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Invadopodia: clearing the way for cancer cell invasion
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Abstract: The invasive nature of many cancer cells involves the formation of F-actin-based, lipid-raft-
enriched membrane protrusions known as invadopodia or, more broadly, invadosomes. Invadopodia are 
specialized adhesive structures arising from ventral cell surface within cell-extracellular matrix (ECM) 
contacts and concentrate high proteolytic activities that allow cells to overcome the dense scaffold of local 
microenvironment, comprising a natural barrier to cell spreading. This degradative activity distinguishes 
invadopodia from other adhesive structures like focal adhesions, lamellipodia or filopodia, and is believed to 
drive cancer progression. 
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For the first time invadopodia were spotted in cultured 
chicken embryo fibroblasts transformed by Rous sarcoma 
virus at the beginning of the 1980s and described as circular 
clusters (rosettes) of small patches with altered distribution of 
vinculin and alpha-actinin (1). Chen, in 1989, termed them 
invadopodia to emphasize their degradative abilities attributed 
to cancer cells (2). Alternatively, similar structures that could be 
observed in various normal human cells, such as macrophages, 
osteoclasts or dendritic cells, have been named podosomes (3).

Invadopodia structure and function

Invadopodia protrusions are rather stable structures that 
can last for several hours (4). They were established to 
have range from 0.05 to 0.1 µm in diameter and almost  
2 µm in length (5). Structurally, they consist of two major 
components, an F-actin core enriched in actin-regulatory 
molecules, such as Arp2/3, N-WASP or WASP, and their 
upstream regulators Nck1, Cdc42 or WIP, next to cofilin, 
capping proteins, cortactin, and dynamin-2, and a protein 

ring surrounding the core. The ring is a structure formed 
of packed adhesion and scaffolding proteins, such as β1 
integrins and CD44 receptor, as well as signaling molecules 
and membrane-associated proteases. Among them there are 
proteins such as focal adhesion kinase (FAK), src-associated 
proteins such as p130Cas and Tks5/FISH (tyrosine kinase 
substrate 5/five SH3 domains), and the small G proteins 
Arf1, and Arf6, serine proteinases like seprase or dipeptidyl 
peptidase IV, and various matrix metalloproteinases (MMPs) 
and ADAMs, as well as the urokinase-type plasminogen 
activator (uPA) receptor (uPAR) proteolytic system (6,7). 
Invadopodia are identified as dot-shaped areas of degraded 
fluorescently labeled extracellular matrix (ECM) proteins, 
that colocalize with invadopodia-associated protein 
components, in vitro. The identification of invadopodia in 
natural conditions is still very challenging due to technical 
limitations. Recently, membrane protrusions formed by 
cancer cells during intravascular migration have been shown 
in an embryonic zebrafish xenograft model, using high-
resolution in vivo imaging (8-10). The ability of cancer cells 
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to form invadopodia correlates well with their in vitro and  
in vivo invasive potential (11).

Invadopodia formation

Invadopodia formation is a highly dynamic and complex 
process, which can be divided into three successive 
phases: initiation, stabilization, and maturation. The 
initiation phase includes the assembly of actin-based 
precursor complexes and cortactin-dependent actin 
polymerization that extends plasma membrane and 
drives elongation of cellular protrusions. A critical step 
in this phase is activation of the actin-related protein 
(Arp)2/3 complex that initiate actin nucleation and 
is necessary to start actin filament branching (12).  
During the stabilization phase, newly formed actin 
filaments are crosslinked into tightly packed bundles and 
anchored to plasma membrane by fimbrin, mDia2 and 
VASP, as well as myosinX and Tks5/FISH, to form a stable, 
three-dimensional functional structure (13,14). During 
the maturation phase, proteins with proteolytic activity are 
recruited to invadopodia, making them able to promote 
focal ECM degradation. The invadopodia formation process 
starts in response to different extracellular stimuli such as 
growth factors, cytokines and integrin-linked extracellular 
signals, but not only. The exposure to acidic pH, matrix 
rigidity, hypoxia, and reactive oxygen species (ROS) were 
also found to induce invadopodia formation (15-20). 
However, in all cases intracellular signal transducers are 
activated to initiate nucleation of F-actin. 

Invadopodia-associated receptor tyrosine 
kinases

Transforming growth factor-beta (TGF-β), vascular 
endothelial growth factor (VEGF), epidermal growth factor 
(EGF), platelet-derived growth factor (PDGF), hepatocyte 
growth factor (HGF), heparin binding EGF (HB-EGF) and 
tumor necrosis factor-alpha (TNF-alpha) have been found 
to stimulate invadopodia formation in a large number of 
cancer cell lines (21-24). All these factors are also known 
to be highly expressed in different malignancies and often 
correlated with a poor prognosis. 

Most growth factors are associated with kinase activities 
(25,26). Proteins that catalyze the transfer phosphate groups 
to tyrosine residues of protein substrates comprise the 
largest class of growth factor receptors, known as receptor 
tyrosine kinases (RTKs), and were shown to be crucial for the 

invadopodia initiation and function (27). Upon binding of 
signals, RTKs recruit enzymatic effectors, including MAPK, 
PI3K, Src, PLCγ, JAK/STAT, to their intracellular domains, 
or act indirectly through adapter proteins, forming complexes 
capable of activating signaling pathways. Cell surface tyrosine 
kinase receptors like platelet-derived growth factor receptor 
alpha (PDGFRα), hepatocyte growth factor receptor (HGFR) 
or epidermal growth factor (EGFR), were recognized as 
mediators of changes in cellular actin distribution (28,29). 
Their activation resulted in formation of punctate clusters, 
consistent with invadopodia focal digestion of ECM (21,30). 
Eckert et al. have shown that this process was dependent on 
Twist1, one of key transcription factors regulating epithelial 
to mesenchymal transition (EMT). Twist1 directly induced 
PDGFRα expression and activation and Src-dependent 
phosphorylation of cortactin (31,32). 

Invadopodia-associated non-receptor tyrosine 
kinases

Src is a member of the membrane-bound non-receptor 
tyrosine kinase family that is ubiquitously expressed in cells 
and identified as a key mediator of tumor malignancy (33).  
It is activated through the SH3- and SH2-mediated 
interactions with both various receptor tyrosine kinases 
(RTKs) and different adaptor proteins of CRK-associated 
substrate (CAS) family or focal adhesion kinase (FAK). 
The 80/85-kDa cortactin, an actin binding protein 
which is one of the major Src tyrosine kinase protein 
substrates, has been recognized as both a nucleation-
promoting factor that activates Nck1-N-WASp-Arp2/3 
complex and a stimulator of a matrix metalloproteinase 
(MMP) secretion in invadopodia (34-36). Using the 
crosslinking reagent, it was demonstrated that cortactin 
binds the Arp3 subunit of the Arp2/3 complex directly via 
the N-terminal acidic domain, making a bridge between 
the Arp2/3 complex and actin filaments (37). Cortactin 
is also known to bind and activate N-WASP and WASP 
via its C-terminal SH3 domain. All members of Wiskott-
Aldrich syndrome protein (WASP) family and the WASP-
family verprolin-homologous protein (WAVE), encoding 
by WASP, N-WASP, WAVE1/SCAR1, WAVE2, and 
WAVE3 genes, contain a conserved C-terminal verprolin 
homology, cofilin homology, and acidic region (VCA) 
domain that interacts with the Arp2/3 proteins, and thereby 
stimulate Arp2/3-mediated actin polymerization (38-40).  
The formation of the complex between ARP2/3 and 
N-WASP as well as binding their ligands such as CDC42, 
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WASP-interacting protein (WIP), and dynamin-2 is 
stimulated by cortactin phosphorylation (37,41,42). The 
phosphorylation of two tyrosine residues, Y421 and Y466, 
of the cortactin was shown as a critical point that regulates 
cortactin-Nck1 direct interactions and promotes free actin 
barbed ends generation during invadopodia formation 
process (34). The silencing of cortactin gene expression 
effectively inhibited ECM degradation at invadopodia 
sites same as the using MMP inhibitors, GM6001 or  
TIMP-2 (35). Moreover, the total inhibition of in vitro 
cell invasion was observed in cancer cells expressing the 
cortactin Y466F mutant, indicating that the phosphorylation 
of cortactin is essential also for matrix proteolysis and cancer 
cell migration (34). These data are consistent with other 
studies describing that the use of tyrosine kinase inhibitors 
resulted in the reduction of invadopodia formation as well as 
the ability to degrade ECM in cancer cells (22). Contrary to 
Src phosphorylation-dependent binding of Nck1, the ability 
of cortactin to bind N-WASP depends on phosphorylation 
of cortactin by ERK1/2 (38). Of the WAVE family proteins, 
WAVE3 but not WAVE1 and WAVE2, were found to be 
required for the invadopodia formation. However, similar to 
WAVE3, WAVE1 has been shown to play an indirect role 
in matrix degradation. It was observed that cells with the 
knockdown of WAVE1 had decreased secretion of MMP2, 
correlating with diminished invadopodia-related degradation 
activity (30). Instead, the silencing of WAVE3 resulted in 
the downregulation of MMP9 expression and activity due to 
inhibition of NFkB-p65 phosphorylation (24). 

Src homology-3 (SH3) domain-rich tyrosine kinase substrate 
(Tks) adaptor proteins, Tks4 (SH3PXD2B) and Tks5/FISH, 
were identified as another Src substrates having an influence 
on both the number and activity of invadopodia (43,44). Both 
Tks4 and Tks5 were also identified as needful factors in cancer 
progression (45,46). These proteins, analogues of the NADPH 
oxidase (NOX) components like NOX organizer 1 (NOXO1) 
or p47phox, facilitate local generation of reactive oxygen 
species (ROS), which has been proved essential for invadopodia 
formation processes (47). The amino-terminal Phox homology 
(PX) domain that shows strong binding to phosphoinositides 
(PIs) such as phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2]  
and phosphatidylinositol-3-phosphate (PI3P/PtdIns3P) was 
found to be required for the invadopodia localization of both 
Tks4 and Tks5 (43,44). 

Invadopodia lipid rafts

PIs, membrane-bound signaling phospholipids generated by 

the phosphoinositide 3-kinase (PI3K) family of lipid kinases, 
are involved in the stimulation of a wide range of secondary 
messenger molecules. On the other site, they also can bind 
various actin-binding proteins and function as a bridge 
connecting the cytoskeleton to the plasma membrane. They 
are known to colocalized with sphingolipid- and cholesterol-
enriched microdomains, named lipid rafts, and provide an 
important element of lipid raft-related signal transduction 
processes (48,49). It is evident that lipid rafts, which are 
highly ordered and tightly packed regions of membrane, act 
as signaling platforms that regulate transmembrane crosstalk 
between cells and ECM. Raft domains laterally segregate 
proteins or form protein clusters by fusing of smaller 
domains into larger cholesterol-based protein assemblies 
and, therefore, they may reduce or promote interactions 
for signaling. Using different lipid raft-disrupting agents or 
blockers of glycosphingolipid synthesis have been shown 
to impair the formation and function of invadopodia as 
well as the invasive potential of cancer cells (50-53). Lipid 
rafts play also an important role in the delivery of newly 
synthetized proteins, including proteolytic enzymes, to 
the cell surface (54-56). The increased localization of 
membrane-anchored proteinases such as membrane type 
1 matrix metalloproteinase (MT1-MMP) or ADAMs 
in lipid rafts, as well as upregulation of seprase, matrix 
metalloproteinase 2 (MMP2) and matrix metalloproteinase 
9 (MMP9), positively correlate with the ECM-degrading 
activity of invadopodia and enhanced invasion of cancer 
cells (53,57). As was found, the stimulation of cancer cells 
with TNF-alpha, the promigratory cytokine, resulted in the 
enhanced concentration of both the invadopodia-associated 
dipeptidyl peptidases and matrix metalloproteases in lipid 
rafts (58). While MMP2 and MMP9 are secretory proteins, 
small amounts of them have consistently been found to be 
associated with cell surface. Yu et al. have shown that CD44 
which is the cell surface hyaluronan (HA) receptor serves 
as a docking molecule for a proteolytic form of the matrix 
MMP9 and thereby adds the proteolytic activity to the 
cell membrane in melanoma cells (59). Similarly, the αvβ3 
integrin was demonstrated to associate with a proteolytically 
active form of MMP2 on the surface of melanoma cells to 
facilitate cell-mediated ECM degradation (60,61). 

The direct association of αvβ3 or β1 integrins with 
MT1-MMP, resulting in the regulation of ECM-dependent 
proteolytic activity and MT1-MMP internalization at 
invadopodia (62). It is known that sorting and intracellular 
transport of MT1-MMP is critically important for invasion-
promoting function in cancer cells and depends on many 
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different proteins, including vesicle regulators such as Rab 
GTPases (63). 

In this context, it has been shown that the integrated 
co-trafficking of β3-integrin and MT1-MMP in Rab5a-
dependent endo-exocytic cycles was necessary for HGF-
stimulated formation of invadopodia and remodeling of 
the ECM (28). Consistently, integrin receptors which 
are heterodimeric transmembrane adhesion proteins and 
mediate interactions between the cytoskeleton and the 
ECM components such as fibronectin, type I collagen, and 
laminin, to regulate the cell shape, polarity, and movement 
of cells, were found as highly expressed factors in many 
cancers and were identified as crucial components of 
invadopodia (64,65). The cell surface receptor, CD44, is a 
ubiquitous transmembrane glycoprotein that is known to 
interact with various ligands including hyaluronic acid (HA), 
osteopontin (OPN) and different types of collagens as well 
as laminin and fibronectin. It was observed that interactions 
between CD44 and HA led to MT1-MMP-dependent 
invasiveness by the induction of the CD147-associated 
activation of EGFR-Ras-ERK signaling pathway (66).  
Matrix metalloproteinases (MMPs) have been shown to 
be key players in the invadopodia activity and positively 
correlated with tumor progression, metastasis, and poor 
overall prognosis.

Invadopodia-associated proteolytic enzymes

Membrane-type metalloproteinases 

MT1-MMP, known as MMP14, is an integral type I 
transmembrane protein of the MMP family synthesized as a 
∼64-kDa proenzyme. MT1-MMP is cleaved into the active 
∼57-kDa form by furin-like proprotein convertases during 
trafficking from the trans-Golgi network to the cell surface. 
It was found to localize predominantly in invadopodia. 
MT1-MMP shows a broad substrate specificity and plays 
diverse cellular functions owing to their degradation ability. 
In addition to the catalytic domain, the extracellular region 
contains a hemopexin-like (PEX) domain which is involved 
in homodimerization of MT1-MMP, a crucial process 
for its collagenolytic activity as well as for the activation 
of proMMP-2 on the cell surface. The PEX domain 
participates also in heterodimerization/oligomerization 
of MT1-MMP with the cell surface adhesion molecules. 
The transmembrane-cytoplasmic fragment, including 
a short cytoplasmic tail composed of 20 amino acid 
residues, was shown to be required for invadopodia 

localization and crucial for cellular invasion (67).  
It  is  known that the accumulation of MT1-MMP 
at invadopodia, which is required for initiation and 
maintenance of matrix degradation, is supported by the 
formation of actin and cortactin aggregates. MT1-MMP 
depletion did not affect the actin-cortactin interactions, 
but results in proteolytic non-active invadopodia (6). MT1-
MMP degrades multiple ECM components, including 
collagen types I, II, and III, fibronectin, laminin-1, 
vitronectin, aggrecan, gelatin, α2-macroglobulin, αl 
proteinase inhibitor (α1Pi) and proteoglycans (68). Cleavage 
of ECM proteins by MT1-MMP may additionally release 
various bioactive matrix fragments named matrikines, 
acting as extracellular modulators. It was demonstrated that 
laminin-111 derived peptides, AG73 and C16, significantly 
stimulated invadopodia-associated activities through β1 
integrin-dependent Rac1-Erk1/2 signaling pathway (69). 
MT1-MMP was found to be involved in the activation 
of MMP2 and possibly MMP8 and MMP13 (70-73). In 
addition, MT1-MMP may proteolytically modify protein 
receptors such as CD44, αV integrin, syndecan-1 and 
low density lipoprotein receptor related protein (LRP) 
or cytokines, including TNF-alpha and IL-8, by which it 
affects cell motility and has a direct effect on the immune 
system (6,68,74,75). The net concentration of active 
MT1-MMP in cell membrane is generally low, and its 
upregulation correlates with cancer progression (68,76). 
From the cell surface, MT1-MMP is rapidly internalized 
by a combination of clathrin- and caveolin-dependent 
as well as dynamin-mediated endocytosis (71). MT1-
MMP by cleaving of ECM components can be directly 
or indirectly involved in the regulation cell-cell and cell-
matrix interactions. It can release, activate or inactivate 
different ECM signaling molecules. It can also trigger 
intracellular signaling pathways by shedding of cell surface 
receptors (68). It was shown that the silencing of MT1-
MMP gene expression resulted in reduced activation 
of phorbol-12-myristate-13-acetate (PMA)-induced 
transcription factors such as ELK1, EGR1, ETS1, and 
ETS2, caused by dysregulation of the phosphorylation of 
NF-κB/p105. Similarly, mutations within the cytoplasmic 
domain of MT1-MMP altered RhoA/ROK expression 
or RhoA-dependent shedding of CD44, and changed the 
phosphorylation status of Erk1/2, STAT3, and Akt in 
various type of cancer cells (77). In addition to proteolytic 
functions, MT1-MMP was described to control cell 
migration also through non-proteolytic mechanisms. The 
TIMP2-dependent activation of Erk1/2 was found to be 
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mediated by the mechanism that requires the cytoplasmic 
tail but not the proteolytic activity of MT1-MMP (78). It 
was suggested that this functional diversity of MT1-MMP 
might be tightly dependent on its partitioning into raft and 
non-raft membrane domains (56). 

Gelatinases

The focal degradation of ECM was found to be correlated 
also with the localization of MMP2 and MMP-9 at 
invadopodia. As was shown, the selective reduction of MMP2 
and/or MMP9 activity with specific inhibitors or by siRNA-
mediated gene silencing, significantly inhibited invadopodia-
related ECM degradation and cell invasion (79,80). Gupta 
et al. have shown that downregulation of MMP9 resulted 
in more adhesive and less invasive phenotype in prostate 
cancer cells and was correlated with the expression of highly 
glycosylated variant 6 of CD44 (CD44v6) (81). MMP2 and 
MMP9 are well known gelatinases which through fibronectin 
type-II repeats inserted in their catalytic domains bind and 
process both native and denatured (gelatins) collagens. Their 
secretion is based on transport from the trans-Golgi Network 
(TGN) (82). Recent studies have shown that Rab40b 
GTPase-dependent transport and sorting into VAMP4-
containing secretory vesicles of MMP2 and MMP9 is 
required for invadopodia formation and invadopodia-related 
ECM degradation, observed during breast cancer metastasis, 
and is tightly associated with the Tks5 adaptor protein (83,84). 
MMP2 and MMP9 which cleave major components of the 
basement membrane (BM) were described to play a key 
role in the early steps of cancer cell invasion. Both proteins, 
like most of other members of a family of zinc-dependent 
endopeptidases, are secreted as inactive pro-enzymes that 
can be activated through an autocatalytic process or through 
cleavage by other metalloproteases, like MT1-MMP or 
seprase. 

Serine proteases

Seprase, also known as fibroblast activation protein-α 
(FAP-α) or F19 cell surface antigen, is a 170-kDa membrane 
glycoprotein with gelatinase activity. Seprase together 
with Dipeptidyl peptidase IV (DPP4/CD26) belong to the 
most recognized serine protease which act in concert to 
degrade components of ECM and are known to localize 
at invadopodia (85,86). It forms transmembrane homo- 
or hetero-dimeric glycoprotein complexes with a post-
proline dipeptidyl aminopeptidase activity. Seprase shares 

52% amino acid sequence identity with CD26, but it differs 
in its cellular and substrate specificity. While, CD26 is a 
ubiquitously expressed cell surface protein which releases 
X-proline dipeptides from the N-terminus of different 
peptides, seprase is undetectable in normal cells. Instead, 
it is selectively expressed by myofibroblast-like cells and 
by several types of highly invasive cancer cells and cleaves 
larger proteins. Seprase was found to form a complex with 
α3β1 but not α6β1 integrin at sites of invadopodia matrix 
degradation, in response to type I collagen (61). Using 
confocal microscopy, it was found that the membrane 
concentration of seprase was several fold higher in 
invadopodia than in other adhesive structures, and its level 
correlated with MMP2 expression, and matrix degrading 
activity in malignant melanoma cells (85). Both seprase and 
MMP2 were shown to concentrate in lipid rafts in breast 
cancer cells upon TNF-alpha treatment (58). It was also 
observed that seprase could form supramolecular complexes 
with urokinase plasminogen activator receptor (uPAR). 
These interactions were dependent on vitronectin and β1 
integrin and tightly associated with membrane domains of 
invading melanoma cells (87).

Disintegrin and metalloproteinases

The other class of enzymes identified as important 
functional components of invadopodia is the family of a 
disintegrin and metalloproteinases (ADAMs). ADAMs, 
also known as sheddases, comprise a group of membrane-
anchored, multidomain proteases that may regulate 
cell behavior by proteolytic processing cellular and 
ECM components (88). Aside from the extracellular 
metalloprotease domain, they contain propeptide, 
disintegrin-like, cysteine-rich, and epidermal growth factor 
(EGF)-like transmembrane and cytoplasmic domains. 
Different ADAMs were found to localize at invadopodia, 
including ADAM12 and ADAM19 (89). The disintegrin 
domain of ADAM12 was indicated to modulate integrin-
dependent cell adhesion at invadopodia (90). As was shown, 
knockdown of ADAM12 in breast cancer cells significantly 
impaired invadopodia formation and function (91). Both 
ADAM12 and ADAM19 were found to interact with 
the adaptor protein Tks5 which is a key component of 
invadopodia (89). Moreover, hypoxia-induced secretion 
and activity of ADAM12 had an impact on the formation 
of invadopodia via ectodomain shedding of the heparin-
binding epidermal growth factor (EGF)-like growth factor 
(HB-EGF) (92).
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Summary

The broad interest in invadopodia is related to their 
significant role in cancer invasion and metastasis. Although 
invadopodia are very complex and dynamic structures, it is 
expected that their key regulators would be good targets for 
anticancer therapy. Plasma membrane organization and the 
clustering of lipid rafts into active signaling platforms which 
mediate signal transduction from and into cells could serve 
as good target for the future research on specific drugs for 
the treatment of invadopodia-promoted diseases.
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