hub genes within PPI network, we conducted 
MCODE analysis by Cytoscape software with filter criteria 
of a number of nodes >4 and MCODE score >3. We 
selected and listed the top 3 hub genes with the threshold of 
connection degree >10.

Oncomine database verify analysis of top 8 DEGs selected 
from GEO database

Oncomine is a web-based platform for data store and re-
analysis. It contained about 4700 genome-wide expression 
analyses of over 50 different tumors (22). The expression 
levels of top 8 DEGs with most obvious expression changes 
were analyzed using Oncomine Database (https://www.
oncomine.org). We obtained and compared the mRNA 
expression fold change of screened DEGs in TNBC tissues 
and non-TNBC tissues through Oncomine. Co-expression 
analysis in Oncomine was used to find out which genes had 
synchronous expression patterns with our concerned DEGs. 
Based on heatmap and expression value fold change, we 

Figure 1 Process of pooling 3 microarray gene expression datasets.

1,460 results

Excluded GSE27447 and GSE37614

GSE65194 GSE43358 GSE76275

Search keywords: (breast cancer array) and (human [organism])  
and (expression profiling by array [dataset type])

Sieved series about breast canccer tissues  
contain TNBC

3 GEO series (472 samples)

GEO series  
in the NCBI
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analyzed the co-expression profiles of N-acetyltransferase 1 
(NAT1) in TNBC using Oncomine.

Kaplan-Meier plotter analysis of DEGs co-expression  
with NAT1

The Kaplan-Meier plotter is a web-based platform which 
was used to assess the effect of over 50,000 genes on 
survival in 6,234 BC samples (23). The prognostic value of 
NAT1 and its co-expression genes GATA binding protein 
3 (GATA3) and Signal peptide, CUB domain and EGF 
like domain containing 2 (SCUBE2) in BC and TNBC 
were analyzed by Kaplan-Meier Plotter (http://kmplot.
com/analysis/), and the log-rank test was used to test for 
significance (24).

Genetic alteration and co-expression analysis of  
interested DEGs

The cBioPortal (http://www.cbioportal.org) (25) is a 
web-based platform used for gene-based data interactive 
exploration. The alterations such as deep deletion, mRNA/
protein upregulation and downregulation, missense 

mutation and so on of NAT1 and its coexpression genes 
GATA3, trefoil factor 3 (TFF3), forkhead box A1 (FOXA1), 
G protein-coupled receptor 160 (GPR160) and SCUBE2 
in Breast Invasive Carcinoma (TCGA, provisional) was 
analyzed using cBioportal. The cBioPortal is also used 
for co-occurrence or mutual exclusivity and customizable 
correlation plot’s analysis.

Results

Normalization of mRNA expression data

We normalized mRNA expression data of 21,755 genes 
by batch normalization according to a median method of 
472 samples (270 TNBC and 202 non-TNBC specimens). 
The mRNA expression values of 472 TNBC and non-
TNBC specimens before and after batch normalizations 
were shown in Figure 2. X-axis represents independent 
samples. Y-axis represents expression value of genes. Black 
bold horizontal line displayed the medium expression value 
of 472 samples, after batch normalization, the medium 
expression value of 472 samples was almost consistent 
means the normalized data was eligible, so that we can do 
analysis further.

Figure 2 Box figures of expression values of all genes before and after normalization. The results before and after normalization were 
shown by the top and bottom box-plots describe the expression values of 472 samples from GSE65194, GSE43358 and GSE76275 datasets. 
The yellow column represents the samples from GSE65194. The red column represents the samples from GSE43358. The blue column 
represents the samples from GSE76275. The 3 groups (yellow, red, blue) on the left were TNBC tissues and the 3 groups (red, blue, yellow) 
on the right were non-TNBC tissues. TNBC, triple negative breast cancer.

Data before normalization (GSE65194+ GSE43358+GSE 76275)

Data after batch normalization (GSE65194+ GSE43358+ GSE76275)
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Selection of DEGs and expression hierarchical clustering 
analysis

The Limma package in R language was utilized to compare 
gene expression between TNBC tissues and Non-TNBC 
tissues and screened out DEGs with the criterion of |log2 
FC| >1.585 and P<0.05. The Limma package identified 
all DEGs through t tests statistic algorithm. We ranked 
significant genes based on fold change of genes’ expression 
values.

In total, 159 DEGs (95 up-regulated and 64 down-
regulated) obtained based on genes’ expression data of  
472 patients (270 TNBC and 202 non-TNBC from 3 GEO 
series). We list top 50 DEGs according to fold change 
of genes’ expression values in Table 2. The volcano plot  
(Figure 3) showed the distribution of all genes, the 
abscissa axis represents P values [−log10 (P value)] and axis 
of ordinates stands for fold change (log2 FC). The up-
regulated DEGs displayed by red dots, and green dots stand 
for down-regulated DEGs.

In Figure 4, To display and compare gene expression 
differences between TNBC and non-TNBC more 
intuitive, we draw the heat map with R software and select 
fold change patterns of top 50 highly DEGs to perform 
hierarchical clustering.

Function and pathway enrichment analysis of  
159 screened DEGs

To further investigate the biologic effects of aberrantly-
expressed DEGs in TNBC, we performed biological 
process enrichment analysis of 159 screened DEGs using 
Funrich software. The top 10 enriched biological processes 
are shown in Figure 5A. The functions of 159 DEGs 
in the biological process were largely focused on signal 
transduction, cell communication, regulation of nucleic acid 
metabolism, and so on.

In order to master which biologic pathways the DEGs 
involved in, biological pathway enrichment analysis 
was done, and we found that DEGs mainly enriched in 
Mesenchymal-to-epithelial transition (MET), mTOR 
signaling pathway, IL-3 mediated signaling pathway and so 
on (Figure 5B).

PPI network and module analysis

We constructed the PPI network for 159 screened DEGs 
using the open-access database STRING (Figure 6A). To 

find out the hub genes among 159 DEGs, we did module 
analysis through MODE function in Cytoscape software 
and top 3 hub genes and modules were shown in Figure 6B.  
Desmoglein 3 (DSG3), family with sequence similarity 
83 member D (FAM83D) and GATA3 were the top 3 hub 
genes.

Validation of the expression of top 8 aberrantly expressed 
DEGs based on heat map in Oncomine Database

To further elucidate the expression patterns of the DEGs 
between TNBC and non-TNBC tissues was consistent 
with our analysis result based on GEO data; a clinical 
study was performed in the light of previous results in 
Oncomine database. We screened out 159 DEGs from 3 
GEO series, 472 samples, including 64 down-regulated 
DEGs and 95 up-regulated DEGs. We selected 4 down-
regulated DEGs and 4 up-regulated DEGs which have 
most obvious expression changes according to heat map 
clustering analysis result for further analysis. The top 8 
aberrantly expressed DEGs were NAT1, MLPH, GATA3, 
TFF3, GABRP, FOXC1, KRT6B and KRT5. The results 
obtained according to Oncomine database confirmed that 
the expressions of the top 8 DEGs were consistent with our 
previous studies in accordance with data from GEO series 
(P<0.001) (Figure 7).

Potential molecular mechanism associated with NAT1  
in TNBC

To clarify which genes set had synchronous expression 
patterns, we performed Co-expression analysis using 
Oncomine. Based on previous results of difference analysis 
and clustering analysis, NAT1 is most obvious of expression 
change’s gene. A set of genes had a tendency toward co-
expressed with NAT1 in BC was picked up and presented in 
Figure 8A. The co-expression profiles for NAT1 were listed 
with a strong cluster of top 10% genes based on 167 breast 
carcinoma tissues. On the bright side, we found that there 
were 5 genes (GATA3, TFF3, FOXA1, SCUBE2, GPR160) 
which co-expression with NAT1 were DEGs that screened 
out from TNBC based on our previous results.

The OncoPrint from cBioPortal can provide a graphical 
summary of genomic/mRNA expression/protein expression 
alterations of sets of genes in different cancer samples. It 
summarized copy number alterations such as amplifications 
and deletions, genomic alterations such as mutations, 
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Table 2 Top 50 DEGs, either up- or down-regulation in non-
TNBC, screened between TNBC tissues and non-TNBC tissues 
from GSE65194, GSE43358 and GSE76275

Gene Log2FC P value

Up-regulated genes*

AGR3 5.367309395 2.62E−74

AGR2 4.148029974 6.36E−80

SCGB2A2 3.924608354 1.42E−28

ANKRD30A 3.840986534 3.13E−60

CYP4Z1 3.501567014 5.27E−45

FOXA1 3.479470611 6.43E−70

SCUBE2 3.161262427 1.80E−40

TFF1 3.082665802 3.93E−28

TFF3 2.978673511 1.77E−36

MLPH 2.969707165 2.39E−48

GATA3 2.875555464 5.23E−49

SIDT1 2.854203605 9.62E−69

C8orf4 2.822553566 1.56E−37

NAT1 2.778675595 3.30E−43

CYP4Z2P 2.747967401 3.50E−43

PRR15 2.660482857 9.26E−75

MUCL1 2.640214101 6.45E−16

GPR160 2.45896542 1.14E−48

GUSBP9 2.434891966 5.22E−30

PIP 2.408833354 6.45E−17

C9orf152 2.329344343 2.03E−40

SCGB1D2 2.307943965 3.43E−17

SLC16A6 2.300692779 7.76E−53

CEACAM6 2.272862511 7.19E−17

CAPN8 2.271306581 5.85E−39

ACADSB 2.231035018 6.09E−60

ADIRF 2.21824273 1.98E−57

FSIP1 2.190739486 3.03E−44

GALNT6 2.188051184 5.01E−52

MUM1L1 2.15674162 7.76E−50

VAV3 2.145614422 1.25E−57

PGR 2.115059779 3.46E−39

DHRS2 2.091310833 5.52E−18

Table 2 (continued)

Table 2 (continued)

Gene Log2FC P value

CRIP1 2.084795021 2.80E−36

DACH1 2.083325481 7.08E−42

GRP 2.07496712 2.94E−39

DNALI1 2.036210855 2.29E−56

ACOX2 2.035081416 1.51E−48

SLC44A4 2.033853504 2.27E−60

FAM110C 2.017948794 1.74E−31

GFRA1 2.003608609 1.67E−29

TFAP2B 2.001264247 9.83E−30

AR 1.987546306 5.74E−31

SMIM14 1.980779674 4.99E−74

CYP2B7P 1.936882981 1.00E−17

GUSBP3 1.935640297 9.28E−38

POLI 1.915107187 2.30E−57

BCAS1 1.877903131 1.88E−74

TMC5 1.87548313 2.39E−46

TOX3 1.872964283 7.02E−29

Down-regulated genes**

GABRP −3.690068915 2.74E−37

ROPN1B −2.866876028 1.87E−46

KRT5 −2.765696183 1.60E−31

PPP1R14C −2.619397604 2.36E−44

FOXC1 −2.579072145 6.28E−59

PGBD5 −2.502304469 7.64E−38

PROM1 −2.406614771 3.78E−19

HORMAD1 −2.382079389 6.87E−28

KRT6B −2.31866403 1.52E−33

CHI3L2 −2.212420403 2.39E−29

ROPN1 −2.190087204 1.58E−40

FDCSP −2.179202465 1.93E−13

ELF5 −2.158960236 1.00E−30

MARCO −2.138481097 3.20E−41

SLC34A2 −2.131055048 1.00E−53

FAM171A1 −2.060415413 6.00E−55

KIAA1804 −2.034683723 1.54E−43

Table 2 (continued)
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and mRNA or protein expression changes. We analyzed 
genomic alterations of NAT1 and its co-expression genes 
using cBioPortal and 52% cases with genetic alterations 
had been obtained (Figure 8B). The mutual exclusivity from 
cBioPortal can provide information of genes’ potential 
relationship in different cancer, so we used cBioPortal 
to explore the probable co-occurrence of NAT1 and its 
co-expression genes. As Table 3 showed, same as DEGs, 
SCUBE2 and GATA3 had a tendency towards co-
occurrence with NAT1 in TNBC.

Key DEGs expression in TNBC was related to survival 
outcome based on Kaplan-Meier plotter

According to our previous bioinformatics analyses and 
validation, the expression of NAT1 was down-regulated 
obviously in TNBC. Same as DEGs, GATA3 and SCUBE2 
co-expressed with NAT1, and had a tendency towards 
a co-occurrence with NAT1 in TNBC. To explore the 
association of NAT1, GATA3 and SCUBE2 expression with 
survival outcome of TNBC patients, we draw survival 
curves using Kaplan-Meier plotter database. As Figure 9A, 
B,C showed, the high expression of NAT1, GATA3 and 
SCUBE2 were positive correlated with better prognosis 

Table 2 (continued)

Gene Log2FC P value

EN1 −2.030698626 2.82E−27

PRAME −1.993231048 1.87E−27

BBOX1 −1.983016474 5.10E−24

KRT16 −1.977914594 1.04E−36

DSG3 −1.974740056 1.67E−23

UGT8 −1.971689891 2.97E−35

SOX8 −1.970604171 6.10E−28

TCF7L1 −1.949027564 5.35E−44

MMP7 −1.926314159 7.91E−24

MIA −1.907102849 3.61E−33

BCL11A −1.87860922 2.91E−33

FAM64A −1.875836143 4.45E−58

CT83 −1.855277028 1.85E−26

SLC7A5 −1.846670089 2.41E−37

SYNM −1.839182153 2.06E−26

LY6D −1.828259693 3.05E−29

SHC4 −1.826865414 2.19E−24

TTYH1 −1.818126464 1.84E−34

CRYAB −1.815523519 3.18E−26

PSAT1 −1.779514025 3.10E−31

PTX3 −1.773838154 6.89E−18

NRTN −1.76293207 7.16E−41

SFRP1 −1.751070187 8.41E−26

PHGDH −1.750481413 1.16E−46

KCNK5 −1.749430198 5.77E−43

MMP12 −1.748540135 1.21E−13

SOSTDC1 −1.735494318 8.97E−21

CXCL1 −1.735027681 1.82E−25

ADGRG2 −1.698026849 4.21E−23

CCL18 −1.689598525 2.93E−17

VANGL2 −1.682771432 8.55E−30

ART3 −1.68259172 2.79E−16

MELK −1.670666213 4.47E−32

*, there are 95 up-regulated genes (log2FC >1.585), we list top 
50 of them; **, there are 64 down-regulated genes (log2FC 
>1.585), we list top 50 of them. TNBC, triple negative breast 
cancer; DEG, differentially expressed gene.

Figure 3 Volcano plot of the aberrantly expressed genes. The red 
spots represent up-regulated genes which |Log2(Fold Change)| 
>1.585; the green spots represent down-regulated genes which 
|Log2(Fold Change)| >1.585; black spots show the genes with 
expression of |Log2(Fold Change)| <1.585.
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(P<0.001). However, in TNBC patients, the effect of 
mRNA expression of NAT1, GATA3 and SCUBE2 on 
cancer progression wasn’t statistically significant (P>0.05). 
But based on the figures, differentially expressed NAT1 and 
GATA3 had diverse survival times; no statistical differences 
maybe on account of insufficient samples.

The correlation plots from cBioPortal were used to 
visualizing the relationship between mRNA expression of 
NAT1 and GATA3 or SCUBE2 (Figure 9D). Their mRNA 
expression had positive correlation.

Discussion

TNBC was a distinctive sub-group of BC which didn’t 
express HER2 nor ER or PR (26-28) and accounted for 
10–20% of BC patients (29). TNBC patients always had 

poor prognosis, higher probability to metastasis, and 
the lower five-year survival rates. Fortunately, scientific 
advancements of BC improved the survival outcome of BC 
patients greatly. Molecular markers of HER2, ER and PR 
are widely applied in clinical for specific treatments, with 
excellent predictive value and prognostic value (3,30,31). 
However, TNBC remains the most intractable problem 
among all BC subtypes since lack of molecular therapeutic 
targets. TNBC patients had only limited treatment options 
because of hormone receptor and HER2 receptor expressed 
low and researchers are keenly attempting to identify new 
treatments (32,33).

A field which has recently contributed significantly to 
improved diagnostics, classification and prognostics are BC 
transcriptomics, a whole transcriptome high throughput 
sequencing and analysis technique, which identifies changes 

Figure 4 Heat map of expression hierarchical clustering analysis for top 50 DEGs filtered from 472 specimens. DEG, differentially 
expressed gene.
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in the RNA expression, is now being used to obtain more 
effective information of the molecular mechanism of 
BC (34,35). With our study, via integrated, re-analyzed 

and verified available and relevant expression profiling 
microarray data sets that uploaded in GEO database 
by different laboratories, one-sidedness of individual 

Figure 5 Significant biological processes (A) and biological pathways (B) enrichment analysis of 159 differentially expressed genes (DEGs). 
The X axis represents the percentage of DEGs; the Y axis represents enriched biological processes and pathways.
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researchers is overcome and statistical power increased, 
therefor; the screening results are more precise and reliable.

In the current research, we focused on the differentially 
expressed mRNAs between TNBC and non-TNBC tissues 
according to GEO microarray data. From 472 samples 
from independent labs and 21,755 genes, we screened 
out 64 down-regulated and 95 up-regulated DEGs under 
condition of |Fold Change of genes expression values| >3 
and P<0.05.

Biological process analysis of all DEGs demonstrates 
that the DEGs were mainly involved signal transduction, 
cell communication and nucleic acid metabolism. Qiu et al.  
reported that inhibition of the Notch1 signal pathway can 
induce apoptosis, inhibit angiogenesis, and influence cell 

cycle distribution in TNBC (36). The RAF/MEK/ERK signal 
transduction pathway also plays an important role in TNBC, 
De Luca et al. reported that it regulates cell growth and 
proliferation, differentiation and migration of BC cells (37).  
Wnt/β-catenin pathway had also been well-documented 
of taking a vital role in the development of TNBC (38). 
Nevertheless, researches had continued to explore a more 
definite relationship between signal transduction molecules 
and TNBC patients’ survival rate since their conclusion 
still controversial. Furthermore, the enriched biological 
pathways of the DEGs we selected included MET, mTOR 
signaling pathway and IL-3 mediated signaling pathway. 
Numerous studies had reported epithelial-to-mesenchymal 
transition (EMT) can be induced by receptor tyrosine 

Figure 6 PPI network (A) and top 3 modules (B) of all DEGs. Yellow balls showed the hub genes, and blue balls are for hub genes co-
expressed genes. PPI, protein-protein interaction; DEG, differentially expressed gene.
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kinases (RTKs) including c-Met, epithelial growth factor-
receptors and IGF-1R ,  and EMT always promoted 
tumor progression, in development of carcinoma, RAF/
MEK/ERK1/2 axis,  PI3k/Akt/mTOR pathways ,  and 
phosphorylation of β-catenin were play a critical role  
(39-41). Function analysis helps us better to understand 
the mechanism of TNBC and provides a guide for TNBC 
prevention and treatment; however, further laboratory and 
clinical researchers are required to verify this.

PPI network clearly revealed the function relationship 
of all 159 DEGs, further analysis identified top 3 hub 
genes: DSG3, FAM83D and GATA3. DSG3 reflects a 
strong relationship with Keratins in functional connections. 

Coincidentally, we assessed the expression difference of 
KRT5 and KRT6B in TNBC tissues and control specimens 
using oncomine database and the result consistent with our 
analysis result based on GEO database. Zinc-finger binding 
transcription factor GATA3 which belonged to GATA family 
had been reported many times closely associated with breast 
carcinomas. It was a specific marker based on our existing 
knowledge (42). In the current study, we verified that as an 
aberrantly expressed mRNA, GATA3 is down-regulated in 
TNBC and survival outcome of TNBC patients with low 
GATA3 was worse.

To verify our previous results in this paper, we assessed 
the expression levels of top 8 DEGs with most obvious fold 

Figure 7 Comparisons of top 8 DEGs expression between TNBC and non-TNBC tissues in Oncomine database. Box plots derived from 
gene expression data in Oncomine database comparing expression of the down-regulated DEGs (A) and up-regulated DEGs (B) in TNBC 
(light blue columns) and non-TNBC tissues (dark blue columns). The X axis indicates tissue types. The Y axis represents the normalized 
expression of mRNAs. DEG, differentially expressed gene; TNBC, triple negative breast cancer.

NAT1
P value: 8.02E-10

Fold change: 7.067

GABRP
P value: 1.95E-8

Fold change: 13.593

TNBC

TNBC

TNBC

TNBC

TNBC

TNBC

TNBC

TNBC

Luminal-like 
BC

Luminal-like 
BC

Luminal-like 
BC

Luminal-like 
BC

Luminal-like 
BC

Luminal-like 
BC

Luminal-like 
BC

Luminal-like 
BC

MLPH
P value: 9.36E-16

Fold change: 6.186

FOXC1
P value: 7.09E-6

Fold change: 2.367

GATA3
P value: 6.68E-16

Fold change: 10.132

KRT6B
P value: 3.32E-6

Fold change: 6.436

TFF3
P value: 7.61E-20

Fold change: 20.641

KRT5
P value: 7.38E-5

Fold change: 3.972

5.0

4.0

3.0

2.0

1.0

0.0

−1.0

5.0

4.0

3.0

2.0

1.0

0.0

−1.0

−2.0

3.0

2.0

1.0

4.0

3.0

2.0

1.0

0.0

−1.0

−2.0

−3.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

−1.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

5.0

4.0

3.0

2.0

1.0

0.0

5.0

4.0

3.0

2.0

1.0

0.0

A

B



Annals of Translational Medicine, Vol 8, No 6 March 2020 Page 13 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(6):363 | http://dx.doi.org/10.21037/atm.2020.02.51

changes. The expression levels of NAT1, MLPH, GATA3, 
TFF3, GABRP, FOXC1, KRT6B and KRT5 were analyzed 
in Oncomine database, respectively. And the results are 
consistent with the previous conclusion obtained from 
GEO series. It proved that the DEGs screened from GEO 
database are reliable. There were a few researches about 

the relationship with MLPH (43), GATA3 (44), TFF3 (45), 
GABRP (46), FOXC1 (47), KRT6B, KRT5 (48) and TNBC. 
However, few reports have revealed the association between 
NAT1 and TNBC. Clustering analysis which performed 
to investigate probable discrepancies between TNBC 
and Non-TNBC tissues also revealed that NAT1 is most 

Figure 8 The co-expression profiles’ analysis of NAT1 (A) and genetic alterations analysis of NAT1 and its co-expression genes (B).
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obvious of expression change’s gene.
To explore further the potential role of NAT1 in TNBC, 

we did co-expression analysis for NAT1 in BC tissues, and 
we found that there were 5 genes (GATA3, TFF3, FOXA1, 
SCUBE2, GPR160) which co-expression with NAT1 
also were DEGs that we screened out from TNBC. We 
analyzed genomic alterations, co-occurrence or mutual 
exclusivity relationship between NAT1 and its co-expression 
genes using cBioPortal. There was a tendency towards 

co-occurrence between NAT1 and SCUBE2 or GATA3 in 
TNBC. That is to say, same as DEGs, GATA3 and SCUBE2 
co-expressed with NAT1, and had a tendency towards a co-
occurrence with NAT1 in TNBC. From all above results, 
we speculate that NAT1, SCUBE2 and GATA3 play an 
important role in TNBC. The survival curves show that the 
probability of BC progression was found to be statistically 
significant with high NAT1 ,  GATA3  and SCUBE2 
expression as compared to that of low NAT1, GATA3 and 

Table 3 Co-occurrence or mutual exclusive alterations of NAT1 and its co-expression genes

Gene A Gene B P value Log odds ratio Association

NAT1 SCUBE2 <0.001 1.160 Tendency towards co-occurrence

NAT1 GATA3 0.069 0.411 Tendency towards co-occurrence

NAT1 FOXA1 0.273 0.287 Tendency towards co-occurrence

NAT1 GPR160 0.549 −0.036 Tendency towards mutual exclusivity

NAT1 TFF3 0.592 −0.030 Tendency towards mutual exclusivity

The query contains 2 gene pairs with mutually exclusive alterations (all significant), and 3 gene pairs with co-occurrent alterations  
(1 significant). Log odds ratio >0: association towards co-occurrence; log odds ratio ≤0: association towards mutual exclusivity; P value 
<0.05: significant association; P value: derived from Fisher exact test; log odds ratio: quantifies how strongly the presence or absence of 
alterations in gene A are associated with the presence or absence of alterations in gene B in the selected tumors.

Figure 9 Prognostic value of NAT1 (A) and its co-expressed DEGs GATA3 (B) and SCUBE2 (C) in breast cancer and TNBC. Data were 
obtained from the Kaplan-Meier plotter database. The P value was calculated by a log-rank test. (D) Co-occurrence or mutual exclusivity 
analysis of the 3 DEGs. TNBC, triple negative breast cancer; DEG, differentially expressed gene.
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SCUBE2 expression (P<0.01). The mRNA of GATA3 and 
SCUBE2 had positive correlation with NAT1.

This study had several limitations. Firstly, the survival 
curves of NAT1, GATA3 and SCUBE2 between TNBC and 
Non-TNBC wasn’t statistically significant (P>0.05), but on 
the basis of the figure, differentially expressed NAT1 and 
GATA3 have diverse survival times, statistical nonsense may 
on account of insufficient samples. Secondly, although we 
performed data integration, normalization and reanalysis for 
sequencing results from 3 independent labs, and preliminary 
validated our results, more experiments are needed to make 
further research. Of course, we will integrate existing results 
into our future experiments and continue to explore the 
molecular mechanisms of TNBC.

Through our research, via integrated, re-analyzed 
and verified available and relevant expression profiling 
microarray data sets that uploaded in GEO database 
by different laboratories, one-sidedness of individual 
researchers is overcome and statistical power increased, 
therefor; the screening results are more precise and reliable. 
Our study provides information for researchers to identify 
potential candidate molecular biomarkers and pathways, 
which play an important role in TNBC may be utilized for 
drug targets, diagnosis and prognosis. It was obvious that 
our results give more insight of TNBC carcinogenesis and 
were on behalf of a valuable resource for future studies.

Conclusions

Our research integrated, re-analyzed and verified whole 
genome sequencing microarray data from 3 individual 
labs, there are 159 DEGs match our screening condition. 
Biological process analysis, biological pathway analysis, 
and PPI network helped us identify some genes and 
pathways significantly correlated with TNBC progression. 
Validation experiments verified that expression patterns of 
top 8 DEGs consisted of NAT1, MLPH, GATA3, TFF3, 
GABRP, FOXC1, KRT6B and KRT5 in oncomine database 
are consistent with their expression level in GEO series. 
Clustering analysis which performed to investigate probable 
discrepancies between TNBC and Non-TNBC tissues 
revealed that NAT1 is most obvious of expression change’s 
gene. Moreover, same as DEGs, GATA3 and SCUBE2 co-
expressed with NAT1, and had a tendency towards a co-
occurrence with NAT1 in TNBC. As a hub gene of PPI 
network, the mRNA of GATA3 had positive correlation 
with NAT1. The survival curves show that the probability of 
BC progression was found to be statistically significant with 

high NAT1, GATA3 and SCUBE2 expression as compared to 
that of low NAT1, GATA3 and SCUBE2 expression (P<0.01). 
From all above results, we speculate that NAT1, SCUBE2 
and GATA3 play an important role in TNBC.
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