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Deep learning-based automated diagnosis of fungal keratitis with 
in vivo confocal microscopy images
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Background: The aim of this study was to develop an intelligent system based on a deep learning 
algorithm for automatically diagnosing fungal keratitis (FK) in in vivo confocal microscopy (IVCM) images. 
Methods: A total of 2,088 IVCM images were included in the training dataset. The positive group 
consisted of 688 images with fungal hyphae, and the negative group included 1,400 images without fungal 
hyphae. A total of 535 images in the testing dataset were not included in the training dataset. Deep Residual 
Learning for Image Recognition (ResNet) was used to build the intelligent system for diagnosing FK 
automatically. The system was verified by external validation in the testing dataset using the area under the 
receiver operating characteristic curve (AUC), accuracy, specificity and sensitivity. 
Results: In the testing dataset, 515 images were diagnosed correctly and 20 were misdiagnosed (including 
6 with fungal hyphae and 14 without). The system achieved an AUC of 0.9875 with an accuracy of 0.9626 
in detecting fungal hyphae. The sensitivity of the system was 0.9186, with a specificity of 0.9834. When  
349 diabetic patients were included in the training dataset, 501 images were diagnosed correctly and thirty-
four were misdiagnosed (including 4 with fungal hyphae and 30 without). The AUC of the system was 0.9769. 
The accuracy, specificity and sensitivity were 0.9364, 0.9889 and 0.8256, respectively. 
Conclusions: The intelligent system based on a deep learning algorithm exhibited satisfactory diagnostic 
performance and effectively classified FK in various IVCM images. The context of this deep learning 
automated diagnostic system can be extended to other types of keratitis.
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Introduction

Fungal keratitis (FK) is a serious corneal infection caused 
by fungal organisms and is the main cause of vision loss 
and blindness, especially in developing countries (1,2). 
Early diagnosis and treatment are the key to preventing 
severe complications, such as corneal perforation, anterior 
chamber empyema, endophthalmitis and blindness (3-5).  
At present, the diagnosis of FK mainly relies on the 
following methods: slit-lamp examination, corneal scraping 
microscopy examination, fungal culture, tissue biopsy, 
confocal microscopy and polymerase chain reaction 
(PCR) (6,7). These methods have their own advantages 
in diagnosing FK from different aspects, along with some 
shortcomings or limits. For example, doctors can observe 
only the superficial signs by slit-lamp examination to make 
an initial diagnosis (8,9), corneal scraping microscopy 
examination and tissue biopsy are invasive tests that may 
cause secondary infection (10), fungal culture takes a 
relatively long time and may produce negative results, 
which is difficult for early diagnosis (3), and the high cost of 
PCR limits its extensive clinical application (7,11,12). 

In vivo confocal microscopy (IVCM) is a noninvasive 
imaging modality that can present the direct visualization 
of potential causative pathogens in real time (13,14). It uses 
laser as a light source to scan organisms point by point and 
line by line to obtain high-resolution optical cross-sectional 
images of thick specimens (15-17). IVCM also overcomes 
the shortcomings of traditional optical microscopes by using 
spatial conjugated pinholes to block out-of-focal plane rays 
to obtain clear images (18,19). The images collected via 
IVCM show cell morphology, so it can be used to diagnose 
FK at the cellular level (20,21). As shown in Figure 1, the 
confocal microscopy images in the normal cornea show 
a clear background with corneal nerve fibers and other 
structures, however, in the pathological cornea, various 
hyphae and inflammatory cells. Moreover, especially in 
diabetic patients, the decrease in the number and continuity 
of nerve fibers can also seriously interfere with the accuracy 
of diagnosis, because the morphology of the hyphae 
are the most important basis for clinical diagnosis (22).  
Therefore, identifying key structures in different images is an 
important and challenging task for this subject. Furthermore, 
confocal microscopy is an imaging diagnostic technique that 
completely relies on the clinical experience and subjective 
judgment of the attending doctors (23). Moreover, doctors 
have to screen, observe and analyze plenty of images acquired 
by the confocal microscope continuous tomography scan, 

which is time-consuming and laborious work (14). 
With the rapid development of computer and image 

processing technologies, the deep learning method is a 
revolutionary advancement in image recognition that has 
been used to analyze various diseases, such as diabetic 
retinopathy age-related macular degeneration, glaucoma 
and optic neuropathies (24-26). Deep learning methods 
are family of machine-learning techniques, that contains 
multiple hidden-layer networks that allow the production 
of highly accurate algorithms in diagnosing diseases from 
medical images with accuracy comparable to that of human 
experts (24,27-29). Moreover, Deep Residual Learning for 
Image Recognition (ResNet) is a powerful deep learning 
method which have been applied in diagnosis widely, such 
as for the detection of glaucoma in both highly myopic 
and non-highly myopic eyes (24). Machine learning has 
been reportedly applied to automatically diagnose FK. 
For example, an automatic diagnostic algorithm based on 
adaptive random backpropagation (ARBP) and support 
vector machine (SVM) achieves 99.74% accuracy from 
IVCM images. However, there are no reports on the 
diagnosis of FK with the use of a deep learning method or 
ResNet so far. Therefore, this study aims to construct a 
model based on ResNet automatically to screen FK from 
IVCM images automatically and to use an independent 
dataset to validate its diagnostic performance.

Methods 

This study followed the tenets of the Helsinki Declaration. 
Because of the retrospective nature and fully anonymized 
use of images in this study, The Review Board of the 
People’s Hospital of Guangxi Zhuang Autonomous Region 
indicated that informed consent was not required.

The training dataset was prepared using photographs 
recorded with IVCM (HRT III/RCM Heidelberg 
Engineering, Germany) between November 2018 and 
February 2019 at Guangxi Zhuang Autonomous Region 
People’s Hospital, China. All images were recorded as 
JPEG format with a resolution of 384×384 pixels. These 
keratitis patients were confirmed to have fungal infections 
by fungal culture and were cured by certain antibiotics 
or antifungal drugs. After excluding images that were 
unfocused, too bright, too dark, or had other conditions 
that could interfere with diagnosis, a total of 2,088 IVCM 
images were included in the training dataset. They were 
screened, observed and analyzed by five experts specializing 
in corneal disease. All experts were required to make their 
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own diagnosis independently with no communication.
The image preparation process was as follows. First, 

IVCM images were randomly assigned to three junior 
corneal experts for initial screening and labeling. Each 
expert had to review 1,008 images. After excluding images 
according to the criteria, 2,857 images were included in 
the next round of screening. Second, the other two corneal 
experts were invited to confirm the labeling results. If 
the diagnoses of the first and second round experts were 
inconsistent, the image was submitted to the highest level 
of corneal expertise for a final decision. Ultimately, 2,088 
IVCM images were included in the training dataset. A 
total of 688 images of species with hyphae were classified 
into the positive group, while 1,051 images were classified 
into the negative group which included 426 images of 
normal corneal tissue and 625 images of corneal tissue 
with inflammatory cells and/or activated dendritic cells. 
Moreover, 349 corneal confocal images from diabetic 

patients were added to the negative group. 
The testing dataset was filtered between March 2019 

and June 2019 at Guangxi Zhuang Autonomous Region 
People’s Hospital, China. The basic requirements of all 
images in the testing dataset were consistent with those 
of the training dataset. The positive group contained 172 
images, and the negative group contained 363 images 
(normal corneal tissue, from normal individuals and patients 
with diabetes as well as corneal tissue with inflammatory 
cells and/or activated dendritic cells). The diagnosis of FK 
was performed independently by two experts with extensive 
clinical experience. If the diagnoses of the two experts were 
inconsistent, the images were confirmed by the corneal 
expert. Figure 2 shows the detailed model building process.

Development of the intelligent system

In this study, we used 101 layer ResNet, which is an 

B
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Figure 1 Different cells and structures shown in in vivo confocal microscopy (IVCM) images. (A) Corneal nerve fibers in a healthy person; (B) 
corneal stroma cells in a healthy person; (C) corneal endothelial cells in a healthy person; (D) hyphae in the pathological cornea (the arrows 
indicate fungal hyphae); (E) inflammatory cells in the pathological cornea (the arrows indicate inflammatory cells); (F) activated dendritic 
cells in the pathological cornea (the arrows indicate activated dendritic cells).
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enhanced deep learning algorithm based on a convolutional 
neural network (CNN) (30). ResNet could gain higher 
accuracy from the deeper network than CNN when classing 
images. When testing the model, the output of our model 
was whether the image was FK or not. The architecture 
of the ResNet used in this paper is shown in Figure 3. It 
consists of 33 residual blocks. Each block is composed of 
three convolutional layers (1×1, 3×3 and 1×1 convolutions), 
which with different numbers of channels. The 1×1 
convolutions are responsible for reducing and increasing 
the dimensions of the channels, and the 3×3 convolution is 
the main processing unit. Overall, the ResNet framework 
contains 99 convolutional layers and 2 pooling layers. 
Each pixel on each output channel is computed using the 
convolution between the three-dimensional kernel and the 
corresponding pixels across the three input channels (31). 

Statistical evaluation

During the training process, the training dataset was 
randomly divided into five subsets, the deep learning 
method was trained using four of the five arms, and the 
remaining arm was used for calculating the diagnostic 
accuracy. This process was iterated 5 times so that each of 

the five arms was used as a validation dataset once.
The testing dataset was used to perform external 

validation. And the receiver operating characteristic (ROC) 
curve and the area under the ROC curve (AUC) with 
95% confidence intervals (CIs) were adopted to assess the 
performance of the algorithm (25). The ROC curve plots 
the true positive rate (TPR) against the false positive rate 
(FPR). The best possible classification method would yield 
the point (0.1) of the ROC space, which represents 100% 
sensitivity and 100% specificity (32).

Results

This study built a novel automated-feature learning 
intelligent system based on a deep learning algorithm to 
detect FK in IVCM images. The testing dataset included 
172 images of fungal hyphae and 363 IVCM images in the 
negative group (239 images of normal corneal tissue and 
124 images of corneal tissue with inflammatory cells and/or 
activated dendritic cells).

When there were 1,051 images in the negative group in 
the training dataset, 515 images were correctly diagnosed 
in the testing dataset, of which 58 images were diagnosed as 
fungal images and 357 images were diagnosed as nonfungal 

3,024 IVCM images 1,354 IVCM images

Exclusion criteria: photos that 
were unfocused, too bright, too 
dark, or other conditions that 
could interfere with diagnosis

3×1,008 IVCM images

2,857 IVCM images

5-fold cross-validation

First round
3 junior corneal experts

Second round
2 senior corneal experts

2 senior corneal experts

Training dataset 
n=2,088

Testing dataset 
n=535

Positive group
n=688

Positive group
n=172

Training set (80%) 
fit the parameters of 

the algorithm

Validation set (20%) 
optimize the parameters 

of the algorithm 
Statistical evaluation: 
accuracy, sensitivity 

specificity, AUC 

Negative group
n1=1,051
n2=1,400

Negative group
n=363

Figure 2 The detailed model building process. According to the second selection criteria, 2,088 in vivo confocal microscopy (IVCM) 
images (positive group n=688; negative group n1=1,051, n2=1,400; 349 corneal confocal images from diabetic patients were added in n1) 
were included in the training dataset. Five-fold cross-validation was used to build an intelligent system. The training set was used to fit the 
parameters of the model. The testing set was used to evaluate the final performance of the trained model. The testing dataset (n=535 images) 
was used to perform independent validation. Finally, the accuracy, sensitivity, specificity and AUC were used for statistical evaluation.
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23×, 256–1,024 

3×, 512–2,048 

softmax
normal IVCM 

fungal hyphae

3×, 64–256 

4×, 128–512 

Preprocessing 

Residual block Batch normalization block 

Convoluation and
pooling Residual block 

ReLU ReLU 

256-d

ReLU 
1×1
64

1×1
256

3×3
64

Output OutputInput Input
Conv BN Scale Relu

Average pool 
Cost-sensitive 

adjustment Output 

128×128 pixels

Autocutting:
Minimize noise
Autotransformation:
128×128 pixels

A

B C

Figure 3 The architecture of the ResNet. (A) The overall ResNet; (B) Residual block; (C) Batch normalization. Maximum pooling layers 
and batch normalization in 22 layers were also incorporated into the extractor. The maximum pooling layers were used to sample the image 
and obtain more abstract and global features, and batch normalization was used to accelerate the training process. In accordance with the 
most widely used activation approach in the literature, all activations were rectified linear units. Stochastic gradient descent was used to train 
the network.

images. Twenty images were misdiagnosed, of which  
6 images were misdiagnosed as fungal images and 14 
images were misdiagnosed as nonfungal images (panel A of  
Figure 4). In the testing dataset, the system showed an accuracy 
of 0.9626 with a specificity of 0.9834 and a sensitivity of 0.9186 
(panel A of Figure 5). The performance of this system was 
evaluated by a ROC curve (panel A of Figure 6). The AUC 
value with ResNet was 0.9875 (95% CI, 0.976–0.991). 

When 349 images of diabetic patients were added to the 
training dataset, the testing dataset showed different results 
with 501 images diagnosed correctly and 34 misdiagnosed 
(panel B of Figure 4). The 501 images diagnosed correctly 

included 142 images with fungus and 359 without. The 
34 misdiagnosed images consisted of 4 with fungus and 30 
without. An accuracy of 0.9364 with a specificity of 0.9889 
and a sensitivity of 0.8256 was obtained in the testing 
dataset (panel B of Figure 5). The ROC curve obtained for 
the testing dataset is shown in panel B of Figure 6. The 
AUC value with ResNet was 0.9769 (95% CI, 0.976–0.991).

Discussion

Diagnosing FK quickly is a very important and challenging 
task because microbial culture often takes a relatively 
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long time and may produce negative results. IVCM, a 
noninvasive imaging modality, has been widely used to 
diagnose FK at the cellular level. However, the most 
annoying problem is that assessing a large number IVCM 
images is time consuming. In this study, we constructed 
a novel automated-feature learning intelligent system to 
detect the FK with IVCM images. The system could not 
only help doctors diagnose FK quickly but also monitor the 
presence of fungal residues during the treatment process. 
The deep learning method has been indicated to have 
scientific merit by many reports (30,33,34), and this system 
based on ResNet also exhibited excellent performance 
(accuracy, 0.9626; sensitivity, 0.9186; and specificity, 0.9834) 
for the diagnosis of FK. Even in diabetic population, our 
system based on ResNet showed high diagnostic power 
(accuracy, 0.9364; sensitivity, 0.8256; and specificity, 0.9889) 
in diagnosing FK, which was validated in an independent 
testing dataset.

The  ResNet  deep  ne twork  in  our  s tudy  used  
101 conventional layers, and could extract more complex 
and detailed features from various IVCM images. It also 
showed a more powerful performance than the traditional 
model based on CNN because the influence resulting 
from gradient decline and divergence had been decreased. 
It is more difficult to diagnose FK correctly from IVCM 
images of diabetic patients because of the decrease in 
the number and continuity of nerve fibers in the corneal 
tissue of diabetic patients. The accuracy of the intelligent 
system based on a deep learning algorithm for diagnosing 
FK with IVCM images would also be influenced. Our 

Figure 4 In the testing dataset. (A) When the training dataset 
n1=1,051, 158 images were diagnosed as fungal images and  
357 images  as  nonfungal  images .  Twenty images  were 
misdiagnosed. (B) When the training dataset n2=1,400, 142 images 
were diagnosed as fungal images and 359 images were diagnosed as 
nonfungal images. Thirty-four images were misdiagnosed.
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Negative 357 6
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Negative 359 4

Positive 30 142

B
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Validation Set 0.9626 0.9834 0.9186

Indicators Accuracy Specificity Sensitivity

Validation Set 0.9364 0.9889 0.8256
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Figure 5 Summary statistics for the diagnostic performance 
of this system. (A) When the training dataset n1=1,051, the 
accuracy, specificity and sensitivity were 0.9626, 0.9834 and 
0.9186, respectively. (B) When the training dataset n2=1,400, the 
accuracy, specificity and sensitivity were 0.9364, 0.9889 and 0.8256, 
respectively.
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Figure 6 The AUC of this system. (A) When the training dataset n1=1,051, the AUC=0.9875. (B) When the training dataset n2=1,400, the 
AUC=0.9769. 
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system also proved this finding, as the testing dataset’s 
accuracy decreased from 0.9626 to 0.9364 when 349 images 
of diabetic patients were added to the training dataset. 
This result implied that the algorithm still needed to 
be improved in the diagnosis of FK in diabetic patients. 
Though the accuracy of this system decreased when images 
from diabetic patients were included, the model including 
images of diabetic patients is more realistic because 
diabetic patients are common in the clinic. Furthermore, 
all images in our study, regardless of the training dataset 
or testing dataset, are actual photographs without artificial 
feature extraction, which would avoid misalignment and 
misclassification (35,36).

Most importantly, this is the first attempt to build a 
model with external verification to diagnose FK with IVCM 
images, and all images of FK in our study were proven by 
fungal culture. The accuracy of 0.9626 in our study is not 
as high as that previously reported (accuracy of 0.9974) (9). 
However, unlike other studies, the accuracy of this system 
is the result of an external verification set which is of more 
clinical significance. 

In this study, we developed a robust diagnostic system 
for FK detection within a largescale data set. The results 
indicated the powerful performance of our computer-
aided model in providing efficient, low-cost, and objective 
FK diagnostics, which relieves clinicians from examining 
and grading images manually one by one. However, in 
the medical diagnostic field, an accuracy of 0.9626 is not 
sufficient for precise treatment. It can be considered only an 
auxiliary diagnostic method to provide a reference for timely 
treatment. Improving the clarity of the images, increasing 
the number and variety of images, and optimizing the 
parameters of the algorithm can improve the accuracy of 
the model; however, microbial culture is still the diagnostic 
gold standard. Further research is warranted to check the 
performance of the model in different environments with 
different devices, such as slit-lamp microscopy and camera 
systems. Moreover, this system could judge only whether 
there is fungal infection or not and could not identify fungal 
subtypes and the severity of infection. In addition, the 
visualization of the exact features seen and identified by the 
system still needs to be realized, which could help doctors, 
patients and health care providers understand its learning 
process better (37). In future work, we aim to perform 
multicenter research and establish a larger database of FK 
to improve the accuracy and broaden the applicability of the 
system and to explore suitable deep learning algorithms to 
achieve visualization.

In conclusion, a deep learning method was developed 
to automatically screen FK from IVCM images that could 
reduce the workload of clinicians. With the increase in 
samples and optimization of the algorithms, artificial 
intelligence systems will have a significant clinical impact 
and may completely change the current mode of disease 
diagnosis.
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