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Abstract: Interest in the application of machine learning (ML) techniques to medicine is growing fast 
and wide because of their ability to endow decision support systems with so-called artificial intelligence, 
particularly in those medical disciplines that extensively rely on digital imaging. Nonetheless, achieving a 
pragmatic and ecological validation of medical AI systems in real-world settings is difficult, even when these 
systems exhibit very high accuracy in laboratory settings. This difficulty has been called the “last mile of 
implementation.” In this review of the concept, we claim that this metaphorical mile presents two chasms: 
the hiatus of human trust and the hiatus of machine experience. The former hiatus encompasses all that 
can hinder the concrete use of AI at the point of care, including availability and usability issues, but also the 
contradictory phenomena of cognitive ergonomics, such as automation bias (overreliance on technology) 
and prejudice against the machine (clearly the opposite). The latter hiatus, on the other hand, relates to the 
production and availability of a sufficient amount of reliable and accurate clinical data that is suitable to be 
the “experience” with which a machine can be trained. In briefly reviewing the existing literature, we focus 
on this latter hiatus of the last mile, as it has been largely neglected by both ML developers and doctors. 
In doing so, we argue that efforts to cross this chasm require data governance practices and a focus on data 
work, including the practices of data awareness and data hygiene. To address the challenge of bridging the 
chasms in the last mile of medical AI implementation, we discuss the six main socio-technical challenges that 
must be overcome in order to build robust bridges and deploy potentially effective AI in real-world clinical 
settings.
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Introduction

Interest in the applications of machine learning (ML) 
techniques in medicine is growing fast because of their 
ability to endow decision support systems with so-called 
artificial intelligence (AI), a vague but evocative expression 
to denote, in this context, the capabilities of machines 
(i.e., algorithms) to classify or stratify clinical cases or 

predict related conditions with high accuracy—in some 
cases, even more accurately than human experts (1). If we 
limit ourselves to counting how many papers indexed on 
PubMed have the expression “AI” in their title, we can see 
that, every 2 years from 2012 to 2017, this number has 
roughly doubled (43, 70, and 169 in, respectively, 2012 to 
2013, 2014 to 2015, and 2016 to 2017), but, in the most 
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recent 2-year period, this number has increased almost 
tenfold (1,413 in 2018 to 2019). Moreover, this interest goes 
beyond the ambit of academic research, as it is mirrored 
by a doubling of the number of FDA approvals for devices 
endowed with some form of AI in the last 5 years.

The proof of the pudding in medical AI

Despite this increasing interest, there is oddly still a lack of 
consensus on how to assess whether the adoption of AI in a 
healthcare setting is even successful and hence useful. In an 
editorial in this journal (2), we made the point that we must 
go beyond statistical validation (which is what it is usually 
conducted and reported in scientific reports and articles in 
terms of accuracy measures, such as C-statistics or F-scores) 
and demand proof that these systems bring clinical benefit 
when fed with real-world data (what we called pragmatic 
validation) and when deployed in real clinical settings 
(ecological validation). Achieving ecological validation of 
statistically high-performing AI in diagnostic and other 
medical tasks has been observed to be more complicated 
than initially expected; in fact, most of the challenges that 
make technically sound systems perform poorly in real-
world settings lie in the “last mile of implementation” (3)—
a concept that we equate to the conceptual gap between 
developing medical ML and the mere application of ML 
techniques to medical data. Moreover, this “last mile,” 

although apparently short, is not a flat and regular path, but 
rather presents two chasms, as shown in Figure 1.

In particular, the hiatus of human trust represents 
the most serious hindrance to the full realization of the 
potential of AI at the point of care, as even the most 
accurate systems are affected when they are not trusted 
by doctors as a result of what we called “prejudice against 
the machine” (4). This hiatus represents the failure of 
medical AI to make a positive impact on doctors’ decisions, 
irrespective of its intrinsic accuracy. This can be because 
the interface is inadequate, because the good advice comes 
late or among several—often too many—false alarms (5), 
or because the decision-maker cannot take advantage of 
the technological support due to the emergence of either 
automation bias (6) or automation complacency (7). Efforts 
to bridge this hiatus are attracting increasing interest from 
the specialist communities of ML and human-computer 
interaction (HCI), in which solutions are designed and 
tested to improve the usability of AI interfaces (8), their 
causability (9)—that is, the quality of their explanations—
and, more generally, their acceptability (10).

This is why we make the point here that, paradoxical as 
it might seem, the other hiatus, which represents how the 
clinical experience from which ML models might learn 
is accumulated and processed, is more neglected than the 
human trust hiatus. In fact, most data scientists would 
deny that this step is even a gap: data scientists and ML 

Figure 1 The hiatuses in the “last mile” between medical AI and human agency.
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developers usually assume that the datasets with which 
their predictive models are trained—what is emphatically 
called ground truth—are (I) truthful, (II) reliable, and 
(III) representative of the target population. However, 
this threefold assumption is seldom tenable and often ill-
grounded, at least to some extent. As we have observed (11),  
ground truth can be considered reliable (note: for our 
practical aims, we consider a source dataset reliable if it 
is 95% accurate) only when perfect raters are called to 
annotate past cases or at least nine averagely accurate 
raters [that is, at least 85% accurate on average, which is a 
reasonable estimation (12)] are involved. Such a condition 
seldom holds true, if ever. Thus, the hiatus of machine 
experience represents the difference between actual care, as 
experienced by doctors, and its codified representation in 
the form of data, which is the only input for any machine, 
no matter how intelligent it is or might ever become.

A matter of quality

We have thus come to the crux of our position: the primary 
source for the training of ML models is data produced 
during the care of patients—with the exception of test 
results and diagnostic images—by doctors and other clinical 
practitioners in their daily routines and tasks. However, the 
quality of data found in medical records is notoriously far 
from being perfect, with independent studies consistently 
finding that approximately 5% of records contain errors 
(13-15). Focusing on diagnostic imaging, radiological 
reports might be used for automatic annotation (16), 
though they can have an even higher error rate (17), or, 
alternatively, images can be deliberately annotated by a 
pool of radiologists, though they often show a high degree 
of discordance in their findings (2). Thus, the quality of 
ML training data is often lower than the level needed to 
build reliable models for integration into effective decision 
support systems; what is worse, ML developers and 
doctors—as end users of the products—usually neglect or 
underrate this issue.

That said, few concepts are as intuitively comprehensible 
and yet academically elusive as that of data quality (DQ) in 
health records. In fact, the concept of DQ can intuitively 
and concisely be equated to the concept of fitness for 
use (18). This is in line with the operational definition 

of DQ given by The Joint Commission, which equates 
DQ with the adequacy to support a number of medically 
relevant tasks, like identifying the patient, supporting the 
diagnosis, justifying care and treatment, documenting the 
course and results of treatment, and promoting continuity 
and safety of care (19). Despite this apparent simplicity, 
a recent review by Juddoo et al. (20), which considered 
41 high impact papers, extracted a staggering 43 distinct 
DQ dimensions relevant to health care applications, of 
which 38 were mentioned more than once. In their words, 
“This confirmed the impression of a lack of a universal 
DQ framework and the possible fact that different authors 
might be using different jargon to express the same idea”. 
Accuracy, which Cabitza and Batini (21) defined as “health 
data [that] represent the truth and what actually happened” 
was the dimension most frequently mentioned (58 times), 
followed by completeness, consistency, reliability, and 
timeliness. These are the dimensions that appeared more 
than ten times and hence were considered by the authors to 
be “most important in the context of Big Data within the 
health industry.”

To try to simplify this complex matter, we could consider 
three main DQ areas. The first is related to accuracy and 
reliability (where the latter also includes internal consistency 
and high inter-rater agreement). The second is in regard 
to completeness and timeliness (in that missing data can be 
seen as data that is not yet recorded and, conversely, having 
complete but obsolete data is like not having useful data 
at all). The third is related to comparability and (external) 
consistency, which is also a matter of interoperability 
between information systems and the communities of 
practitioners who use those systems.

Crossing the chasms between clinical practice and ML

In the following, we will address the issue(s) of DQ in 
healthcare in order to bridge the “last mile” of the ML 
hiatus. This is the challenge of bringing a trustworthy 
(datafied) representation of health conditions and care 
actions to the opposite side of this chasm or, in other 
words, the challenge of engineering a workflow to develop 
an ML-based AI that supports medical decision making—
a composite industrial process encompassing various 
steps, among which are the engineering of the above 
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Figure 2 The main factors either bridging or separating clinical work and AI development. Oriented arcs represent strong influence.
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representation, the training of predictive models, and their 
testing and validation.

The main challenges to which we refer relate to the 
following areas of concern (see Figure 2):

(I)	 A lack of uniformity and consensus on (i) what to 
record (MDS in Figure 2, for minimum data set) 
and (ii) how to record it (STD, for standards);

(II)	 The phenomenon of observer variability (IRR, for 
inter-rater reliability), which is the extent to which 
multiple raters disagree on how to classify, and 
hence codify, a given medical phenomenon;

(III)	 Limitations on doctors’ capacity to record and 
communicate information; this also includes 
limited education of processing staff (both clinical 
and administrative), especially with respect to 
awareness of the consequences of poor DQ (DW, 
for data work);

(IV)	 Poorly designed data collection tools—both paper-
based and electronic interfaces (HCI, for human-
computer interaction);

(V)	 No single (or central) repositories for vetted and 
anonymized data for use at scale for secondary 
purposes, like research and ML training and 
validation (DM, for data management); and

(VI)	 Lack of planning (or will to plan) by administrative 
and managerial staff and higher policy makers 
with respect to DQ assessment and continuous 
improvement (DG, for data governance).

As the reader may notice, the problems we have 
mentioned are all socio-technical in nature, with inter-rater 
reliability (IRR), data work, and data governance being 
primarily socio-organizational areas of concern, and HCI 
and data management being mainly technical. Yet, for the 
very first concern—achieving consensus on minimum data 
sets and the related classification schemas—both areas are 

inextricably intertwined, and distinguishing between them 
is more futile than in other cases. Let us quickly review each 
of the concerns.

We can begin with an expression of optimism: the 
concern related to the use of standards (STD in Figure 2) 
to establish how to report a medical condition (i.e., how 
to code it) has affected the healthcare environment for 
decades and still prevents many centers from exchanging 
information or documents. The impact of this on the 
whole sequence of challenges of the ML hiatus should be 
gradually declining due to the increasing adoption of coding 
standards—such as ICD-10, SNOMED, and LOINC—that 
have passed the test of time and reached sufficient maturity 
(including technological maturity) and their integration into 
current electronic medical records and hospital information 
systems. In particular, the latter two coding systems are the 
most widely used terminology standards to date for health 
measurements, observations, and documents (22) and their 
adoption appears to be a growing trend.

The problem of the minimum data set (MDS in Figure 2) 
—what to report—is more complex and relates to the 
challenge of identifying all the relevant attributes of a 
clinical condition that, in the case of AI training, are good 
predictors of the target variable. In this regard, both ML 
developers and clinical practitioners can help each other. 
The former can employ the largest number of attributes 
(or features) available (or even conceivable) in a well-
circumscribed experimental setting to train a set of ML 
models on specific relevant targets (like classifying cases 
in terms of either the associated diagnosis or a stratum of 
expected improvements or outcomes) and then perform a 
quantitative feature ranking [or feature selection (23)] to 
determine the most useful N features for each predictive 
task at hand. The union set of these features could then be 
indicated (including in terms of iconic or graphical signs in 
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the user interface of the electronic record) as being the data 
that it is recommended to report as carefully and accurately 
as possible for the secondary use of the data (including, but 
not limited to, AI development).

In a similar but complementary fashion, a clinical 
study could be designed and conducted to review a 
sufficient number of retrospective cases that are adequately 
representative of relevant conditions; when multiple raters 
agree upon what data affected (or would have affected) the 
right decision at the right time, the study could identify the 
necessary data without which most of the cases (e.g., 80%) 
would not be managed appropriately or timely—in other 
words, the minimum data set with the highest impact on 
the patients’ outcomes. We could call this set the minimum 
pragmatic data set, which is still lacking for many clinical 
specialties. In both cases, the common idea is to adopt the 
motto “less is more” (24), translated into the DQ and ML 
fields as “less (but good) data is more data.” In so doing, 
we would fully recognize that the doctors’ responsibilities 
cannot be further expanded with new and more intensive 
reporting tasks (see also problem no. 3) and, perhaps more 
importantly, that medical data should not be treated as 
any other type of data and that its quality requirements 
cannot be borrowed from other domains. As a paradigmatic 
example of this realization, de Mul and Berg (25) reported 
a convincing case in which missing data did not necessarily 
indicate a DQ problem, but rather the occurrence of 
conditions that practitioners deemed not necessary to 
document (the “all is well” situation), thus shedding 
light on the unsuitability of establishing (and enforcing 
algorithmically) requirements for data completeness that are 
expressed in terms of some fixed threshold, as is common in 
other fields, such as administration.

Moving to the next concern: even if a community of 
specialists agree upon what and how to report, data could 
still be unreliable whenever more than one clinician is 
involved in its production (as should be the case for data for 
ML training) and these practitioners do not agree on how 
to report the same clinical phenomenon. This is a well-
known situation in the medical literature (26,27), which 
has been studied for almost a century, variously referred to 
as observer variability, inter-rater agreement, or IRR (see 
Figure 2). In Cabitza et al. (28), we contributed to raising 
renewed awareness of the potential distortion that IRR, 
which is intrinsic to and probably ineradicable from the 
interpretation of medical conditions, can induce in any 
medical dataset, especially those used to train ML models.

To address this factor, we proposed further investigating 

the viability and efficacy of some socio-technical solutions, 
which we can also relate to the HCI concern and to the 
solution we proposed above for raising awareness of the 
importance of careful completion of selected fields of the 
record. In particular, we proposed highlighting the fields 
that presented low IRR scores during adoption, in a way 
that is not too different from that shown in Figure 3 (28). In 
this solution, IRR scores can be computed on the basis of 
a small user study—or even at regular intervals—by asking 
two or more clinicians to fill in the same data on a random 
basis and computing this score on the fly.

Data work (DW in Figure 2) is a recent expression (29) 
that was introduced to cover all the tasks that doctors and 
nurses perform to document care and coordinate with 
each other (30) and that produce (and consume) medical 
data. The concerns with this kind of work (ontologically 
different from care) are related to excessive paperwork, 
with the consequent frustration and alienation of health 
practitioners, possibly leading to potentially serious 
consequences for the quality of care and health of their 
patients (31). Thus, if we just assume the limitations of 
doctors with respect to DQ (and avoid treating it as either 
their fault or an organizational failure), we can support data 
work in several ways—partly organizationally and partly 
technologically. As an example of a radical solution of the 
former type, we suggested relieving doctors from directly 
using data collection tools and flanking them with medical 
scribes (29). These would be “non-licensed health care 
team members that document patient history and physical 
examination contemporaneously with the encounter” (32) 
and who are trained in transcribing the doctors’ orders and 
notes as well as in describing medical cases in standardized 
and more consistent and comparable ways. Another example 
is the technological counterpart of this organizational 
solution, the so-called virtual scribes. This term can denote 
either the outsourcing of the medical scribing service (33) 
or, less frequently (and together with the alternative term 
digital scribes), the full automation of this service through 
AI systems that perform speaker diarization (understanding 
who spoke when), speech recognition, named entity (or 
knowledge) recognition, and the processing of structured 
data (32). These would be, in short, a sort of specialized AI 
that fills in the electronic medical record autonomously and 
with reduced effort on the part of the medical staff (who are 
involved in vetting the AI output).

We acknowledge that both the above solutions require 
additional resources (both human and economic), but 
we can here paraphrase the famous quotation often 
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Figure 3 A standard form to collect surgery data, with indications of IRR for each field (the darker the red, the lower the agreement among 
raters). Adapted from Ref. (28).

misattributed to Derek Bok: “if you think ensuring high 
DQ is expensive, try low DQ.” In any case, we recall the 
success of some cost-effective initiatives to improve doctors’ 
hand hygiene (34) and can envision that similar cognitive-
behavioral solutions [“nudges” (35)] could also be applied 
to data work practices in order to spread good practices of 
data hygiene. These solutions would likely be more effective 
than mere economic incentives or disciplinary sanctions, 
although their effectiveness in the long term may be 
uncertain and make them of limited sustainability.

The concerns regarding the quality of the electronic 
data collection tools—their low usability and poor HCI (see 
Figure 2)—have several implications, including for medical 
errors, patient safety, and clinician burnout (36). However, 
the design of structured and orderly graphical interfaces has 
also been found to have a positive role in improving DQ 
for ML training; for instance, Pinto Dos Santos et al. (37)  
provided proof of the concept that data extracted from 
structured reports written during clinical routines can be 
used to successfully train deep learning algorithms. While a 
plea to improve the usability of the interfaces of electronic 
medical records would hardly be considered inappropriate, 
we recognize the difficulties inherent in its realization. 
Nevertheless, we believe it is important that scholars talk 

about these problems, that research is done into the role 
of human factors in the performance of doctors (38), and 
that healthcare stakeholders become more aware of the 
opportunities to improve medical AI not only in terms of 
its accuracy, but also in terms of the usability of the systems 
through which we interact with it and, ultimately, in terms 
of the satisfaction of its users.

The concern about data management (DM in Figure 2) 
is the most technical one of those mentioned so far; in this 
regard, we can observe the wider diffusion and stronger 
reliability of third-party cloud storage solutions in which 
health facilities can store the data they produce in a secure 
and safe environment, often maintained by dedicated staff 
using state-of-the art equipment. This is justified not only 
by cost savings and economies of scale, but also by the 
more robust infrastructure against malicious threats like 
data poisoning (39), in which an adversary injects bad data 
into a model’s training dataset to get it to learn something 
that could make it vulnerable (attack its integrity) or 
inaccurate for a particular input (attack its availability 
or usefulness), or against adversarial attack, in which an 
adversary changes the input (e.g., by adding random pixels 
to a diagnostic digital image) to prevent the system from 
classifying the resulting input (without the knowledge of 
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the healthcare provider). Recent events have also raised the 
awareness of stakeholders, managers, and policy makers of 
data management risks and made it clear how the greater 
dependence on technology that AI induces—precisely 
because of its quality and potential—is also mirrored by 
greater vulnerability and fragility of the health system as a 
whole.

Finally, and related to this latter point, the greatest 
organizational concern is the last one mentioned: data 
governance (DG in Figure 2). We emphasize the difference 
between data management, which is a set of practices 
around the good operation of an information system and 
the adequate quality of its data flows, and data governance. 
This is a term denoting a strategic attitude toward the 
information assets “under the control of a hospital or health 
system [which encompasses] all policies and procedures 
to guide, manage, protect, and govern the electronic 
information” (40).

We consider this factor at the very end of the ML hiatus, 
as we regard it as the “last yard” of the path from the point 
of care to the entrance to the ML development pipeline, 
although its influence, as can be seen in Figure 2, can be 
easily traced back to almost all of the steps preceding it. In 
fact, all of the previous elements can be set and aligned to 
bring high quality data to the ML development pipeline, 
but if healthcare facilities do not exert full data governance 
over this flow and process—including governance of the 
processes by which predictive models are created, validated, 
updated, and applied to new cases on the basis of daily needs 
and routine—the ML hiatus depicted in Figure 1 might be 
closed for a while, but it will open up again, sooner or later, 
under the attacks of cyber-hackers or just the erosion caused 
by the drift of practices and the passage of time.

Final remarks

In this contribution, we have focused on the socio-technical 
elements that we recognize must all line up to allow for 
the deployment of potentially effective AI in real-world 
clinical settings. Rather than focusing on the theoretical 
performance and accuracy of medical AI, which is a rather 
new and surprising concern that computer scientists seem 
to have passed on to doctors, we have shed light here on 
a still relatively neglected and underrated set of concerns 
regarding the quality of the data that is used to train and 
adjust the AI algorithms to fit the situated needs of a 
community of health practitioners.

At this point, the famous adage comes to mind, which 

appears whenever ML and DQ are near each other: “garbage 
in, garbage out”. This expression refers to the fact that, 
no algorithm, no matter how smart or intelligent it is, 
can produce value if its input lacks value in the first place. 
However, the situation in healthcare is unfortunately worse 
than this common engineering phrase might suggest in 
other, less critical, domains. In fact, if inadequate input is 
used to optimize the performance of a decision support 
system, yet remains undetected, and thus the input is not 
appropriately improved nor the “support” discarded, but 
instead erroneously considered truthful and fit for purpose, 
the resulting garbage output risks being viewed as the 
proper advice of an accurate tool. A unreliable indication 
may then be made more “objective” and indisputable 
thanks to the armor of algorithmic legitimacy that we tend 
to ascribe to this class of machines, and we eventually risk 
allowing experts to be misled in more complex decisions 
by this garbage-in-disguise output and risk novices being 
deskilled in what should be easy decisions (41). Thus, 
before AI can unleash its full potential to help practitioners 
deliver better—and more human—care, we must, when the 
implementation chasm is closed and human and machine 
intelligence converge (42), build robust bridges that close 
both the sides of the machine and human hiatuses. This 
requires a full range of interventions, both organizational 
and technical, which alone would be either over ambitious 
or useless, together with the awareness that the accuracy of 
any technological support is nothing in medicine without 
the power of doctors to use it to the best of their knowledge 
and judgment: in a word, responsibly.
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