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Abstract: For decades, stem cells and their byproducts have shown efficacy in repairing tissues and 
organs in numerous pre-clinical studies and some clinical trials, providing hope for possible cures for many 
important diseases. However, the translation of stem cell therapy for heart diseases from bench to bed is 
still hampered by several limitations. The therapeutic benefits of stem cells are mediated by a combo of 
mechanisms. In this review, we will provide a brief summary of stem cell therapies for ischemic heart disease. 
Basically, we will talk about these barriers for the clinical application of stem cell-based therapies, the 
investigation of mechanisms behind stem-cell based cardiac regeneration and also, what bioengineers can do 
and have been doing on the translational stage of stem cell therapies for heart repair. 

Keywords: Stem cell therapy; ischemic heart diseases; bioengineering strategies; clinical translation

Submitted Nov 18, 2019. Accepted for publication Feb 27, 2020.

doi: 10.21037/atm.2020.03.44

View this article at: http://dx.doi.org/10.21037/atm.2020.03.44

Introduction 

Stem cells are a group of primitive cells with the potential of 
self-replication and multi-directional differentiation (1). Under 
certain conditions, they can differentiate into multiple adult 
cells in the body (1). Stem cell therapy, also known as stem 
cell transplantation, is the delivery of stem cells to a specific 
part of the body by systemic or local injection to repair 
diseased or damaged tissue (2). Many human diseases are 
caused by abnormal lesions or tissue death within certain 
organs. By transplanting stem cells into these damaged 
regions, healthy cells can be regenerated, improving organ 
function and reversing diseased states (3).

For decades, stem cells and their byproducts have 
shown efficacy in repairing tissues and organs in numerous 
pre-clinical studies and clinical trials, providing hope for 
alternate therapies and possible cures for important diseases 
such as metabolic diseases (4), nervous system diseases (5), 
blood system diseases (6), autoimmune diseases (7), and 
cardiovascular diseases (8), including heart disease (9). 

Stem cell therapy in heart repair

According to the recent report of American Heart 
Association, cardiovascular disease is still the number one 
cause of death worldwide (10). Coronary heart disease, 
dilated cardiomyopathy, and severe valvular disease can 
lead to heart failure (HF) due to ischemic necrosis of 
cardiomyocytes at the end of the disease period (11). At the 
same time, heart transplantation has problems such as the 
lack of donors, the need for long-term use of anti-rejection 
drugs, and high medical expenses.

Since existing treatments still have limited ability 
to reverse the HF process after myocardial infarction, 
regeneration of cardiomyocytes has become the direction of 
many scientists' research. An increasing number of stem cell 
types have been demonstrated to be visible in cardiac repair, 
including skeletal muscle progenitor cells, bone marrow 
stem cells [mesenchymal stem cells (MSCs), hematopoietic 
stem cell (HSCs), monocytes, etc.], adipose-derived 
stem cells, bone marrow and blood-derived endothelial 
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progenitor cells, cardiac stromal cells (CSCs), etc. (12). 
In August 2016, the biotech company CardioCell 

announced effective results in the application of stem 
cells for the treatment of chronic HF indications at the 
European Society of Cardiology Congress. This was the 
world’s first phase 2a clinical trial to study the effects of 
intravenous ischemic tolerance to mesenchymal stem cells 
(itMSCs) in the treatment of chronic HF (13). The result of 
this trial turned out to be safe and well-tolerated, but only 
with marginal efficacy. During the same year, at the annual 
meeting of the Society for Cardiovascular Angiography and 
Interventions (SCAI), a number of professors and experts 
jointly announced promising results for the RENEW 
(Efficacy and Safety of Targeted Intramyocardial Delivery 
of Auto CD34+ Stem Cells for Improving Exercise 
Capacity in Subjects With Refractory Angina) trial (14) and 
the ATHENA (Autologous adipose-derived regenerative 
cells for refractory chronic myocardial ischemia with left 
ventricular dysfunction) trial (15). Although the results of 
these trials did not sufficiently show significant efficiency 
due to the early termination (14) and limited sample 
size (15), they could still be promising development 
demonstrating the potential for viable stem cell-based heart 
therapies. 

Current limitations and challenges from bench to bedside

Stem cell transplantation has great potential. In theory, stem 
cells can be differentiated into almost all types of human 
cells. However, according to the International Society for 
Stem Cell Research, stem cell transplantation is currently 
recognized as safe and effective only in the treatment of 
hematopoietic systems (16). Other widely used stem cell 
therapies are applied to the skin (in the case of burns) (17), 
bone (18) and corneal diseases (19), and bone-marrow 
transplantations (16).

For decades, stem cells have been widely studied in 
preclinical animal models and clinical trials. However, few of 
the trials have been approved by the FDA and successfully 
reached the market. For heart disease like cardiovascular 
ischemia, stem cell therapies are making headway in clinical 
trials but have not yet reached the clinic (Table 1). Other 
cell-based therapies for HF or cardiomyopathy include 
DREAM-HF (phase 3 trial of mesenchymal precursor cells 
in chronic HF) (20), CONCERT-HF (combination of 
mesenchymal and c-kit+ cardiac stem cells as regenerative 
therapy for heart failure) (21), ELPIS (allogeneic human 
MSC injection in patients with hypoplastic left heart 

syndrome) (22), and POSEIDON-DCM (comparison of 
allogeneic vs. autologous MSCs for non-ischemic dilated 
cardiomyopathy) (23). These ongoing trials are expected to 
have available results in 2020. 

Increasing research on stem cell therapies for acute 
myocardial infarction (AMI) has put in doubt the traditional 
notion that the heart cannot be repaired. By extension, the 
enthusiasm for stem cell therapies that target cardiovascular 
disease continues to rise. But unfortunately, either the pre-
clinical research of stem cell-based cardiac regeneration or 
clinical trials of stem cell therapies still have a number of 
limitations (24). Why does this advanced therapeutic option 
encounter barriers before being able to benefit the public, 
and what are the challenges that the scientific community 
must overcome before implementation is possible?

Long-term efficacy
Despite evidence of short-term improvements in heart 
performance, it is not clear whether heart stem cell therapies 
have long-term benefits. In April 2009, Meyer et al.  
published a long-term (5-year) follow-up of a clinical trial 
involving bone marrow cell transplantation to promote 
ST-segment elevation myocardial infarction regeneration 
(BOOST) (25). The results showed that left ventricular 
function, measured by left ventricular ejection fraction 
(LVEF), was significantly improved compared with the 
control group after 6 months. However, there was no 
significant difference in improvement in left ventricular 
cardiac function or major adverse cardiovascular events 
(MACEs) between the two groups long-term follow-up at 
5 years after the treatment was applied. The investigators 
believed that despite the faster recovery of LVEF in the 
treatment group, the lack of long-term improvement of left 
ventricular systolic function in AMI patients who received 
stem cell transplantation needs to be addressed (25). 

Uncontrollable biodistribution
The poor engraftment of stem cells at the site of injury or 
disease is considered to be a primary explanation for the 
low efficacy of some stem cell trials (26,27). The traditional 
systemic delivery of stem cells, accomplished through 
intravenous injection, while facile, is not particularly good 
at getting cells where they need to be. What’s more, a larger 
portion of the injected cells accumulate in other organs, 
such as the lungs (28). One alternative method is to directly 
inject cells or byproducts into the injury tissue. This has 
been a popular research strategy for heart repair. We and 
many others usually administer therapeutic stem cells into 
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the infarct border zone of the heart via intramyocardial 
injections (29,30). An obvious shortcoming of this method 
is that it generally requires an open-chest surgery, leading 
to increased post-operative pain and general risk to the 
patient.

Another clinical obstacle that must be addressed is the 
low survival rate of stem cells in vivo (26). In many of the 
clinical trials of stem cell-based heart repair, autologous 
cells are intravenously or intracoronarily injected into 
the patient (31). Somehow, after 24 to 48 hours of 
transplantation, usually only a small fraction of cells (about 
5%) remain in the transplanting site. Four to six weeks 
after transplantation, 99% of the retained cells do not  
survive (31). One of the reasons believed to cause the 
diminished viability of the cells is the harsh environment 
in the heart or other organs, which threatens their 
proliferation, accelerating apoptosis and migration to other 
issues (26). 

Risk of tumorigenicity and immunogenicity
In May 2001, an Israeli nine-year old boy was diagnosed 
with ataxia-telangiectasia, a rare neurological disease that 
unfortunately has no treatment. He received embryonic stem 
cell injection in his brain in Moscow with the last remaining 
hope of improving his condition. Various regions of his 
brain were injected with the embryonic cells. Four years 
later, tumors were found in his brain. And two embryonic 
stem cells were detected among the tumor cells (32).  
This story, which is the first-reported case of stem cell 
therapy causing a brain tumor, engendered a rejection to 
stem cell treatment by the local people. Fortunately, the 
tumor was diagnosed to be benign and safely removed. 

The risk of tumorigenicity, remaining a terrifying concern 
for the public, limits their acceptance to stem cell-based 
therapy. The concern is not unwarranted either. Stem cells 
are biologically similar to tumor cells in many respects (33).  
They exhibit sustained proliferation, insensitivity to 
apoptosis, and similar growth regulation mechanisms as 
tumor cells. It has been found from animal models that 
human embryonic stem cells or induced pluripotent stem 
cells can cause both benign teratomas and malignant 
teratomas (33). Their pluripotency is considered to be the 
biological basis of tumor formation. Understanding this 
biological basis better and more fully is key to preventing 
future cases of tumor formation, as illustrated by the young 
patient’s case above. 

Host immunity is a serious challenge to consider when 
injecting non-autologous cells or agents into patients. On T
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the other hand, autologous products do not risk immune 
rejection, but must be collected from the patient and 
expanded/manipulated before infusing back into the patient. 
The collection of cells, which usually requires a biopsy, 
from already diseased patients presents an added health risk. 

Mechanisms of stem cell-based therapy for 
heart repair 

In order to address the safety and efficacy issues faced by 
cell-based cardiac therapies, we need to firstly elucidate 
the therapeutic mechanisms involved. According to FDA 
regulations, every drug comes into the market after its 
therapeutic mechanisms and safety profiles have been widely 
accepted (34). However, with stem cells, the therapeutic 
mechanisms are illusive; even more so when it comes to 
their application for the treatment of heart diseases. In 
other words, transplanted cells may have unpredictable and 
uncontrollable behaviors in tissues/organs, such as heart, 
as a result of their developmental pluripotency. Popular 
and promising as they are, stem cell therapies still lack 
elucidation. Among the many questions left to answer are: 
how do they move in vivo? Where do they go? Why do they 
behave the way they do? 

Initially, the stem cell therapy field had two schools of 
thought when it comes to the treatment of heart disease. One 
is the “replacement” theory. In this scenario, transplanted 
stem cells differentiate into cardiomyocytes, replacing 
the cells that were lost due to myocardial infarction (35). 
Patients can lose up to half billion cardiomyocytes in a 
major heart attack event. Studies on the differentiation 
from stem cells to cardiomyocytes have been accumulating 
since the theory was first established (36). However, the 
low survival rates and engraftment efficiency recorded 
in many studies have put into question the importance 
of this mechanism. Meanwhile, a number of studies have 
shown that adult stem cells can not differentiate into 
cardiomyocytes, but this seems not affect their ability of 
repairing damaged myocardium, and improving myocardial 
function (2). An ever-improving array of detection 
techniques continue increase the odds that the mechanisms 
behind their behavior will be understood.

The other point of view is the “awake” theory, in which 
stem cells secrete cytokine nutrients, promote endogenous 
cell proliferation, and thereby reduce the number of cells 
that are dying due to myocardial infarction (2). Paracrine 
activity is an important process for cells to communicate 
with other nearby cells. It appears to be especially valuable 

for active intercellular process in the body such as stem 
cell-based regeneration (37). Indeed, there is now a large 
body of evidence supporting the hypothesis that paracrine 
mechanisms are crucial for tissue regeneration (37-39). In 
recent years, more evidence suggests that transplanted stem 
cells exert their therapeutic effects by secreting biologically 
active proteins, or paracrine factors, to resident cells (39). 
In the heart, there are also various types of paracrine factors 
playing key roles in cardiac repair, including growth factors 
and chemokines, such as vascular endothelial growth factor 
(VEGF), basic fibroblast growth factor (FGF), hepatocyte 
growth factor (HGF), insulin-like growth factor-1 (IGF-1), 
and secreted frizzled related protein 2 (Sfrp2) (37,39). 

The heightened interest in paracrine signals has 
spurred the increased focus on extracellular vesicles (EVs) 
transporting those molecules and a move away from the 
use of cells themselves. The most popular of these vesicles 
is the exosome, which is also the means by which most 
of the molecules are transmitted (40). Exosomes, as the 
functional paracrine units of therapeutic cells, can partially 
reproduce the reparative properties of their parental cells 
(41,42). Exosomes have become a popular research focus 
for us and many others in the past five years because of their 
primary role in cell-cell communication, including stem 
cell-derived exosome’s therapeutic role in heart repair (41).  
The cargo carried by these exosomes, as well as the 
membrane proteins that characterize them vary by cell type 
and cellular microenvironment (40). Our lab has isolated 
exosomes from explant-derived CSCs sourced from patients 
with HF (FEXO) or from normal (non-diseased) donor 
hearts (NEXO) and compared their regenerative activities 
in vitro and in vivo (43). The results suggest that the HF 
altered the miRNA cargos of cardiac-derived exosomes and 
impaired their regenerative activities. We demonstrated 
that miR-21-5p contributes to exosome-mediated heart 
repair by enhancing angiogenesis and cardiomyocyte 
survival through the phosphatase and tensin homolog/
Akt pathway. Many of these experiments were conducted 
using conditioned media, which is the media that nourishes 
the cell in-vitro, absorbing the proteomic and exosomal 
output that the cells release after a number of days. When 
conditioned media was injected into infarcted cardiac tissue, 
reparative and regenerative effects comparable to direct cell 
transplantation where observed. 

Surprisingly, there is another important intracellular 
communication method that is likely to be ignored by many 
studies in the past few years. Direct cell-cell interaction has 
been reported to be crucial to the functional regeneration 
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of stem cell therapies (44-46). As early as 2003, Fukuhara 
et al. has co-cultured bone marrow stromal cells (BMCs) 
with cardiomyocytes and found that direct cell-cell contact 
with cardiomyocytes was important for BMCs to trigger 
some potential environmental factors of differentiation  
in vitro (44). Later on, in 2017, when some researchers 
co-transplanted MSCs and HSCs to MI mice heart, their 
results demonstrated that mechanism of HSCs promoting 
cardiac regeneration lay in their angiogenesis ability. 
Meanwhile, transplanted MSCs showed the capability 
for intercellular communication with surrounding 
cardiomyocytes by gap junctional signaling (45). However, 
in-depth in vivo studies are still needed to furtherly confirm 
the importance of direct cell-cell crosstalk in stem cell-
based cardiac remodeling. Specifically, in vivo gap junction 
blocking approach, combined with in vitro cell co-culture 
may give us a better understanding of the interaction 
process between transplanted stem cells and neighboring 
cardiac cells. 

New era: bioengineering strategies 

Bioengineers have been able to utilize the limited 
mechanistic information available to develop advanced 
therapeutic strategies using stem cells. Engineering methods 
that aim to realize the multifunctionalization of stem cell 
therapies have been thriving in the past five years (47).  
With the collaboration of physicians, chemists, and 
biologists, bioengineers are able to develop stem cell-based 
therapies that combine stem cells, or their byproducts, with 
biomaterials in order to enhance therapeutic efficiency. 

Improving targeting ability

The first challenge stem cell therapy faces is the effective 
delivery. To be specific, similar to regular drug-based 
treatment, it is important to send cells to the injury site 
in a targeted manner. Achieving this is one of the goals of 
bioengineering. Previously, our lab has used FDA-approved 
ferumoxytol nanoparticles to attempt magnetic targeting 
in the body (48,49). As a technique continuously improved 
in this field, an externally introduced magnetic field was set 
up near the injury spot in the heart. During the injection 
of iron-labelled (ferumoxytol) stem cells, the magnetic 
field attracting them directly to the injured cardiac tissue. 
However, the use of a strong magnetic field during an 
operative procedure may have unexpected consequences on 
the equipment as well as the patient. The development of a 

more biosafe targeting strategy was needed.
Thus, we began to focus on the platelet, a unique 

component in blood which can also accumulate and bind 
directly to injured endothelial cells on blood vessels. 
Previously, our group has developed an innovative method 
to decorate the surface membrane of CSCs with platelet 
nanovesicles (PNVs) (50). Our engineered PNV-fused 
CSCs were demonstrated to express platelet surface markers 
that are associated with platelet adhesion to injury sites, 
enhancing the targeted vascular delivery of CSCs to the site 
of myocardial infarction. 

In addition, platelet membranes indicate an alternative 
solution to adhere injected stem cells to the injured 
endothelium (51). Recently, our group successfully 
synthesized a platelet-inspired nanocell (PINC) that 
incorporates both prostaglandin E2 (PGE2)-modified 
platelet membrane and cardiac stromal cell-secreted 
factors (43). The natural infarct-homing ability of platelet 
membranes and the overexpression of PGE2 receptors 
in the injury microenvironment of heart after myocardial 
ischemia/reperfusion, gave us the inspiration to design this 
unique combo. Our PINCs have been demonstrated to 
achieve the targeted delivery of therapeutic payloads to the 
injured cardiac tissue. 

Moreover, platelets can be functionalized on their 
membrane which generates another promising solution for 
targeted delivery. Those more specific units are antibodies. 
Studies from our lab and others have also demonstrated 
that antibodies against biomarkers that specifically express 
under heart ischemic diseases, such as CD34, can serve 
as a targeted mediator, not only navigating transplanted 
stem cells to the injured heart, but recruiting circulating 
endogenous stem cells to the ischemic site (52,53). 
Specifically, taking advantage of the natural infarct-homing 
ability of platelets and their ability to bind to circulating 
CD34+ progenitors in patients and improve prognosis, we 
engineered CD34 antibody-linked platelets (P-CD34) to 
capture circulating CD34-positive endogenous stem cells 
and direct them to the site of myocardial infarction (53).  
Similarly, CD41 antibodies, binding to platelets, can 
also be used to target the MI area. Taking advantage of 
pre-targeting and bioorthogonal chemistry (PTBC), we 
engineered a PTBC system using bioorthogonal click 
reaction to link these two antibodies (CD34 and CD41) 
in vivo, engaging endogenous stem cells with circulating 
platelets (54). As a result, the platelets redirected the stem 
cells to the injured cardiac tissue and enhanced repairing 
efficiency. 
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Bispecific antibodies (BsAbs), promising therapeutic 
agents used in cancer immunotherapy, can also be utilized 
to treat cardiovascular diseases. In the most recent study, 
our lab designed BsAbs by the chemical cycloaddition of 
F(ab')2 fragments from monoclonal anti-CD34 and anti-
cardiac myosin heavy chain (CMHC) antibodies, which 
specifically target circulating CD34-positive cells and 
injured cardiomyocytes simultaneously (55). However, the 
major disadvantage of antibody-based targeting is that some 
particular biomarkers are only expressed during AMI. 

Overcoming low cell retention

After achieving more efficient targeted delivery of the 
cellular therapy, the next obstacle to overcome is improving 
cell engraftment in the injury site. To improve the low 
retention and survival rates of transplanted stem cells, 
many innovative biomaterials have been developed in the 
past decade that encapsulate them and protect them once 
injected. Injectable hydrogels have been designed with 
different types of materials and combined with particular 
stem cells inside. Previously, our lab demonstrated the 
safety and efficacy of encapsulating CSCs in thermosensitive 
poly(N-isopropylacrylamide-co-acrylic acid) or P(NIPAM-
AA) nanogels in mouse and pig models of myocardial 
infarction (MI) (56). In a recent study, we created a 
hydrophilic and negatively charged microenvironment 
using poly(N-isopropylacrylamide-co-itaconic acid), which 
is favorable for maintaining high viability of CSCs (57). 
The results revealed the treatment promoted MI heart 
repair through angiogenesis and inhibition of apoptosis 
with an improved cell retention rate. What is more, the 
other advantage of many hydrogels is that they do not 
elicit systemic inflammation or local T cell infiltrations in 
immunocompetent mouse models. 

In addition to the idea of hydrogels, another revolutionary 
biomaterial used in the area of cardiac regeneration is 
the cardiac patch. The delivery of therapeutic cells in 
a cardiac patch increases cell retention and represents 
other functionalization aims. We have reported a novel 
strategy for creating a vascularized cardiac patch featuring 
biomimetic microvessels (BMVs) in a fibrin gel and spiked 
with human CSCs (58). Our results showed that the 
endothelialized BMVs could mimic the natural architecture 
and function of capillaries and that the vascularized cardiac 
patches (BMV-CSC patch) have great regenerative potential. 
Meanwhile, a shortcoming of the epicardial patches remains 
their slow integration with host myocardium. To address 

this issue, our group engineered a microneedle patch 
integrated with cardiac stromal cells (MN-CSCs), utilizing 
polymeric MNs to create communication channels between 
host myocardium and therapeutic CSCs (59). 

The cardiac patch strategies normally require open-chest 
surgery, which is risky for the patient and requires a long 
recovery. In comparison, hydrogels can be injected directly 
to the site of injury using a minimally-invasive operation. 
Ventrix, a subsidiary of the University of California, San 
Diego, completed the first successful, minimally invasive 
human trial using a heart-repairing hydrogel approved by 
the FDA (60). The trial was the first to test a hydrogel used 
to repair heart tissue and also the first to test a hydrogel 
made from the natural scaffold of myocardial tissue, also 
known as extracellular matrix (ECM). Results have shown 
that this hydrogel, called VentriGel, can be safely injected 
through a catheter into patients who have had a heart 
attack in the past 2 to 36 months (60). Once injected into 
the damaged myocardium, VentriGel forms a scaffold that 
creates a healing environment for healthy cell migration, 
promoting new cardiac tissue formation. Ventrix is currently 
preparing for phase II clinical trials (60). 

Cell-free therapy 

An unavoidable risk with stem cell transplantations is that of 
tumorigenicity or immunogenicity, as we discussed above. 
Thus, many in the field have gravitated toward the study of 
bioactive agents released from stem cells, which have had 
comparable therapeutic effects, suggesting the possibility 
of a promising alternative to stem cell therapies. The most 
important bioactive agents currently being studied are EVs, 
including microvesicles and exosomes, which contain the 
biologically active components [mRNA, miRNAs, proteins 
(growth factors)] found in stem cells. These have been 
shown to have salutary effects (similar to cell therapies) on 
myocardial repair after injury. Compared to other EVs, 
exosomes have been more widely regarded as candidates for 
cell-free therapy and have been tested by our lab and others 
in the treatment of pulmonary fibrosis, cancer therapy, 
myocardial infarction, etc. For example, our lab has found 
that exosomes obtained from atorvastatin-pretreated MSCs 
have significantly enhanced therapeutic efficacy in treating 
MI (9). Nevertheless, many preclinical or clinical protocols 
for the application of exosomes have not been standardized, 
including their extraction and purification. Thus, much 
work is left to be done before exosomes are successful in 
clinical trials. 
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Biomimetic strategies in stem cell-based therapy

While the therapeutic strategies discussed above have 
commonly focused on the functionalization of stem cells, 
there is another groundbreaking innovation based on 
the creation of ‘super stem cells’, by which we mean the 
construction of synthetic stem cells or cell-mimicking 
composites (61). This idea has recently been attempted 
twice by our group, for the treatment of heart diseases. 
For the first time, we reported a ‘core-shell’ design for 
a therapeutic microparticle (MP) which mimicked stem 
cell biointerfacing during regeneration (62). Named cell-
mimicking MP (CMMP), this artificial stem cell contained 
control-released stem cell factors in its polymeric core 
and was cloaked with stem cell membrane fragments on 
the surface. In our mouse model of myocardial infarction, 
injection of CMMPs resulted in a similar augmentation 
of cardiac functions in comparison to direct CSC therapy. 
What is more important, CMMPs did not stimulate T cell 
infiltration in immuno-competent mice, suggesting their 
great potential for clinical trials. Subsequently, we sought to 
create a more complex stem cell-mimicking composite. We 
successfully packaged secreted factors from human bone 
marrow-derived MSC into Poly(lactic-co-glycolic acid) 
PLGA microparticles and then coated them with MSC 
membranes (63). These therapeutic particles, “synthetic 
MSC” (or synMSC), demonstrated their regenerative 
potential in mice with AMI.

Conclusions 

Throughout decades of stem cell pre-clinical studies 
and clinical trials, challenges and risks exist, also, 
prospects and innovations exist. How to overcome the 
most conspicuous shortcomings with more innovative 
strategies is a question for every bioengineer, which has 
been trying to do and needs to be done in the future 
(Figure 1). In any case, an indispensable premise is a 
more comprehensive interpretation and understanding 
of the mechanism under which stem cells benefit cardiac 
regeneration. As we mentioned before, in addition to 
the paracrine effect, we still believe that direct cell-cell 
contact plays a vital role in this process. Therefore, the 
combination of the paracrine effect and the potential 
activation of the intrinsic program of cardiac cells, 
which is triggered by cell-cell crosstalk, followed by 
further observation of cell fate, cell niche, and cell in situ 
migration, are our top priorities for the next decade of 
advancing stem cell therapy for heart repair.
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Figure 1 Bioengineering strategies to accelerate clinical translation of stem cell therapies.
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