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Background: The coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China on 
December 2019 in patients presenting with atypical pneumonia. Although ‘city-lockdown’ policy reduced 
the spatial spreading of the COVID-19, the city-level outbreaks within each city remain a major concern 
to be addressed. The local or regional level disease control mainly depends on individuals self-administered 
infection prevention actions. The contradiction between choice of taking infection prevention actions or not 
makes the elimination difficult under a voluntary acting scheme, and represents a clash between the optimal 
choice of action for the individual interest and group interests.
Methods: We develop a compartmental epidemic model based on the classic susceptible-exposed-
infectious-recovered model and use this to fit the data. Behavioral imitation through a game theoretical 
decision-making process is incorporated to study and project the dynamics of the COVID-19 outbreak in 
Wuhan, China. By varying the key model parameters, we explore the probable course of the outbreak in 
terms of size and timing under several public interventions in improving public awareness and sensitivity to 
the infection risk as well as their potential impact. 
Results: We estimate the basic reproduction number, R0, to be 2.5 (95% CI: 2.4−2.7). Under the current 
most realistic setting, we estimate the peak size at 0.28 (95% CI: 0.24−0.32) infections per 1,000 population. 
In Wuhan, the final size of the outbreak is likely to infect 1.35% (95% CI: 1.00−2.12%) of the population. 
The outbreak will be most likely to peak in the first half of February and drop to daily incidences lower than 
10 in June 2020. Increasing sensitivity to take infection prevention actions and the effectiveness of infection 
prevention measures are likely to mitigate the COVID-19 outbreak in Wuhan. 
Conclusions: Through an imitating social learning process, individual-level behavioral change on taking 
infection prevention actions have the potentials to significantly reduce the COVID-19 outbreak in terms of 
size and timing at city-level. Timely and substantially resources and supports for improving the willingness-
to-act and conducts of self-administered infection prevention actions are recommended to reduce to the 
COVID-19 associated risks. 
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Introduction 

The coronavirus disease 2019 (COVID-19) was first 
identified in Wuhan, China on December 2019 in patients 
presenting with atypical pneumonia and is considered life-
threatening (1,2). Common symptoms of the infection 
include fever, cough and shortness of breath (3). Since 
December 31 of 2019, Wuhan has officially released 
the situation report of the outbreak of COVID-19. The 
cumulative number of officially reported cases remained 
constant at 41 cases until January 15, and rapidly increased 
afterward (4,5). As of February 6 (11:59 PM, GMT+8), the 
still ongoing outbreak has resulted in a reported 28,139 
(10,117 in Wuhan) confirmed cases including 564 (414 in 
Wuhan) deaths and 1,344 (459 in Wuhan) discharges in 
mainland China (4). Sporadic cases exported from Wuhan 
were reported in many Asian, Oceanian, North American 
and European countries or regions (6), and the case number 
is still increasing, which suggests travel-related spreading 
risks as indicated by (7-12). 

A number of studies used modelling techniques to 
explore and project the trends of the COVID-19 outbreak. 
By using the number of exported cases, a research group at 
the Imperial College London estimated that there had been 
1,723 (95% CI: 427−4,471) infections in Wuhan by January 
12 and this would increase to 4,000 (95% CI: 1,000−9,700) 
by January 18. They also estimated the basic reproduction 
number (R0) to be 2.6 (95% CI: 1.5−3.5) (13). Leung et al. 
drew a similar conclusion and estimated the number of cases 
exported from Wuhan to other major cities in China (14).  
Most existing estimates of the R0 of COVID-19 lie between 
1.5 and 4 (10,13,15-19), and is in the same scale as the 
other two well-known coronavirus diseases: severe acute 
respiratory syndrome (SARS) and Middle East respiratory 
syndrome (MERS) (20-22). 

The ‘city-lockdown’ policy was firstly implemented 
in Wuhan and suspended all public traffic within the city 
and all inbound and outbound transportations from or 
to Wuhan as of January 23, 2020 (23). Similar policies 
were also implemented in many other Chinese cities 
subsequently. This effectively reduced the spatial spreading 
of the COVID-19 in terms of the number of exported cases 
domestically and internationally, but the city-level (within 
each isolated city) outbreaks remain a major concern to be 
addressed. 

Box 1 Summary of the timing of key outbreak-related information 
released at the early phase of the outbreak
The cumulative number of reported cases slowly increased to 
41 cases until January 1, 2020 and then rapidly increased after 
January 16 (4-6), as the official diagnosis protocol was released 
by the World Health Organization (WHO) on January 17 (24). 
The exported cases were increasingly detected in many foreign 
countries and regions globally since the second half of January 
2020 (6). The ‘human-to-human’ transmission path was rarely 
reported until the second half of January (2), and only officially 
confirmed later (25). In recognition of increased human-to-
human transmission on January 23, the local government of 
Wuhan suspended all public traffic within the city and closed all 
inbound and outbound transportations (23). The WHO declared 
the novel coronavirus outbreak to be a public health emergency 
of international concern on January 30, 2020 (26). 

With increasing public information about COVID-19 
and outbreak released since the second half of January 
2020, see Box 1, there has been an increasing number 
of individuals at risk seeking healthcare supports most 
commonly in the form of self-administered disease infection 
prevention actions, i.e., infection risk averse actions. And 
by the first week of February, most people in the cities 
seriously affected by COVID-19 chose to take infection 
prevention actions. On the one hand, taking disease control 
actions can reduce the morbidity and mortality risks 
involved with the COVID-19 outbreak. However, on the 
other hand, the infection prevention actions are usually very 
constraining and difficult to adhere to, and involve giving 
up to some degree of a normal lifestyle. For example, they 
may include major mobility restrictions, the continuous 
wearing of uncomfortable facemasks, frequent cleaning 
and sterilization, and there is also the financial and mental 
‘cost’ required to implement these kinds of measures. 
Due to the many possible ‘losses’ in utility associated with 
disease infection prevention actions, this contradiction 
between choice of actions makes the elimination difficult 
under a voluntary acting scheme. There is clearly a clash 
between the optimal choice of action for the individual 
and the coverage of infection prevention actions uptake 
that is best for the population as a whole. In other words, 
the total coverage of infection prevention actions uptake 
under a voluntary policy is the collective result of individual 
decisions to take or not to take actions. Similar to the game 
theory of vaccination proposed in the literature (27), when 



Annals of Translational Medicine, Vol 8, No 7 April 2020 Page 3 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(7):448 | http://dx.doi.org/10.21037/atm.2020.03.168

this coverage increases, an increasing number of ‘free-
rider’ individuals will no longer have the incentive to take 
control actions, since non-action-takers can enjoy the herd 
immunity without suffering the costs associated with the 
strict infection prevention actions. This game theoretical 
contradiction in vaccination decision-making is a well-
known phenomenon (27-30). 

During the outbreak, the action-taking game evolves 
through time, and individuals cannot precisely determine 
their probability and possible (negative) consequences of 
becoming infected. 

Moreover, people adopt updated information and 
new strategies through learning, by imitating others who 
appear to have adopted more successful strategies (31).  
Hence, an imitation dynamical behavior with a learning 
process  between individuals ,  i s  proposed,  which 
captures the evolutionary process of the frequencies 
of strategic choices in the population, with respect to 
disease infection prevention actions. In this study, we 
develop a compartmental epidemic model incorporated 
with a behavioral imitation through a game theoretical 
decision-making process in order to study the dynamics 
of COVID-19 outbreak in Wuhan, China. We project 
the future trends and patterns of this outbreak in Wuhan 
under the most realistic settings. From a public health 
control viewpoint, we explore the probable courses of the 
outbreak in terms of size and timing under several public 
interventions in improving public awareness and sensitivity 
to the infection risk as well as their potential impact.  

Methods 

Surveillance data 

Due to late reporting or under reporting of the cases in 
the situation reports in the early outbreak (5,32), which is 
also indicated by (10,13,16), the officially reported time 
series data of cases will introduce biases into the estimation 
and simulation without reasonable adjustment for varying 
reporting rates (19,33,34). Therefore, we adopt the time 
series of laboratory confirmed cases from Li et al. (15). 
All cases were laboratory confirmed following the case 
definition by the National Health Commission of China (35)  
indicated in (15). Specifically the cases ‘were collected onto 
standardized forms through interviews of infected persons, 
relatives, close contacts, and health care workers’, and aggregated 
by the date of symptoms onset (15). The data should cover 
most of symptomatic pneumonia of unknown etiology if 

not all from December 1, 2019 to early January 8, 2020. 
We choose to use the data up to January 8, one day before 
the decline of epidemic curve in Figure 1 of (15), for model 
fitting and parameter estimation. The decline after January 
8, 2020 in their figure was ‘likely to be due to delays in diagnosis 
and laboratory confirmation’ (15). 

Game of taking infection prevention actions 

Due to the emergency of the COVID-19 outbreak 
in Wuhan, a number of infection prevention actions 
were promoted to individuals at risk, including wearing 
facemasks, maintaining hand hygiene and reducing outdoor 
mobility (or activities), etc. Existing literatures suggest that 
these infection prevention actions could well have reduced 
the risk of infection in past outbreaks of infectious diseases 
(22,36). The model of “imitation dynamics” presented here 
was previously used for predicting the decision-making of 
vaccination uptake to prevent pediatric infections during 
the vaccine scare era (27,37). We develop an imitation 
behavioral modelling framework of two types of strategies 
for individuals:  
 those willing to take disease infection prevention 

actions associated with a payoff at E0, and 
 those not willing to take disease infection prevention 

actions associated with a payoff at E1. 
For each individual, we assume that his or her willingness 

(or probability) to take disease infection prevention actions, 
denoted by p, is controlled by the payoff profile (E0 and E1) 
and the sensitivity of this payoff profile (κ), as explained 
shortly. 

Considering the possibility of being infected, denoted by 
Φ ranging from 0 to 1, during an outbreak, we account for 
the prevalence of infections, denoted by I/N. Since N is the 
total population size and fixed to be a constant, we model Φ 
as an increasing function of I, i.e., Φ(I). If we denote r0 (>0) 
as the cost of being infected by COVID-19, the payoff for 
an individual that does not take infection prevention actions 
is given by Eq. [1]: 

( )0 0E I rφ= −
 

[1]

For an individual who takes infection prevention actions, 
the possibility of being infected is reduced by a scalar α, and 
the possibility is αΦ. At the same time, the cost for taking 
infection prevention actions is r1, which is expected to be 
much smaller than r0, i.e., r1 << r0. Thus, the payoff for an 
individual that takes infection prevention actions is given by 
Eq. [2]: 
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Figure 1 The estimation of basic reproduction number (R0) and sensitivity to payoff gain (κ), and the fitting results of the early outbreak. 
(A,B) likelihood profiles (purple curve) of R0 and κ, and the cutoff threshold (red dashed line) respectively; (C) comparison between the peak 
sizes of our simulation (varying with κ) and that of Wu et al. (10); (D) fitting results (curves) to the cases data (blue dots) in Wuhan from Li 
et al. (15), where the black curve is the simulation median and the grey curves are the 1,000 simulation samples; (E) comparison between our 
simulation on cumulative number of infections and those from other literatures (9,13,16,17). 
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( )1 10E I r rαφ= − −  [2]

The payoff gains for one not taking infection prevention 
actions who then switches to the strategy of taking infection 
prevention actions is ΔE, such that  

( ) ( )1 0 0 11E E E I r rα φ∆ = − = − −
 

[3]

Since r1 << r0, we rescale the ΔE by r0 and define r = r1/r0 

such that 0 < r < 1 and r is expected being close to 0. With 
the tradeoff of the game holding, we have the scaled ΔE, 
denoted by Δe, in Eq. [4]. 

( ) ( )0/ 1e E r I rα φ∆ = ∆ = − −
 

[4]

As Φ(I) measures the risk of being infected, it is 
proportional to the force of infection that is approximately 
the product of transmission rate (β) and the instantaneous 
prevalence rate (I), i.e., Φ(I) is proportional to βI/N. Since 
the β usually is a constant and its effects can be controlled 
by other terms, we simply define Φ(I) = I/N throughout this 
study. 

For the imitation dynamics, it is assumed that individuals 
randomly sample other members of the population at 
a constant rate. If the strategy of the sampled members 
provides a higher payoff, then the strategy is adopted with 
a probability proportional to the expected gain in payoff. 
Let p denote the probability of an individual who is willing 
to take infection prevention actions. We further model 
the imitation rate, K (>0), at which individuals sample 
others and switch strategies, as a function of Δe, i.e., K(Δe). 
Therefore, the time evolution of p is given by Eq. [5].

( ) ( )1p K e p p= ∆ −′
 

[5]

Since K(Δe) is expected to be an increasing function with 
respect to Δe, for simplicity, we further define K(Δe) = κΔe. 
The term κ is a proportionality constant that controls the 
sensitivity of the imitation rate in response to the perceived 
payoff gain (Δe). Thus, Eq. [5] can be refined as in Eq. [6]. 

( )
( ) ( ) ( )
( ) ( )

1

   1 1

   1 1 /

p e p p

p p I r

p p I N r

κ

κ α φ

κ α

= ∆ ⋅ −

 = − − − 
 = − − − 

′

 [6]

As the term κ controls the sensitivity of the imitation 
rate in response to the perceived payoff gain, larger κ means 
that the population is more sensitive to be motivated to take 
the disease prevention infection prevention actions. When 
the prevalence of infections (I/N) increases, the combined 

imitation rate (κΔe) will also increase. The term Δe is 
the payoff gain, and it measures the ‘cost’ (risk) of being 
infected due to lack of infection prevention actions based 
on the real-world facts. The sensitivity term (κ) adjusts and 
rescales this cost level (Δe) from the public perception side. 

Epidemic model 

We develop a compartmental model based on the classic 
susceptible-exposed-infectious-recovered (‘SEIR’) 
modelling structure. The susceptible population is separated 
into two groups of population, and they are the people not 
taking infection prevention actions, denoted by U, and the 
people taking infection prevention actions, denoted by M. 
The infectious population is denoted by I, and the removed 
(by recovery or death) population denoted by R. In addition 
to the classic compartmental framework, we include the 
game of taking infection prevention actions or not in the 
model by allowing switching status (of the action-taking 
strategy) between U and M at a considerably large rate, ξ. 

The switching status is also controlled by the probability 
of willingness to take infection prevention actions (p) as 
modelled in Eq. [6]. Hence, we have the following epidemic 
model as in Eq. [7]. 

( )

( )

( ) ( )

1 ,

1 ,

,

,
,

1 1 .

UU I p M pU
N
MM I p M pU
N

U ME I E
N

I E I
R I

Ip p p r
N

β ξ

αβ ξ

αβ σ

σ γ
γ

κ α

  = − + − − 

  = − − − − 
 + = −


= −
 =

  = − − −

′

′

′

′
′

′   

[7]

The total population N = U + M + E + I + R is a constant. 
The descriptions of model parameters and the associated 
references are summarized in Table 1. 

Reproduction numbers 
At the disease-free equilibrium, with initially 100% of the 
population in the ‘U’ class, the basic reproduction number 
can be formulated as R0 = β/γ, by using the next generation 
matrix approach (41). Using the same technique, the time-
varying effective reproduction number can be defined as Reff 
= R0(U + αM)/N. 
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Table 1 Descriptions of model parameters and compartmental classes

Class or  
parameter

Description Value Range Remarks Unit Source

R0 Basic reproduction number 2.5 2.4–2.7 Estimated Unit-free (10,13,15,16,19)

β (= R0γ) Transmission rate 1.1 1.0–1.2 Determined by R0 Per day None

ξ Strategy switching rate 1 >0 Assumed Per day None

α Transmission reduction scale 0.33 0–1 None Unit-free (36)

σ−1 Incubation period 5.2 Fixed None Day (15)

γ−1 Infectious period 2.3 Fixed None Day (10,15)

η Symptomatic ratio 0.875 Fixed None Unit-free (38-40)

U Unmasked population Time-varying 0-N None Person Eq. [7]

M Masked population Time-varying 0-N None Person Eq. [7]

E Exposed population Time-varying 0-N None Person Eq. [7]

I Infectious population Time-varying 0-N None Person Eq. [7]

R Removed population Time-varying 0-N None Person Eq. [7]

K Combined imitation rate Time-varying 0-N None Unit-free Eq. [5]

N Total population 11,000,000 fixed As of 2019 Person (10)

Δe Scaled payoff gain Time-varying NA None Unit-free Eq. [4]

κ Sensitivity to payoff gain 115.5 >0 Estimated, baseline Unit-free None

Φ Perceived infection probability Time-varying 0–1 None Unit-free None

p Probability (willingness) of taking facemask Time-varying 0–1 None Unit-free Eq. [6]

r (= r1/r0) Ratio of payoff 1×10−5 0–1 Close to 0, assumed Unit-free None

Fitting framework 

We fit the model (6) to the daily number of cases collected 
in (15), and incorporate with a symptomatic ratio, denoted 
by η, to only fit the symptomatic infections to the observed 
data. We model the theoretical value of daily number of 
symptomatic cases, zi, for the i-th day as in Eq. [8]. 

day 
di i

z E tησ= ∫
 

[8]

Following previous studies (10,42), with the observed 
daily number of symptomatic cases denoted by ci for 
the i-th day, the likelihood can be calculated under a 
Poisson distribution with rate at zi, and denoted by Li(ci|zi). 
Therefore, the overall likelihood for parameter estimation 
can be formulated as in Eq. [9]: 

( )Θ ln (Θ | , )i i ii
l L c z=∑ [9]

Here, Θ  denotes the vector of parameters to be 
estimated, ci is the observation from the data, and zi is 
defined in Eq. [8] and regarded as the theoretical value of 
ci. The Li(∙) is the Poisson distribution for the i-th day, and 
thus namely, the measurement noises are addressed by the 
Poisson-distributed likelihood framework. 

The stochastic variant of the model simulation is 
implemented as a continuous-time Markov process 
approximated via a multinomial process with a fixed time 
step of 0.1 day. We estimate the model parameters by 
maximizing the likelihood function defined in Eq. [9], as 
well as by comparing the key modelling outcomes of the 
outbreak in Wuhan with Wu et al. (10). Following previous 
studies (19,42-46), the 95% confidence intervals (95% CI) 
of estimates are obtained by using the profile likelihood 
approach with the Chi-squared quantile as the cutoff 
threshold (47). We conduct 1,000 simulation samples and 
calculate the median and 95% CI. 
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Initial condition 
Since this is the first outbreak of COVID-19 in history, we 
assume the initial susceptible population is relatively large, 
and take it to be 100% as of December 1, 2019. This means 
that U(0) = N − 1, and we set the 1 infection as the seed at 
the start of the outbreak. The initial value of p is taken to 
be 0.01, that is, only 1% of the population was willing to 
take infection prevention actions at the early stage of the 
outbreak. 

Simulation schemes under different scenarios 

We explore the impacts of the changes in 
 sensitivity to payoff gain (κ), and 
 effectiveness of control measures (measured by α). 
This will include examining how theses parameters affect 

the epidemiological features of the COVID-19 outbreak in 
Wuhan, including 
 peak size (as in incidence rate); 
 final size (in percentage infection), and 
 timing of effective control (i.e., the first time at 

which Reff <1). 
The baseline scenario is the fitting results with 

the maximum likelihood estimates of each parameter 
summarized in Table 1. We vary κ by per 10-fold change for 
5 times, and thus this means we have 6 settings including 
0-fold (baseline), 10-, 100-, 1,000-, 10,000- and 100,000-
fold increase in κ. Similarly, we vary α by per 0.5-fold 
change for 3 times, and thus this means we have 4 settings 
including 0-fold (baseline), 1/2-, 1/4- and 1/8-fold decrease 
in α. Therefore, we have (6×4=) 24 different scenarios 
including the baseline. 

We select a scenario regarding κ that is most approaches 
to the real situation for further simulation analysis. The 
timing of key outbreak-related information released that 
were concentrated at the second half of January 2020, 
see Box 1. Hence, p is expected to start increasing since 
the second half of January 2020. Referring to the real-
world fact, almost every people in Wuhan and elsewhere 
affected by increasing number of cases is willing to take 
or has already took infection prevention actions against 
COVID-19. Thus, p is also expected to approach 1 in the 
first week of January. By examining the trends of the time-
varying p, we consider a scenario regarding κ that has the 
desired changing dynamics of p as an approximation of the 
real-world situation. Details of the κ selection can be found 
in Supplementary files. 

The disease surveillance data during the early phase of 

the outbreak were obtained from Li et al. (15). 

Results 

We estimated the basic reproduction number, R0, at 2.5 
(95% CI: 2.4−2.7), see Figure 1A, which is consistent with 
previous estimates from 1.5 to 4 (10,13,15-19). Although 
the sensitivity to the payoff gain, κ, does not have significant 
difference to the data from early outbreak, see Figure 1B, we 
choose the baseline value of κ by comparing the estimated 
peak size with the previous estimate in Wu et al. (10).  
As shown in Figure 1C, when κ becomes larger than 115.5, 
the estimated peak size starts to become lower than the 
previous estimate in (10), and thus we treat κ =115.5 as 
the baseline value. Figure 1D shows the fitting results to 
the symptomatic cases data published in (15) at the early 
phase of the outbreak. Figure 1E shows the comparison 
between our simulation on cumulative number of infections 
and those from other literatures (9,13,16,17), and they are 
largely in line with each other.

Figure 2 summarizes the simulation results under 
different scenarios with, from left to right, 0-fold (baseline), 
1,000-, 10,000- (the most realistic) and 100,000-fold 
increase in κ. The simulated epidemic curve under the 
baseline scenario, in Figure 2A, is consistent with that in 
the Figure 4 of Wu et al. (10). The fold-increase in κ is 
likely to mitigate the COVID-19 outbreak in terms of peak 
level and total infections, see top panels in Figure 2. The 
middle panels in Figure 2 show the changing dynamics of 
the willingness (or probability) to take infection prevention 
actions, i.e., the time-varying p in Eq. [6]. This time 
evolution of p is expected to be largely associated with the 
situation of the outbreak-related information spread and 
individuals’ behaviors. By examining the changing dynamics 
of p, we select the scenario in Figure 2D with 10,000-fold 
of the baseline κ as an approximation of the real situation, 
and this scenario will also be used for further simulation 
analysis. Details of and more reasoning on the selection 
of scenarios can be found in Supplementary files. For the 
bottom panels in Figure 2, we found the point in time when 
Reff first reduces below unity, i.e., Reff <1, which implies the 
epidemic curve will decrease. Figure 2 shows this point in 
time becomes earlier as κ increase. This finding implies that 
increasing the sensitivity to take infection risk averse actions 
would help control the epidemic efficiently.

We summarized the estimates of the key outbreak 
features under real-world approximation as highlighted 
in Table 2. We estimate the peak size at 0.28 (95% CI: 
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Table 2 Summary of the epidemiology features estimation 

Scenario  
interpretation

Key settings in parameters Epidemiology features

Sensitivity to 
payoff gain

Effectiveness of control 
measures

Peak size  
(/1,000 population)

Final size (%) Date of under control

With 10-fold  
less sensitive to 
the risk

1,000-fold of 
baseline

Baseline (1-fold) 2.65 (2.29, 3.07) 10.53 (8.35, 13.69) Feb 28 (Feb 14, Apr 18)

(1/2)-fold of baseline 1.94 (1.70, 2.26) 3.89 (3.51, 4.29) Feb 24 (Feb 14, Apr 15)

(1/4)-fold of baseline 1.70 (1.48, 1.99) 2.90 (2.77, 3.21) Feb 24 (Feb 13, Apr 3)

(1/8)-fold of baseline 1.60 (1.39, 1.88) 2.58 (2.47, 2.82) Feb 24 (Feb 13, Apr 3)

The most  
probable real 
situation

10,000-fold of 
baseline

Baseline (1-fold) 0.28 (0.24, 0.32) 1.35 (1.00, 2.12) Feb 9 (Jan 31, Mar 27)

(1/2)-fold of baseline 0.20 (0.17, 0.24) 0.40 (0.36, 0.46) Feb 9 (Jan 28, Mar 21)

(1/4)-fold of baseline 0.18 (0.15, 0.21) 0.30 (0.28, 0.33) Feb 6 (Jan 27, Mar 17)

(1/8)-fold of baseline 0.16 (0.14, 0.19) 0.26 (0.24, 0.29) Feb 6 (Jan 27, Mar 17)

With additional 
10-fold more  
sensitive to the 
risk

100,000-fold  
of baseline

Baseline (1-fold) 0.03 (0.03, 0.03) 0.15 (0.10, 0.22) Jan 24 (Jan 14, Mar 26)

(1/2)-fold of baseline 0.02 (0.02, 0.03) 0.04 (0.04, 0.05) Jan 22 (Jan 10, Mar 10)

(1/4)-fold of baseline 0.02 (0.02, 0.02) 0.03 (0.03, 0.03) Jan 21 (Jan 10, Mar 10)

(1/8)-fold of baseline 0.02 (0.01, 0.02) 0.03 (0.03, 0.03) Jan 21 (Jan 10, Feb 26)

The ‘date of under control’ is the date when the effective reproduction number (Reff) firstly decreases below 1, which is consistent with the 
bottom panels of both Figures 2,3. The highlighted estimates are under the selected scenario as the approximation to the real-world situation.

0.24−0.32) infections per 1,000 population in Wuhan. The 
final size of the outbreak is likely to infect 1.35% (95% CI: 
1.00−2.12%) of the whole population in Wuhan, see Figure 
2D. The outbreak is likely to be under control in terms of 
the Reff <1 on February 9 (95% CI: January 31−March 27), 
2020. By multiplying the sensitivity of taking infection risk 
averse actions (κ) by an additional 10-fold (from the real 
situation), the peak size is likely to reduce at 0.03 (95% CI: 
0.03−0.03) infections per 1,000 population, and the final size 
at 0.15% (95% CI: 0.10−0.22%). However, if κ decreases 
10-fold from the real situation, the peak size is likely to rise 
at 2.65 (95% CI: 2.29−3.07) infections per 1,000 population, 
and the final size at 10.53% (95% CI: 8.35−13.69%). 

In Table 2, we also project the outbreak features 
under several derivative scenarios from the real-world 
approximation. These ‘what if ’ scenarios allow us to 
evaluate the effect of a certain factor of interest on 
mitigating the COVID-19 outbreak. By holding other 
factors unchanged, if the effectiveness of the control 
measures increases by 2-fold, which means the term α 
is reduced to be 1/2-fold of its baseline value, the peak 
size will be likely to reduce to 0.20 (95% CI: 0.17−0.24) 
infections per 1,000 population in Wuhan, and the final 
size at 0.40% (95% CI: 0.36−0.46%). 

Although we find that the timing of the disease under 

control (i.e., Reff <1) is unlikely to change significantly 
even by increasing as much as 8-fold in the effectiveness 
of the control measures, see bottom panels in Figure 3, 
the outbreak size can be successfully reduced, see top and 
middle panels in Figure 3. The estimates shown in Figure 
3 also allow us to further check the sensitivity of results 
and explore the impacts of varying κ and α on the outbreak 
features. Both increasing κ and decreasing α are likely to 
mitigate the COVID-19 outbreak scale in Wuhan. 

Discussion 

The R0 of COVID-19 is estimated at 2.5 that is in the same 
magnitude as many other well-known respiratory infections, 
including SARS and pandemic influenza H1N1 in 2009 
(22,48). We estimate there will be some 148.5 (95% CI: 
110.0−233.2) thousand infections under the most realistic 
scenario (i.e., with 10,000-fold of κ from its baseline) by 
the end of May 2020, given a total of 11 million population 
in Wuhan. The outbreak will most likely peak in the first 
half of February (which matches the fact that the daily new 
confirmations started showing a sign of decreasing these 
days), and eventually drop to a level of daily new infections 
of 10 in June 2020, see Figure 2D. 

The compartmental model we adopted is similar to 
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those used by other researchers (8,10,13,16,18,19,49-53). 
Thus, our analyses are based on validated baseline model and 
approaches and our estimated characteristics are consistent 
with previous estimates, see Figure 1C,E. Our modelling 
framework incorporates human reaction and behavior 
change to the risk and allows us to understand and evaluate 
the effects of these factors on mitigating the outbreak. We 
demonstrate that increasing the level of public awareness (in 
terms of κ) would significantly reduce the outbreak size, see 
Table 2. Increasing public perception to avert infection risk (κ) 
and willingness to take infection prevention actions (p) would 
be helpful to mitigate the on-going COVID-19 outbreak. 
To achieve this, substantial measures that improve public 
awareness and willingness for self-protection are strongly 
desired at the earliest phase locally and domestically. Timely 
outbreak information updates are crucial. Prevention actions 
(e.g., avoiding risky contacts and reducing their frequency, 
avoiding gatherings, and working at home), i.e., moving 
from class U to M in model (6), would drastically reduce 
transmission rates, i.e., reduction from β to αβ, As more 
individuals becoming willing to take actions, the supply and 
quality of the resources and well-being in supporting for the 
implementation of the infection prevention actions, become 
important issues. For example, the availability, cost, quality 
and quantity of the necessary equipment, e.g., facemask and 
alcohol sterilizer, sufficient room for self-quarantine and 
routine supply during mobility restriction, e.g., food and 
power, are crucially needed to win the combat. 

This study has limitations. Our model simulation is 
conducted under the assumption that the resource for 
infection prevention actions, e.g., facemasks, can be 
sufficiently supplied once demanded. This may not always 
be true during the outbreak, especially when the demand 
from the population rapidly increase (reflected by p), see 
Figure 2K,N. However, it appears the charity contribution 
of the disease prevention resources, which currently 
occurs in mainland China to support the ‘anti-COVID-19’ 
campaign in Wuhan, is to some extent alleviating this 
problem of ‘lack of resources’. Thus, our results still 
provide legitimate insights on projection and forecasting of 
the outbreak. Our analysis did not include extreme changes 
from the side of healthcare providers, e.g., public health 
service, hospital and use of new drugs or vaccine. Previous 
modelling analysis demonstrated that large improvement 
in COVID-19 infection detecting and development and 
coverage of effective vaccination would reduce the number 
of cases from the theoretical point of view (53). The 
timely infections detection associated with isolation could 

decrease the effective infectious period (γ−1) of transmission, 
and effective mass vaccination would largely reduce the 
susceptible pool (U + M). Although these improvements 
in public health service would mitigate the outbreak by 
reducing Reff, the development procedure and delivery of 
such services or products may be time consuming. Hence, 
we note that the large changes in healthcare services and 
products commonly requires relatively long period of time 
for clinical testing and evaluation, and thus it is unlike 
to bring significant impacts to current situation. As also 
pointed out by Wu et al. (10), ‘precisely what and how much 
should be done is highly contextually specific and there is no 
one-size-fits-all set of prescriptive interventions that would 
be appropriate across all settings’. Our imitation framework 
considers the improvement in the human reaction to 
take infection risk averse measures in a self-sustaining 
manner, which demonstrates only by increasing the level 
of public awareness would largely reduce the outbreak size, 
see top panels of Figure 3. With the knowledges of the 
detailed travelling patterns, the number and timing of seed 
infections in other localities, our modelling framework can 
be extended to a complex metapopulation version to explore 
the outbreaks on a spatial level. We remark that as shown in 
Figure 2 of Wu et al. (10), the outbreak patterns in different 
places in China are almost the same in peak size, final size 
and timing of peak as that generated by our model here. 
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Supplementary

Selection of the scenario regarding κ for the 
real-world situation 

In the main text, we vary κ by per 10-fold change for  
5 times including 0-fold (baseline), 10-, 100-, 1,000-,  
10,000- and 100,000-fold increase in κ for simulation. 
Figure S1 summarizes the simulation results under different 
scenarios with 0-fold (baseline), 10-, 100-, 1,000-, 10,000- 
and 100,000-fold increase in κ. The fold-increase in κ is 
likely to mitigate the 2019-nCoV outbreak in terms of peak 
level and total infections, see top panels in Figure S1. 

The middle panels in Figure S1 show the changing 
dynamics of the willingness (or probability) to take 
infection prevention actions, i.e., the time-varying p. We 
select a scenario regarding κ that is most approaches to the 
real situation for further simulation analysis. The timing 
of key outbreak-related information released that were 
concentrated at the second half of January 2020, see Box 1 in 
the main text. Hence, p is expected to start increasing since 
the second half of January 2020. Referring to the real-world 

fact, almost everyone in Wuhan and elsewhere affected by 
increasing number of cases is willing to take or has already 
took infection prevention actions against 2019-nCoV. Thus, 
p is also expected to approach 1 in the first week of January. 
Therefore, we consider a scenario regarding κ that has the 
desired changing dynamics of p as an approximation of the 
real-world situation. By examining the trends of the time-
varying p in the middle panels of Figure S1, we confirm 
that the scenario in Figure S1N associated with 10,000-
fold of the baseline κ is probably the closest to the real-
world situation. Therefore, we regard this scenario as an 
approximation of the real situation for further simulation 
analysis in the main text. 

The bottom panels of Figure S1 show the changing 
dynamics of the Reff, and we found increasing κ will shorten 
the period to control the outbreak in terms of the first date 
when Reff <1 occurs. We remark that the results of 0-fold 
(baseline), 1,000-, 10,000- and 100,000-fold are same as in 
the main results, but only in different scale and sequence.
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