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Altered brain language network in idiopathic peripheral facial 
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Background: Dysarthria is one of the common symptoms of facial paralysis (FP). This study aimed to 
investigate functional alterations in the brain language network in early idiopathic peripheral FP patients 
with dysarthria using resting-state functional magnetic resonance imaging (fMRI).
Methods: A total of 45 cases of FP (left 22, right 23) and 34 cases of healthy control (HC) were recruited 
into this study. The data of patients with left-side FP and matched controls (17 cases) were flipped from 
left to right, and the brain regions were defined as ipsilateral and contralateral regions. The FC of 16 ROIs 
in classical language centers and regions that may be involved in language function were calculated. After 
identifying the differences of FC between the two groups, the correlation analysis between altered FC and 
TFGS score of oral muscle movement in FP group were analyzed.
Results: The FC between bilateral language regions has a significantly decreased trend in FP group 
compared with HC group (P<0.05). The ipsilateral inferior frontal gyrus, superior temporal gyrus, and 
middle temporal gyrus exhibited significantly decreased FC with multiple brain regions. In addition, we 
found that thalamus and cerebellum also with a significant alteration in FC in FP patients indicating that 
these two regions may also be involved in the mechanism of dysarthria in FP. The correlation analysis results 
indicated that the decrease of FC was positively correlated with the severity of oral paralysis.
Conclusions: Idiopathic peripheral FP with dysarthria induces several FC alterations in the brain language 
network. The severity of oral paralysis is associated with these functional alterations.
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Introduction

Idiopathic peripheral facial paralysis (FP) is a disease of 
facial muscle dysfunction caused by facial nerve injury (1).  
Its clinical manifestations are mainly concentrated in 
face, which can lead to a serious psychological impact on 

patients (2). Dysarthria is one of the common symptoms 
of idiopathic peripheral FP, but less attention has been 
paid to the neural mechanism in language alterations in 
the patients. Early identification in functional changes of 
the brain language network in FP patients with dysarthria 
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will be of great significance to understand the pathogenesis 
of the disease and provide early diagnosis and timely 
treatment.

Language expression is achieved through a high degree 
of neuromuscular coordination in vocal organs. The 
pronunciation process is that the motor cortex emits a pulse 
through the cortical brainstem bundle into the brainstem 
nucleus, and then transmits through the cerebral nerve to 
the vocal organs to make it move and produce a sound. 
Besides, the vocal organs also accept regulated impulse from 
cerebellum and basal ganglia (3), any interruption along 
the pathway will induce language dysfunction. Language 
dysfunction includes aphasia and dysarthria. Brain tissue 
damage such as cerebrovascular disease (4) and brain  
tumor (5) can lead to aphasia, while dysarthria is related to 
vocal muscle dysfunction.

Resting-state fMRI, as a non-invasive method, has been 
used to observe neuron activity by identifying changes in 
the local oxygen consumption and the cerebral blood flow 
in brain regions. Functional connectivity (FC) is an fMRI-
based index characterized the inter-regional synchronization 
of intrinsic brain activity, which has been wildly used to 
investigate the difference of brain activity between clinical 
and healthy population (6). By using resting-state fMRI, 
researchers found FC changes in several diseases with 
language dysfunction. van der Salm et al. found alterations 
in FC of the language network in patients with aphasia after 
a stroke (7). Children with autism spectrum disorder (ASD) 
combined language impairment also have been reported 
as atypical FC of the language network (8). Structural 
abnormalities in language regions were found in patients 
with clefts of the lip and/or palate with dysarthria (9). Many 
studies have shown that there may be more brain regions 
involved in language function than in the classical language 
center. Recent studies have shown that the basal ganglia 
(10,11), cerebellum (8), thalamus (12), and pons (13) are all 
involved in language function.

For assessing functional alterations in the brain language 
network in early idiopathic peripheral FP patients with 
dysarthria, we calculated FC of the language network in 
patients and controls. Classical language centers and regions 
that may be involved in language function previously 
mentioned were analyzed. Additionally, to explore 
correlations between altered brain language network and 
severity of oral paralysis in patients, we evaluated the facial 
function in participants using Toronto Facial Grading System 
(TFGS) (14) and analyzed the correlations between altered 
FC and TFGS score of oral muscle movement in FP group.

Methods

Subjects

Forty-five patients with FP and 34 healthy controls (HC) 
participated in the study. This study was approved by the 
Ethics Committee of our hospital, and all subjects have 
given informed consent before the experiment. The patients 
with FP came from our hospital from 2017 to 2018. The 
inclusion criteria were: adult unilateral idiopathic peripheral 
FP patients with dysarthria diagnosed by clinicians; onset 
time within 7 days; no other craniocerebral lesions and 
psychiatric diseases; being right-handed. The exclusion 
criteria were: central FP; patients with other vocal muscle 
disorders such as muscle weakness, hemifacial spasm. There 
were 22 cases of left FP and 23 cases of right FP in patient 
group, 17 males and 28 females, with an average age of 
43±13 years (22–66 years). The HC group were recruited 
from society and inclusion criteria were: no language 
dysfunction assessed by clinicians; no neurological and 
psychiatric illness, and family history; being right-handed. 
There were 34 cases in control group, 14 males and 20 
females, with an average age of 46±14 years (24–68 years). 
The TFGS scores were used to evaluate the facial function 
for all subjects by clinicians (Table 1).

MRI data acquisition

A 3.0 T MRI scanner (GE, Discovery MR750, Milwaukee, 
United States) with a standard head coil was used to 
acquire the data. All subjects underwent a T2WI scan 
to exclude craniocerebral organic diseases. Before fMRI 
scanning, each subject was told to close their eyes, rest and 
avoid thinking during the exam. The resting-state fMRI 
with a single-shot gradient recalled echo-planar imaging 
sequence: slice thickness =3.5 mm, slice spacing =0.7 mm, 
repetition time (TR) =2,000 ms, echo time (TE) =30 ms, 
flip angle =90 degrees, matrix =64×64, field of view (FOV) 
=224 mm × 224 mm, number of excitations (NEX) = 1, 34 
slices and 240 phases. 3D T1WI anatomic images were 
reconstructed using three-dimensional fast spoiled gradient-
echo sequences (3D FSPGR): slice thickness =1.0 mm, TR  
=6.7 ms, TE = min full, matrix =256×256, FOV = 256 mm × 
256 mm, NEX = 1.

Data pre-processing

Before any pre-processing steps, we flipped the data 
of patients with left-side FP and the matched controls  
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(17 cases) along the Y-axis, in order to directly compare 
them with the right-side FP patients (15,16). The resting-
state fMRI data were pre-processed in Data Processing 
Assistant for Resting-State fMRI (DPARSF) software (17).  
Briefly, the pre-processing steps were as follows: the 
DICOM data was converted to NIFTI format; the first 
10 time points were removed; after slice timing correction 
and realignment, the functional images were normalized 
by using T1 images unified segmentation to the Montreal 
Neurological Institute (MNI) standard brain; the cases with 
head motion exceeds 2 mm or 2° were excluded; the 4 mm 
Gaussian kernel was used for spatial smoothing; and the 
low-frequency drift and high-frequency noise were removed 
by band-pass filtering (0.01–0.08 Hz). After pre-processing, 
the individual data were used for further analysis.

Definition of region of interest (ROI)

To explore functional changes in language network in 
idiopathic peripheral FP patients with dysarthria, we 
included classical language centers and regions that may 
be involved in language function (caudate, cerebellum, 
thalamus, and pons) as ROIs. The basal ganglia group and 
the language group in Stanford University Willard 499 fROI 
atlas (18) were used because these two groups covered the 
above brain regions. These two atlas groups contain a total 
of 16 ROIs and the voxel size of each ROI is 3 mm × 3 mm 
× 3 mm (Table 2, Figure 1).

Network connectivity analysis

Before calculating FC, six head motion parameters obtained 
by rigid body correction, signals of white matter and 
cerebrospinal fluid were removed as covariables by linear 
regression. The FC was calculated based on the Pearson 
correlation of all voxels BOLD signals for each ROI using 

Rest toolbox (http://resting-fmri.sourceforge.net/). Fisher’s 
r-to-z transformation was utilized to increase the normality 
of data distribution and each subject obtained a 16 × 16 FC 
(z values) matrix (Figure 2). For each z value, Two-sample 
T-test was conducted on SPSS 20.0 software (SPSS Inc., 
Chicago, IL, USA) between the two groups. Age, gender, 
and education were regressed as covariates. False discovery 
rate (FDR) correction was used to control false positives 
for multiple comparisons and P<0.05 was considered as 
statistical significance (Figure 3). Spearman correlations 
between altered FC and TFGS score of oral muscle 
movement (open mouth smile) in patients were analyzed.

Results

Clinical results

Sex, age, and education level were not significantly different 
between FP group and HC group (P>0.05) (Table 1).

Functional connectivity analysis

Ipsilateral inferior frontal gyrus exhibited decreased FC 
with multiple regions in patients. The ipsilateral inferior 
frontal triangularis (IFGtriang) had decreased FC with 
bilateral inferior frontal orbitalis (ORBinf), contralateral 
superior temporal gyrus (STG), angular gyrus (ANG), and 
ipsilateral STG, while it had increased FC with ipsilateral 
middle temporal gyrus (MTG) in FP group compared with 
HC group. The FC between bilateral ORBinf was also 
decreased in patients (Figure 4A).

Thalamus and cerebellum had an alteration in FC 
in FP group. The FC between ipsilateral thalamus 
and contralateral IFGtriang was increased, while the 
FC between contralateral thalamus and contralateral 
supramarginal gyrus (SMG) was decreased in FP group. 

Table 1 Demographic and clinical data of participants

Variables FP group (n=45) HC group (n=34) P value

Age (years) 43.20±13.39 46.18±14.38 0.346
†

Sex (male/female) 17/28 14/20 0.759
‡

Education (years) 12.80±4.41 14.03±4.38 0.222
†

Duration (days) 4.40±1.79 0 −

TFGS (scores) 16.89±16.04 100.00±0.00 −
†
, independent two-sample t-test; 

‡
, Chi-square test. The lower the TFGS scores, the more severe the symptoms of facial paralysis. FP, 

facial paralysis; HC, healthy control; TFGS, Toronto Facial Grading System. 

http://resting-fmri.sourceforge.net/
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The contralateral cerebellar crus 1 area had increased FC 
with ipsilateral STG and MTG in patients (Figure 4B).

Ipsilateral temporal gyrus showed decreased FC with 
multiple regions in patients. The ipsilateral STG had 

decreased FC with contralateral STG, SMG, and ANG, and 
the ipsilateral MTG had decreased FC with contralateral 
STG and ANG in FP group compared with HC group 
(Figure 4C).

Table 2 Information of 16 ROIs

Willard fROI 499 atlas Brain regions Cluster size
MNI coordinates

x y z

Basal Ganglia CAU.I 175 14 10 14

THA.I 200 10 −12 10

THA.C 257 −10 −12 10

CAU.C 121 −14 10 14

IFGtriang.C 18 −44 22 24

IFGtriang.I 63 49 30 18

Pons 32 −5 −25 −38

Language ORBinf.C 323 −48 29 −7

MTG.C 833 −55 −24 −6

STG.C 109 −60 −45 18

SMG.C 201 −55 −48 31

ANG.C 340 −55 −59 28

ORBinf.I 58 51 28 −8

STG.I 281 56 −45 19

MTG.I 569 51 −22 −8

CERE.crus1.C 99 −22 −76 −31

“.I” means the ipsilateral to the facial paralysis, “.C” means the contralateral to the facial paralysis. CAU, caudate; THA, thalamus; 
IFGtriang, inferior frontal triangularis; ORBinf, inferior frontal orbitalis; MTG, middle temporal gyrus; STG, superior temporal gyrus; SMG, 
supramarginal gyrus; ANG, angular gyrus; CERE.crus1, cerebellar crus 1 area.

Figure 1 The ROI illustration of the basal ganglia group and the language group in the Stanford University Willard 499 fROI atlas. 
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Correlations between altered FC and TFGS score of oral 
muscle movement

The FC between bilateral STG correlated positively with 
TFGS score of oral muscle movement (r=0.514, P=0.000) 
(Figure 5A). Additionally, FC between ipsilateral STG 
and contralateral ANG showed positive correlation with 
the TFGS score (r=0.468, P=0.001) (Figure 5B), and the 
correlation result of FC between ipsilateral MTG and 
contralateral STG with TFGS score was positive similarly 
(r=0.302, P=0.044) (Figure 5C).

Discussion

Altered FC of language network in FP group

The present study investigated the functional alterations in 
the brain language network in early idiopathic peripheral 
FP patients with dysarthria. We found that FC between 
bilateral language regions has a significantly decreased 
trend in FP group compared with HC group (P<0.05). The 
ipsilateral inferior frontal gyrus (IFG), STG, and MTG had 
decreased FC with multiple brain regions. Besides, thalamus 
and cerebellum also with a significant alteration in FC in 

Figure 2 The FC was calculated based on the Pearson correlation for each ROI and Fisher’s r-to-z transformation was conducted. (A,B) The 
FC matrix in FP group and HC group, color grids represent mean z values. (C,D) The brain regions and FC with significant differences 
between the two groups, purple nodes represent the basal ganglia group, green nodes represent language group, color and thickness of edges 
represent absolute z values.
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Figure 3 Two-sample T-test was conducted to compare the differences in FC between the two groups and the threshold was set at P<0.05 
FDR (false discovery rate) corrected. (A) The color grid represents the P value of each FC. (B) The brain regions and FC with significant 
differences between the two groups, purple nodes represent the basal ganglia group, green nodes represent the language group, color and 
thickness of edges represent t values.
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FP patients.
Our results show that ipsilateral IFGtriang had significant 

decreased FC with multiple brain regions in FP group, and 
FC between bilateral ORBinf was also decreased in patients. 
Left IFGtriang and ORBinf were found activated in word 
retrieval (19) and the syntactic and semantic procession of 
written language (20), while right ORBinf plays a positive 
role in the regulation of the language expression (21). 

We speculate that the dysfunction of language expression 
caused by FP induced the decrease of functional activity 
in IFGtriang and ORBinf. Although traditionally thinking 
right-handed people have a left dominance of language 
(22,23), the right hemisphere provides a better basis for 
language recovery when multiple cerebral damaging (24), 
suggesting that both hemispheres are involved in language 
recovery (25). Additionally, aphasia occurs in left cerebral 

Figure 4 The FC of the brain regions had a significant difference between the two groups (FDR corrected at P<0.05). Error bars depict 
standard error of the mean. *, P<0.05; **, P<0.01. Stars indicate a significant difference. (A) The ipsilateral IFGtriang had decreased FC with 
multiple brain regions and the FC between bilateral ORBinf was also decreased in FP group; (B) the thalamus and the cerebellar crus1 area 
had altered FC with other brain regions in FP group; (C) the FC between Wernicke area and contralateral brain regions was decreased in 
FP group.

Figure 5 The Spearman correlation analysis results indicated that altered FC was correlated with TFGS score of oral muscle movement 
(open mouth smile) in FP group. The number 1 to 4 of the “open mouth smile” indicates the ipsilateral oral muscle movement compared 
with the normal side and the lower the score, the more severe the degree of oral paralysis: 1: no movement; 2: mild movement; 3: moderate 
movement; 4: almost complete movement. (A) The FC between bilateral STG showed a positive correlation with TFGS score of open 
mouth smile (r=0.514, P=0.000). (B) The FC between ipsilateral STG and contralateral ANG showed a positive correlation with TFGS 
score of open mouth smile (r=0.468, P=0.001). (C) The FC between ipsilateral MTG and contralateral STG correlated positively with 
TFGS score of open mouth smile (r=0.302, P=0.044).
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infarction supporting the theory of left dominance of 
language in right-handed people (26-28), while right 
cerebral infarction can also lead to aphasia indicating that 
bilateral hemispheres are involved in language function (29). 
FC changes of IFGtriang and ORBinf in patients indicating 
that these two regions are involved in language expression 
and there is a bilateral language dominance, which is in 
accordance with previous studies.

In our results, FC between ipsilateral thalamus and 
contralateral IFGtriang was increased, and FC between 
contralateral thalamus and contralateral SMG was decreased 
in FP group. As we know, the thalamus is a center of speech 
processing between Broca’s area and Wernicke's area, its 
injury can lead to changes in cognition and speech. Aphasia 
can occur in unilateral thalamic injury, indicating that 
thalamus plays an important role in the process of language 
generation (12). Our results show that bilateral thalamus 
with an alteration in FC suggesting the procession of speech 
in thalamus also is bilateral. The decrease of functional 
activity in ipsilateral IFGtriang may lead to increased 
activity in contralateral IFGtriang as compensation, thus 
induced the increase of FC between contralateral IFGtriang 
and ipsilateral thalamus. The decrease of FC between 
contralateral thalamus and contralateral SMG may be due 
to the decrease of functional activity caused by dysarthria 
associated with FP.

In addition, we also found ipsilateral STG had decreased 
FC with contralateral STG, SMG, and ANG, and 
ipsilateral MTG had decreased FC with contralateral STG 
and ANG, while contralateral cerebellar crus 1 area had 
increased FC with ipsilateral STG and MTG in FP group. 
STG, MTG, SMG, and ANG all belong to the Wernicke  
area (30). Left SMG and STG are involved in speech 
processing and the posterior part of left STG and ANG 
are related to semantic processing, and the middle part 
of left MTG and anterior part of STG are involved in 
sentence processing (31). Our results show that FC between 
Wernicke area and contralateral brain regions is reduced, 
which is consistent with previous studies emphasizing 
both hemispheres are involved in language generation 
and understanding (32,33). The dysfunction of language 
expression in patients with dysarthria may lead to a decrease 
of functional activity in these brain regions, thus induce 
the decrease of FC. Cerebellum also was found involved 
in language function (34,35) and its infarction (36) and  
injury (37) can lead to dysarthria. In FP group, functional 
activity of STG and MTG were decreased, and cerebellum 
may increase the functional activity as compensation.

Relationship between altered FC and severity of oral paralysis

In this study, we also investigated correlations between 
the altered brain language network and the severity of oral 
paralysis in patients. The results show that the decrease 
of FC in the Wernicke area (STG, MTG, ANG) was 
correlated with the severity of oral paralysis, suggesting that 
dysarthria caused by facial nerve paralysis may lead to the 
decrease of neural activity in the brain language network. 
Early identification in these alterations would give a piece 
of evidence for possible language rehabilitation training in 
patients.

Limitations

There were several limitations in our study. First, this study 
was limited to small sample size and patients with left FP 
and right FP were all included. To control the problem on 
different side of the lesion, we flipped the left FP group 
from left to right. Functional alterations in the brain 
language network in left FP or right FP can be analyzed 
separately in the future. Second, we used a cross-section 
study design to explore the alterations in language network, 
future longitudinal studies would help us to understand 
the mechanism of these changes in patients with FP at 
different disease stages. Finally, we used resting-state data 
and without design language tasks to observe the changes in 
language network in patients in real-time. Task-state fMRI 
can be used to continue the study in the future.

Conclusions

In conclusion, our results show that FC between bilateral 
language regions has a significantly decreased trend in 
FP group compared with HC group (P<0.05), and the 
severity of oral paralysis was correlated positively with the 
decrease of FC. This study provides a piece of evidence 
that dysarthria caused by facial nerve paralysis may lead to 
a decrease of neural activity in the brain language network. 
Early identification in these changes would give a basis for 
understanding the pathogenesis of the disease and providing 
early diagnosis and possible treatment.
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