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Automatic classification of esophageal lesions in endoscopic 
images using a convolutional neural network
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Background: Using deep learning techniques in image analysis is a dynamically emerging field. This 
study aims to use a convolutional neural network (CNN), a deep learning approach, to automatically classify 
esophageal cancer (EC) and distinguish it from premalignant lesions. 
Methods: A total of 1,272 white-light images were adopted from 748 subjects, including normal cases, 
premalignant lesions, and cancerous lesions; 1,017 images were used to train the CNN, and another 255 
images were examined to evaluate the CNN architecture. Our proposed CNN structure consists of two 
subnetworks (O-stream and P-stream). The original images were used as the inputs of the O-stream to 
extract the color and global features, and the pre-processed esophageal images were used as the inputs of the 
P-stream to extract the texture and detail features. 
Results: The CNN system we developed achieved an accuracy of 85.83%, a sensitivity of 94.23%, and 
a specificity of 94.67% after the fusion of the 2 streams was accomplished. The classification accuracy of 
normal esophagus, premalignant lesion, and EC were 94.23%, 82.5%, and 77.14%, respectively, which 
shows a better performance than the Local Binary Patterns (LBP) + Support Vector Machine (SVM) and 
Histogram of Gradient (HOG) + SVM methods. A total of 8 of the 35 (22.85%) EC lesions were categorized 
as premalignant lesions because of their slightly reddish and flat lesions.
Conclusions: The CNN system, with 2 streams, demonstrated high sensitivity and specificity with the 
endoscopic images. It obtained better detection performance than the currently used methods based on the 
same datasets and has great application prospects in assisting endoscopists to distinguish esophageal lesion 
subclasses.
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Introduction 

Esophageal cancer (EC) is the seventh most common form of 
malignant tumor and the sixth leading cause of cancer-related 
deaths worldwide. Approximately 572,034 new EC cases 
and 508,585 EC-related deaths were recorded in 2018 (1).  
EC is known for its insidious onset, rapid progress, 
and poor prognosis. While diagnosing EC, the stage of 
cancer determines the prognosis of patients (2). The five-
year survival rate of a patient with EC is 20.9% in its 
advanced stage and greater than 85% in the early stage  
(3,4). Therefore, early detection is necessary for improving 
patient survival rates. 

In recent decades, esophagogastroduodenoscopy with 
a biopsy has been the standard procedure for diagnosing 
EC, and the detection rate of EC has increased with the 
development of endoscopic technologies (5-7). Moreover, 
endoscopy can be used for observing premalignant lesions, 
such as intraepithelial neoplasia and atypical hyperplasia, 
which could progress to EC. Early detection and 
determining EC or premalignant lesions can lead to more 
effective targeted interventions. However, distinguishing 
between early EC and premalignant lesions is normally 
a challenging task because of their similar endoscopic 
features, such as mucosal erosion, hyperemia, and roughness 
(Figure 1). 

Meta-analysis studies have shown that the endoscopic 
miss rate for upper gastrointestinal cancers is 11.3%, while 
33 (23%) subjects with EC had undergone an endoscopy 
that failed to diagnose their cancers within 1 year before 
diagnosis (8,9). Moreover, around 7.8% of patients with 
EC fail to be diagnosed with conventional endoscopy, and 
most missed cases of EC are in the upper esophagus (5). 
However, a recent multicenter study found that missed 
EC accounted for only 6.4% of cases and was associated 
with a poor survival rate (10). Therefore, although the 
missed diagnosis rate of EC has decreased, to improve the 
survival rate of patients, endoscopists must receive long-
term professional training and have the ability to detect EC 
properly.

In the past several years, computer vision-based 
techniques have been widely applied in the field of medical 
image classification and detection (11,12). Traditional 
machine learning models have been developed using prior 
data on the local features for automatic esophageal lesion 
diagnosis. However, the performance of many of these 
traditional methods is highly determined by the manually 
developed features (13-15). Recently, deep learning has been 

at the forefront of computational image analysis (16-18).  
A convolutional neural network (CNN), a classical 
algorithm of deep learning, has been adopted to extract the 
local features of the edge texture in the lower layer and to 
abstract the high-dimensional features in the deep layer by 
simulating the recognition of the human visual system.

CNNs with self-learning abilities are an effective 
method in medical image classification, segmentation, 
and detection (17,18). Shichijo et al. (19) applied a deep 
learning AI-based diagnostic system to diagnose Helicobacter 
pylori infections, and Hirasawa et al. (20) detected gastric 
cancer by using a CNN model. Moreover, several studies 
have constructed computer-aided methods to analyze the 
real-time endoscopic video images of colorectal polyps 
(21-23). However, there are only a few studies on EC 
detection. Horie et al. (24) used CNN to detect EC with a 
positive predictive value (PPV) of 40%, which is lower than 
expected. Yang et al. (25) trained a 3D-CNN model with 
the PET image datasets to predict EC outcomes.

We aimed to propose a novel diagnostic method based 
on a CNN model that can automatically detect EC and 
distinguish it from premalignant lesions in endoscopic 
images.

Methods

Datasets and data preparation

Between July 2010 and July 2018, a total of 1,272 esophagus 
endoscopic images were collected from 748 patients 
from the First Affiliated Hospital of Nanjing Medical 
University, which is the best and biggest comprehensive 
hospital in Jiangsu, taking charge of four central roles for 
the whole province: medical treatment, medical teaching, 
scientific research, and hospital ethics activities. The 
imaging data consisted of 531 normal esophagus images, 
387 premalignant images, and 354 EC images. Endoscopic 
images were captured by Olympus endoscopes (GIF-
H260Z, GIF-Q260, GIF-Q260J, GIF-XQ260, GIF-H260, 
GIF-H260Q, GIF-XQ240, Japan). The inclusion criteria of 
this database are those images with available conventional 
white-light endoscopy, chromoendoscopy, and narrow-
band imaging. The images with poor quality, including 
excessive mucus, foams, blurring, and active bleeding and 
images captured from patients who underwent esophageal 
surgery and endoscopic resection, were excluded. All images 
were marked manually by the author. In our study, ECs 
included adenocarcinoma and squamous cell carcinoma, 
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and precancerous lesions included low-grade dysplasia and 
high-grade dysplasia.

Data preprocessing

The esophageal images were rescaled to 512×512 through a 
bilinear interpolation method to reduce the computational 
complexity (26).

Brightness variation of the endoscopic esophageal images 
might lead to intraclass differences, which can affect the 
results of the proposed network. Therefore, instead of using 
the original endoscopic images, the following contrast-
enhanced image was used as the inputs for the CNN.

                  
[1]( ) ( ) ( ) ( )I x, y;σ = αI x, y + βG x, y;ε * I x, y + γ′

where “*” represents the convolution operator, I(x,y) is the 
original endoscopic image, and G(x,y;ε) is a Gaussian filter 
with scale ε. The parameter values were empirically selected 
as α=4, β=−4, ε=512/20, and γ=128. 

A large difference and a clear “boundary effect” were 
observed between the foreground and background of the 
images. Images were cropped to 90% to eliminate the 
boundary effect. The original and preprocessed images are 
shown in Figure 2.

Data augmentation

To overcome overfitting for our small-scale esophageal 
images, we adopted the following data augmentation 
measurements before training the network. In the training 
dataset, spatial translation of 0–10-pixel value in horizontal 
and vertical direction flipping and slight shifting between 
−10 and 10 pixels were employed (Figure 3).

CNNs

The basic CNNs consisted of 2 basic operational layers: the 
convolutional and pooled layers (Figure 4).

Figure 1 Sample images of three types using the CNN system. CNN, convolutional neural network. The red boxes indicate location of lesion.

Figure 2 Original and preprocessing images.
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The convolutional layer’s main function was to extract 
the features of the image information on the upper layer. 
Convolution operations use local perception and weight 
sharing to reduce parameters. The calculation formula of 
the convolution layer was as follows:

( )L L-1 L L
j jx = f x * w +b

                        
[2]

where xL represents the feature map of the convolution 
kernel in the L-th layer for input and j-th convolution kernel 
in the (L-1)-th layer for output, “*” represents convolution 

operation, L
jw  represents the bias of j-th convolutional 

kernel in the L-th layer, and f(*) represents activation 
function. In this study, the RELU activation function was 
often used to solve the gradient dispersion problem.

The pooling layer performed dimensionality reductions 
on an input feature map, reduced parameters, and retained 
the main feature information. The layer also improved 
the robustness of a network structure to transformations, 
such as rotation, translation, and stretching of images. The 

calculation formula of the pooling layer was as follows:
                      

[3]( )( )1L L L- L
j j jx = f β down x +b

where down(∙) represents a down-sampling function, and 
β and b represent weight and bias, respectively. In this 
study, we selected average pooling, which is defined as the 
following:

( )
m m

m? m ab
a=1 b=1

down x = mean x 
 
 
∑∑                   [4]

Fully connected layer FC(c): each unit of feature maps 
in the upper layer is connected with the c units of the fully 
connected layer. An output layer follows the fully connected 
layer. 

The Softmax layer was used to normalize the input 
feature values into the range of (0, 1) so that the output 
values ym represented the probability of each category. 
The operation for the Softmax layer can be written as the 
following:

Figure 3 Data augmentation with flipping (B) and mirror (C) in the original image (A).

Figure 4 The exemplary architecture of the basic CNN. CNN, convolutional neural network.
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[5]

where ym is the output probability of the m-th class, θm is the 
weight parameter of the m-th class, n is the number of total 
class, and x represents the input neurons of the upper layer.

Construction of Two-stream CNN algorithm
A deep neural network structure called Inception-ResNet 
was employed to construct a reliable AI-based diagnostic 
system. The Inception-ResNet achieved the best results of 
the moment in the ILSVRC image classification benchmark 
in 2017 (27). The proposed structure consists of 2 streams: 
the O-stream and P-stream. 

Inception networks can effectively solve the problem 
of computation complexity. The ResNet network can 
reduce the overfitting when the network becomes deeper. 
Inception-ResNet network combining the Inception 
network with the ResNet network achieves an improved 
performance on the test set of the ImageNet classification 
challenge (28). Figure 5 shows the basic structure of the 
Inception-ResNet module.

For clarity, HL(x) denotes the transformation of the  Lth 
building block. x is the input of the Lth building block, 
and the desired output is FL(x). Residual block explicitly 
forces the output to fit the residual mapping; that is, the 

stacked nonlinear layers are forced to learn the following 
transformation:

( ) ( )L LF x H x x= −
                        

[6]

Therefore, the transformation for the Lth building block 
is the following:

( ) ( )L LH x F x x= +
                      

 [7]

The classic Inception-ResNet module consists of 1×1, 
1×3, and 3×1 convolutional layers. The 1×1 convolutional 
layer is used to reduce channel number, and the 1×3, 3×1 
convolutional layer is employed to extract spatial features.

Figure 6 demonstrates the O-stream and P-streams 
employing the same network structure to allow effective 
feature fusion. The O-stream inputs the original image and 
focuses on extracting the global features of the esophageal 
images. The P-stream inputs the preprocessed images and 
focuses on extracting the texture features of the esophageal 
image (Figure 6). The results of the proposed network and 

Figure 5 The basic structure of the Inception-ResNet module.
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Figure 6 Proposed two-stream structure. The Inception-ResNet is 
used as the basic CNN structure. The input of the O-stream is the 
original image, and the input of the P-stream is the preprocessed 
image. CNN, convolutional neural network.
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the sub-streams for EC classification are presented in Table 1. 
The fusion of the 2 streams show the final results. For the 
proposed structure, the concatenation fusion is employed.

For clarity, we defined a concatenation fusion function: 
f, 2 feature maps a

tx  and b
tx , and a fusion feature map y, 

where × ×a H W Dx R∈ , × ×b H W Dx R∈ , and × ×H W Dy R ′ ′ ′∈ , and 
where W, H, and D are the width, height, and the number 
of channels of the feature maps. The concatenation fusion 
method was described as follows:

Concatenation fusion y=fcat(x
a,xb) stacks the 2 features at 

the same location i, j across the feature channels d.

a
i, j,d i, j,dy = x , 

b
i, j,D+d i, j,dy = x     	      [8]

where × ×H W 2Dy R∈ .

Learning parameters
The key to achieving promising results is training a model 
with the correct weight parameters, which influence the 
performance of the entire structure. In training, the weight 

parameters of the proposed network are learned by using 
mini-batch stochastic gradient descent with a momentum 
set to 0.9. The 10 image batches are sent to the network 
with a weight decay of 0.0005. The base learning rate is set 
to 10−3, and the value is further dropped until the loss stops 
decreasing. The convergence range of the validation loss 
is 0.05–0.1, and the average validation accuracy after 10 k 
epochs was 0.8583 (Figure 7).

Experiments and validation parameters

The proposed approaches were implemented in the 
TensorFlow deep learning framework, which was run on 
a PC with NVIDIA GeForce GTX 1080Ti GPU (8 G) 
(NVIDIA CUDA framework 8.0, and cuDNN library).

For the elimination of contingencies in the classification 
results and to evaluate the performance of the proposed 
EC model, the results were quantitatively evaluated by 3 
metrics; these were accuracy (ACC), sensitivity (SEN), and 
specificity (SPEC), and were defined as the following:

TPSen =
TP+ FP                           [9]

TPSpec =
FP+TN                                                      [10]

TP+TNAcc =
TP+TN + FP+ FN                                            [11]

where 
True positive (TP) is the number of positive images 

correctly detected.
True negative (TN) is the number of negative images 

correctly detected.
False positive (FP) is the number of correctly detected 

wrongly as the esophagus images. False negative (FN) is the 
number of positive samples misclassified as negative.

In the evaluation phase, all the metrics were calculated 

Figure 7 Training curves of the proposed classification approach 
on the EC database. EC, esophageal cancer.

Table 1 Size and demographics of the study sample

Group
Male Female Total

N Age (mean) SD N Age (mean) SD N Age (mean) SD

Cancer 140 63.4 8.8 67 64.9 7.6 207 63.7 8.6

Precancer 178 61.1 7.5 78 59.5 7.8 256 60.6 7.7

Normal 114 45.6 15.4 171 47.5 12.9 285 46.8 13.9

Total 432 57.8 12.8 316 53.3 13.0 748 56.0 13.1
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based on the five-fold cross-validation results. The dataset 
was divided into the training (80%) and testing (20%) 
datasets, respectively.

The detailed data statistics distribution from the EC 
database is shown in Table 2.

Results 

A total of 748 patients were included in this analysis. Table 1 
presents the sizes and demographics of the database. Overall, 
no significant age difference was observed between males and 
females in each group. However, the normal control group 
was 15 years younger on average than the other two groups. 
Cancer and precancerous lesion groups had more males than 
females, both of which were around 60 years old.

The comparative results of the proposed network and sub-
streams (the O-Stream and the P-Stream) in the database are 
listed in Table 3. This database contains all images, including 
those of the normal esophagus, precancerous lesions, and 
EC. And the results are the overall ACC, SEN, and SPEC of 
each methods. The O-stream focuses on exploiting the color 
and global features of the esophageal images, and its ACC 

by itself was 66.93%. Using the preprocessed image as the 
input, the P-stream focuses on exploiting the textures and 
detailed features of the esophageal images, and the ACC of 
p-stream alone was 79.53%. The fusion of the two streams 
led to the best results of 85.83%.

Table 4 shows the ACC of each category in the EC 
database based on the proposed network. The normal type 
was easier to identify probably because the amount of data 
in the normal type was greater than the other two types.

Figure 8 presents the confusion matrix for the EC 
database. In the confusion matrix, the diagonal values are 
the A of each category classification, and the others are 
the confusion degrees between the two categories. This 
method diagnosed 74 total lesions as esophageal lesions (the 
precancerous lesion or cancer); 3 were normal cases with 
a PPV of 95.94% and a negative predictive value (NPV) 
92.45%. The PPV and the NPV of EC were 87.09% and 
91.67%, respectively. The accuracy of the cancer category 
was 77.14%, which implies that it is easy to confuse EC 
with the precancerous lesions. 

Table 5 demonstrates a comparison made between the 
method we proposed and the methods of LBP+SVM and 
HOG+SVM using the same dataset. The total sensitivity, 
specificity, and accuracy of our method were 94.23%, 
94.67%, and 85.83%, respectively, which are higher than 
those of the other methods.

Discussion 

Endoscopy plays a crucial role in the diagnosis of EC, 

Table 2 Statistics distribution from EC database

Images Normal Precancerous lesion Cancer

Train 1,017 424 310 283

Validation 126 53 38 35

Test 129 54 39 36

EC, esophageal cancer.

Table 3 Results of the proposed network and the sub-streams in the 
EC database

SEN (%) SPEC (%) ACC (%)

O-Stream 98.08 85.33 66.93

P-Stream 96.15 88.00 79.53

Proposed structure 94.23 94.67 85.83

EC, esophageal cancer; SEN, sensitivity; SPEC, specificity; 
ACC, accuracy.

Table 4 Results of the proposed network in the EC database

Normal Precancerous lesion Cancer

ACC 94.23% 82.50% 77.14%

EC, esophageal cancer; ACC, accuracy.

Figure 8 Confusion matrix of the proposed structure in EC 
database. EC, esophageal cancer.
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which is the sixth leading cause of cancer-related death (1). 
However, diagnosing EC at an early stage by endoscopy 
is difficult and requires experienced endoscopists. An 
alternative method for EC classification is done by using 
a deep leaning method. It is more helpful and has been 
applied in various fields, such as computer vision (29) and 
pattern recognition (30). The application of deep learning 
methods achieves complex function approximation through 
a nonlinear network structure and shows powerful learning 
abilities (31). Compared with traditional recognition 
algorithms, deep learning combines feature selection 
methods or extraction and classifier determination methods 
into a single step and can study features to reduce the 
manual design workload (32).

The CNN model is one of the most important deep 
learning models for computer vision and image detection. 
In the most recent study, Hirasawa et al. achieved the 
automatic detection of gastric cancer in endoscopic images 
by using a CNN-based diagnostic system and obtained 
an overall sensitivity of 92.2% and a PPV of 30.6% (20). 
Sakai et al. proposed a CNN-based detection scheme and 
achieved high accuracy in classifying early gastric cancer and 
normal stomach (33). Our study has developed a CNN-
based framework to classify esophageal lesions with an 
overall accuracy of 85.83%. The images were preprocessed 
first, then the features of the image information were 
extracted and annotated manually; finally, these images 
were used for training the CNN model. This model was 
applied to distinguish normal esophagus, premalignant 
lesions from EC.

According to our study, the trained network achieved an 
accuracy of 85.83%, a sensitivity of 94.23%, and a specificity 
of 94.67% with the fusion of the 2 streams. The accuracy 
rates of classifying normal esophagus, premalignant lesions, 
and EC were 94.23%, 82.5%, and 77.14%, respectively. 
LBP+SVM and HOG+SVM methods are classical machine 
learning methods. Compared with them, the system we 

presented achieved better results. Therefore, the CNN 
system we proposed can easily distinguish whether 
samples suffer from esophageal lesions. In some cases, 
however, there were some discrepancies between EC and 
precancerous esophageal lesions. For instance, 85% of the 
lesions diagnosed by the CNN as premalignant lesions 
were EC. The most probable reason for misdiagnosis was 
that cancerous lesions were extremely localized in the 
precancerous lesions, and their surface characteristics were 
not obvious. Some other reasons may include the fact that 
the cancer was hard to detect on the surface or the poor 
angle at which the image was taken. 

The main contributions of this paper are twofold. 
First, the esophageal endoscopic database was built. The 
database included 1,272 endoscopic images, which consisted 
of 3 types of endoscopic images (normal, premalignant, 
cancerous). Each image in this database had a classification 
label. Secondly, we presented a two-stream CNN that 
can automatically extract global and local features from 
endoscopic images.

The significant strength of the study was that our 
proposed two-stream CNN consisted of 2 subnetworks 
(O-stream and P-stream). The original images were input 
with the O-stream to extract the colors and global features, 
and the pre-processed esophageal images were input with 
the P-stream to extract the texture and detail features. 
Advanced Inception-ResNet V2 was adopted as our CNN 
framework. Finally, two-stream CNN effectively extracted 
the two-stream feature and achieved promising results.

This study had some limitations. First, the detection of 
EC was based on images in white light view only. Designing 
a universal detection system with images under more 
views, such as NBI and chromoendoscopy using indigo 
carmine, is possible. Second, our sample size was small, and 
we obtained all endoscopic images from a single center. 
The type of endoscopy and its image resolution are highly 
variable across different facilities. Therefore, we will obtain 
endoscopic images from other centers and use other types 
of endoscopy in future research. Third, the anatomical 
structure of the squamocolumnar junction was also 
misdiagnosed as EC, which is unlikely to be misdiagnosed 
by endoscopists. If CNNs can have more systematic 
learning about the normal anatomical structures and various 
lesions, the accuracy of EC detection will improve in the 
future.

In future studies, we will add the precise location of 
lesion areas and video analysis to allow for real-time 
computer-aided diagnosis of esophageal tumors.

Table 5 Comparison of the proposed network with other methods

SEN (%) SPEC (%) ACC (%)

LBP + SVM 63.27 64.36 64.75

HOG + SVM 57.93 59.82 60.40

Proposed method 94.23 94.67 85.83

SEN, sensitivity; SPEC, specificity; ACC, accuracy; LBP, Local  
Binary Patterns; SVM, Support Vector Machine; HOG,  
Histogram of Gradient.
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Conclusions

We constructed a CNN system to classify EC and 
premalignant lesions with high accuracy and specificity. 
The system distinguished early EC from premalignant 
lesions and was able to increase the detection rate of early 
EC. Our method showed better detection performance 
than other detection methods. In the future, the burden 
of endoscopists can be reduced, and the difficulties of 
the shortage of professionals in primary hospitals can be 
alleviated.
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